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Abstract

This paper describes my solution to the 3rd YouTube-
8M Video Understanding Challenge. To deal with the
limited number of annotated segments, video-level mod-
els were pre-trained on the YouTube-8M frame-level fea-
tures dataset to create meaningful video representations
from frames. The weights of the two models were used
to create two types of segment classifiers: context-aware
and context-agnostic. The created classifiers were fine-
tuned on the YouTube-8M segment-rated frame-level fea-
tures dataset, with negative label mining, segment expan-
sion, and a custom weighted cross-entropy loss. The final
ensemble was created by taking arithmetic means of the
class probabilities from six context-aware and six context-
agnostic classifiers. It achieved seventh place in the pri-
vate leaderboard. From the experiment results, a mix-
ture of the two types of the classifier has been shown to
have stronger performances on both the public and pri-
vate test dataset. The code is publicly available at https:
//github.com/ceshine/yt8m-2019.

1. Introduction
In most web searches, video retrieval and ranking are

performed by matching query terms to metadata and other
video-level signals. However, we know that videos can
contain an array of topics that aren’t always characterized
by the uploader, and many of these miss localizations to
brief but important moments within the video. Temporal
localization can enable applications such as improved video
search (including search within a video), video summariza-
tion and highlight extraction, action moment detection, im-
proved video content safety, and many others[2].

Google Research hosted The 3rd YouTube-8M Video
Understanding Challenge[2] that asks participants to local-
ize video-level labels to the precise time in the video where
the label actually appears, and do it at an unprecedented
scale.

The associated YouTube-8M Segments dataset is an ex-
tension of the YouTube-8M dataset[1] with human-verified

segment annotations. About 237K segments from the vali-
dation set of the YouTube-8M dataset were annotated with
a total of 1,000 classes.

For each one of these 1,000 classes, the participants are
to produce a list of at most 100,000 segments from the test
videos that are most likely to be labeled to it. This can be
treated as a multi-label classification problem, where each
segment can have zero, one, or more associated labels.

There are on average 237 annotated segments per class,
which is generally considered to be too few to train even
moderately sophisticated models. Therefore, a transfer
learning approach is adopted in this paper to avoid over-
fitting and improve generalization. The video label predic-
tion task from the previous year’s YouTube-8M challenge
was used to pre-train video-level models. Since the classes
used in the segments dataset are a subset of the classes in
the video dataset, we can expect pre-trained models to have
learned to detect relevant frames to those classes. Further
fine-tuning on the segments dataset should help the model
to more accurately pinpoint relevant frames in shorter seg-
ments.

Directly fine-tuned models are context-agnostic, as they
have no information about the other parts of the video.
However, for some classes, such context information can
be used to make better predictions. To make use of this
information, context-aware models are created by combin-
ing a video encoder and a segment encoder. The video and
segment embedding vectors from the two encoders are con-
catenated together to predict class probabilities.

On the other hand, context information might have little
use to other classes, and training the model with such in-
formation could lead to unnecessary overfitting. By using
a mixture of context-aware and context-agnostic segment
classification models, different characteristics of the 1,000
target classes are expected to be better accommodated, and
thus improves overall performance.

2. Related Works
NetVLAD was proposed in 2015[3] to aggregate local

image descriptors into a global compact vector. It makes the
traditional encoding method VLAD (Vector of Locally Ag-
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Figure 1. Context-gated DBoF video embedding.

Figure 2. NeXtVLAD video embedding.

gregated Descriptors) differentiable and thus can be trained
with stochastic gradient descent.

Miech et al.[11] demonstrates that NetVLAD can also
be used to aggregate video features. Ways to make tradi-
tional Bag-of-visual-words[15] and Fisher Vectors[13] dif-
ferentiable were also introduced.

Lin et al.[9] presents a ResNeXt-inspired improvement
over NetVLAD called NeXtVLAD. It is shown to be both
effective and parameter efficient in aggregating temporal in-
formation.

The DBoF (Deep Bag of Frames) approach was intro-
duced as a baseline to the first YouTube-8M challenge[1].

It features an up-projection layer with shared parameters
for all frames, followed by a pooling layer. It has re-
cently been shown[12] that by incorporating the context-
gating idea introduced by Miech et al.[11], the context-
gated DBoF can produce one of the best single models in
the second YouTube-8M challenge.

Semi-supervised and active learning approaches targeted
at video classification and annotation[14][6][16] have been
proposed for this kind of situation where the number of an-
notated samples is very limited. More general computer vi-
sion semi-supervised learning techniques[4] could also po-
tentially be adapted to this problem.



3. Network Architecture
This section describes the neural network architecture

used to pre-train models on the video frames dataset and
later fine-tune them on the segments dataset.

3.1. Video-level Pre-training

The video classifier shown in Figure 3 has two parts: the
video embedding model and the mixture of experts classi-
fier. The video embedding sub-model takes the frames from
a video with an arbitrary length and maps them to a vector
with a fixed size D. The mixture of experts classifier then
takes this vector to predict the probability of a label being
assigned to this video.

Figure 3. The architecture of the video/segment classifier.

