Our mission is to analyze, design, and deliver economically and computationally efficient marketplaces across Google. Our research serves to optimize display ads for Doubleclick’s reservation and exchange as well as sponsored search and mobile ads.
Take a look at our publications, recent Research Seminars, and recent Market Algorithms Workshop.
As part of the display ads eco-system, advertising exchanges provide many challenging optimization and algorithmic mechanism design problems. Examples of such research areas include auction design in the presence of supply chain of auctioneers, optimal competition between reservation, spot markets and reserve price optimization.
Display ads eco-system provides a great platform for a variety of research problems in online stochastic optimization and computational economics. Examples of such areas are robust online allocation problems, and optimal contract design in display advertising.
The bulk of online ads are sold via repeated auctions. Instead of optimizing these auctions separately per auction, one can design stateful (dynamic) pricing and allocation strategies that may optimize these auctions together. While dynamic mechanism design has been an active research area, most of the existing mechanisms are either too computationally complex, or rely too much on forecasting of the future auctions. We have designed a new family of dynamic mechanisms, called bank account mechanisms, and showed their effectiveness in designing oblivious dynamic mechanisms that can be implemented without relying on forecasting the future.
Budget constraints are a central issue in online advertising. While designing efficient mechanisms with good incentive properties is a well understood question for unbudgeted settings, it is only understood with budgets for very simple settings. In this line of work, we develop efficient mechanisms in settings with budgets for more sophisticated settings that occur in internet advertisement, such as online settings and polyhedral constraints.
All online advertising systems employ online ad selection algorithms satisfying various global constraints and optimizing different objectives. In this regard, we have developed new cutting-edge algorithms for online stochastic matching, budgeted allocation, and more general variants of the problem, called submodular welfare maximization.
Advertisers must constantly optimize their campaigns to keep up with changes in their goals, resources and the market itself. To help, Google provides bid automation tools, as well as suggestions for targeting, bid and budget changes. We have studied algorithmic questions in this area to improve these tools and suggestions.
Each ad impression is unique in its combinations of features, which makes it a challenging to price them accurately. We develop robust online learning algorithms that can cope with unpredictable supply of ads and that balance the conflicting objectives of learning and earning in online pricing.
A Study of Compact Reserve Pricing Languages
MohammadHossein Bateni, Hossein Esfandiari, Vahab S. Mirrokni, Saeed Seddighin
AAAI 2017 (2017), pp. 363-368
Deals or No Deals: Contract Design for Online Advertising
Vahab S. Mirrokni, Hamid Nazerzadeh
WWW (2017), pp. 7-14
Dynamic Mechanisms with Martingale Utilities
Santiago Balseiro, Vahab Mirrokni, Renate Paes Leme
ACM EC (2017)
A Field Guide to Personalized Reserve Prices
Renato Paes Leme, Martin Pál, Sergei Vassilvitskii
WWW'16 (2016) (to appear)
Fair Resource Allocation in A Volatile Marketplace
MohammadHossein Bateni, Yiwei Chen, Dragos Florin Ciocan, Vahab S. Mirrokni
EC (2016), pp. 819
Online Allocation with Traffic Spikes: Mixing Adversarial and Stochastic Models
Hossein Esfandiari, Nitish Korula, Vahab S. Mirrokni
EC (2015), pp. 169-186
Optimizing Display Advertising Markets: Challenges and Directions
Nitish Korula, Vahab Mirrokni, Hamid Nazerzadeh
IEEE Internet Computing (2015), pp. 28-35
Multiplicative Bidding in Online Advertising
Mohammadhossein Bateni, Jon Feldman, Vahab Mirrokni, Sam Chiu-wai Wong
ACM Conference on Economics and Computation (EC) (2014)
Simultaneous Approximations for Adversarial and Stochastic Online Budgeted Allocation
Vahab Mirrokni, Shayan Oveis Gharan, Morteza Zadimoghaddam
Symposium on Discrete Algorithms (SODA), ACM/SIAM (2012)
Yield Optimization of Display Advertising with Ad Exchange
Santiago Balseiro, Jon Feldman, Vahab Mirrokni, S. Muthukrishnan
ACM Conference on Electronic Commerce (2011)
Budget Optimization in Search-Based Advertising Auctions
Jon Feldman, S. Muthukrishnan, Martin Pál, Cliff Stein
Proc. ACM Conference on Electronic Commerce, ACM, San Diego (2007)