Publication Data

   Efficient Spatial Sampling of Large Geographical Tables

Abstract: Large-scale map visualization systems play an increasingly important role in presenting geographic datasets to end users. Since these datasets can be extremely large, a map rendering system often needs to select a small fraction of the data to visualize them in a limited space. This paper addresses the fundamental challenge of {\em thinning}: determining appropriate samples of data to be shown on specific geographical regions and zoom levels. Other than the sheer scale of the data, the thinning problem is challenging because of a number of other reasons: (1) data can consist of complex geographical shapes, (2) rendering of data needs to satisfy certain constraints, such as data being preserved across zoom levels and adjacent regions, and (3) after satisfying the constraints, an {\em optimal} solution needs to be chosen based on {\em objectives} such as {\em maximality}, {\em fairness}, and {\em importance} of data. This paper formally defines and presents a complete solution to the thinning problem. First, we express the problem as an integer programming formulation that efficiently solves thinning for desired objectives. Second, we present more efficient solutions for maximality, based on DFS traversal of a spatial tree. Third, we consider the common special case of point datasets, and present an even more efficient randomized algorithm. Finally, we have implemented all techniques from this paper in Google Maps visualizations of Fusion Tables, and we describe a set of experiments that demonstrate the tradeoffs among the algorithms.