In practice, B videos are grouped into a batch of shape
(B,L, 1024 + 128) (video and audio features are concate-
nated). The batch length L is set to be the length of the
longest video inside the batch. Shorter videos are padded
and a mask is created for this batch (Figure 4). The mask
will be used by the video embedding sub-model to mask out
the padded frames.

For regularization and memory saving purposes, a max-
imum video length Lm is set for most of the models. A
random sampling without replacement will be performed to
retrieve Lm frames for videos with more than Lm frames.

This is a multi-label classification problem. The loss
function used is the standard multi-label cross entropy
(Equation 1).

L(ppp,yyy) = − 1

|C|
∑
c∈C

yc log(pc) + (1− yc) log(1− pc)

(1)
Only the videos tagged with one of the 1,000 labels used

in the segments dataset were used in the pre-training. The
decision was made to reduce the training time and make the

Figure 4. An example of the mask for a batch. The value zero
means the frame was padded.

mixture of experts classifier reusable in the later fine-tuning.
Training with all video labels might be helpful, but it was
not implemented due to the time constraint.

Two types of video embedding architecture were used
to make the ensemble more diverse: context-gated DBoF
and NextVLAD. The final ensemble was created by taking
arithmetic means of the class probabilities.

3.2. Video Embedding: Context-Gated DBoF

The context-gated DBoF (deep bag of frames)
architecture[12] is used with some modifications for
this paper (Figure 1). The frame pooling method is a
combination of max pooling and average pooling. The
masking of frames is conducted inside the pooling layer.
No L2 normalization is applied before nor after the pooling.

Context-gated DBoF, comparing to NeXtVLAD, is more
memory-efficient. Therefore, a larger maximum video
length Lm can be used, and it could provide some diversity
to the ensemble.

3.3. Video Embedding: NeXtVLAD

The NeXtVLAD layer[9] is both effected and parameter
efficient in aggregating temporal information comparing to
the NetVLAD layer (Figure 2). Only one change is made
inside the NeXtVLAD layer for this paper — the batch nor-
malization on the cluster assignment activation is performed
cluster-wise (the number of channels is the number of clus-
ter K) instead of globally (the number of channels is the
number of cluster K times the number of groups G).

After the NeXtVLAD layer, a random 25% of the clus-
ters are dropped during training by setting all the associated
residuals to zero.

The masking is performed in the way described by Lin
et al.[9], i.e., the attention weights are set to zero to padded
frames.



3.4. Mixture of Experts Classifier

Some modifications to the mixture of experts classifier is
made for this paper (Figure 5). A batch normalization layer
and a dropout layer is added to both the gating network and
the expert network. It is done so that fewer assumptions
are made to the distribution of the input features, and to add
some regularization that is independent of the video embed-
ding model.

Instead of assigning different weights on each expert for
different classes, the same set of weights is applied to all
classes. This is to reduce the chance of overfitting, as the
mixture of experts classifier is shared between video and
context-agnostic segment classifiers.

Figure 5. The architecture of the mixture of experts classifier.
There’s also a dummy ”expert” that always predicts zero, but is
not shown here.

3.5. SE Context Gating

The SE Context Gating[9] has been modified to make it
more flexible and consistent with other parts of the model
(Figure 6). A batch normalization layer is added at the start,
and the batch normalization layer in the middle is placed
after the ReLU activation.

Figure 6. The architecture of the SE context gating layer.

3.6. Negative Label Mining in the Segments Dataset

Unlike in the video dataset, where all labels were evalu-
ated when an annotator reviews a video, only one label was
evaluated at a time for the segments dataset. That leaves
99.9% of the labels unattended. To make use of the video-
level labels and make the model converge faster, negative
label mining was used to create a list of highly-unlikely la-
bels.

Almost always the segment-level labels come from the
video-level labels, so we can say that any other labels not
from the union of the set of video-level labels Sv and the
set of (positive) segment labels Ss are very unlikely to be
used in any of the segments in this video. These labels are
then treated as the negative labels to every segment.

The loss function used in the fine-tuning stage is a
combination of binary cross-entropy and multi-label cross-
entropy. For a segment label j with a binary score y, the
loss is calculated as in Equation 2. S contains all the 1,000
possible labels in the dataset. A stronger weight is placed
on the positive examples to improve recall.

L(ppp, y, j) = −(3
2
y log(pj) + (1− y) log(1− pj))

−1

2

1

|S − Sv ∪ Ss|
∑

c/∈Sv∪Ss

log(1− pc)
(2)

3.7. Segment Expansion

Figure 7. The segment expansion scheme.

The hypothesis is that while the human annotators only
saw the 5 seconds in the segment, the vicinity of the seg-
ment might provide useful information about the segment
(for example, the preparation of the goalkeeper before the
penalty kick and the celebration after the kick). For a seg-
ment start at time T , the previous t and the next t frames are
also included as the input of the segment classifier.

The value t was set to be 3 (as demonstrated in Figure
7) from experiments in an earlier stage of the competition,
which showed the best performance among candidates in-
cluding t = 2, 3, 5. However, the local cross-validation was
not properly implemented at the time, so this choice might
have caused some overfitting to the public leaderboard of
the competition.



Figure 8. The architecture of the context-aware segment classifier

3.8. Context-Agnostic Segment Classifier

Because the pre-training task uses the same set of la-
bels as in the segments dataset, we can use the pre-trained
model, without any modification, to predict the class proba-
bilities of a segment. The input of the model changes from
(sampled) frames from a video to frames from expanded
segments described in the previous section. Further fine-
tuning is performed to make the model adapt to this shorter
form of input.

Since the length of segments is fixed at 2t+ 5 = 111111, the
masking mechanism inside the model is turned off.

The model can only see the (expanded) segment itself,
not the video containing the segment, hence the ”context-
agnostic” in the name.

3.9. Context-Aware Segment Classifier

To make use of the context of a segment, two video em-
bedding models taken from pre-trained video-level models
(they can be from the same pre-trained model) are com-
bined, with one acts as video context encoder, and the other
as segment encoder. The concatenated embedding vectors
are sent to a fully-connected layer with optional context gat-
ing to model the interaction between the context and the
segment. And , a mixture of experts classifier is appended
to obtain the class probabilities (Figure 8).

The weights of the video context encoder are frozen,
i.e., they won’t be updated and their gradients will not be

calculated. Fine-tuning the encoder did not improve cross-
validation performance in the preliminary experiments, and
it takes much more time to train, so I decided to keep them
frozen.

The random sampling and masking described in section
3.1 were also applied to the video frame inputs. The first six
segments and the final two segments were never annotated,
judging from exploratory data analysis and confirmed by
the organizer, as a way to avoid potential intro and credit
sections. These eight segments are also dropped from every
video before the frame sampling.

The learning rate of the segment encoder is set to be
half the learning rate of the contextual segment encoder and
the mixture of experts classifiers, in an attempt to mitigate
catastrophic forgetting [8].

4. Experiment Results

This section describes the implementation details and
presents the experiment results on the Youtube-8M Seg-
ments Dataset.

4.1. Datasets

For the Youtube8M frame-level features dataset that was
used in the video-level pre-training, only 3658 shards out
of 3884 shards in the training set and 744 shards out of
3884 shards in the validation set were used due to re-
source constraints. The lists of shards used are provided in



the Github repository associated with this paper (https:
//github.com/ceshine/yt8m-2019).

The Youtube8m segment-rated frame-level features were
split into 8 folds by shards. The segment classifiers were
trained using data from different folds as the validation set.

4.2. Implementation Details

PyTorch 1.3.0 was used to implement models and create
data loading pipelines. The list of shards (tfrecord files) is
shuffled at the start of each epoch, and the examples are
then read sequentially. Four workers with different random
seeds were used to improve loading speed and create more
randomness.

The AdamW[10] optimizer implemented as by Gugger
et al.[5] was used with slanted triangular learning rates[7].
The warm-up stage occupies 25% of the total training steps.
The max learning rate was .0003 for video-level models and
.0002 for the segment classifiers (for the segment encoder
in the context-aware classifier, the max learning rate was
.0001). The weight decay was 0.1 for video-level models,
and 0.02 for segment classifier. Biases and batch normaliza-
tion weights were exempted from decaying. Dropout prob-
ability is set to be 50% except for the 25% cluster dropout
probability in NeXtVLAD models.

The pre-training of a NeXtVLAD model (”nxvlad-2” in
Table 2) took 15 hours on a Tesla P100 GPU. And the pre-
training of a context-gated DBoF model (”dbof-3” in Ta-
ble 1) took about 13 hours on a Tesla T4 GPU (this is a
rough estimate from logs because the GCP instance was
preempted several times during training).

The training/fine-tuning of context-agnostic models took
4 to 5 minutes per 1,000 steps for both NeXtVLAD and
context-gated DBoF models on a GTX 1070 GPU.

The training of context-aware models took 8 to 12 min-
utes per 1,000 steps on a Tesla T4 GPU.

When predicting the test segments dataset, the first six
segments and the last two segments were dropped as in
the fine-tuning stage. This trick can improve the test
MAP@100, 000 by about 0.003. The predicted class prob-
abilities from each model were discretized from [0., 1.] into
[0, 9999] by linear scaling and rounding, and then dumped
to a Numpy memory-mapped file.

The discretized probabilities of each class were loaded
from disk, averaged across models, rounding to the near-
est integer, and then put into 10,000 buckets. The top
100,000 probable segments for each class were extracted
after all segments are predicted. The segments inside the
same buckets were shuffled at the end to avoid accidentally
using leaked information.

4.3. Model Evaluation

AUC (area under ROC curve) was used locally to evalu-
ate validation performance for segment classifiers. Only the

annotated labels were used to calculate the AUC (i.e., mined
negative labels were not included). For the pre-training task,
recall and precision rates of the positive labels with 0.5 cut-
off were also recorded for reference.

MAP@100, 000 =
1

C

C∑
c=1

∑n
k=1 P (k)× rel(k)

Nc
(3)

Three pre-trained context-gated DBoF models were used
in the final ensemble (Table 1). Only one NeXtVLAD
model (nxvlad-2) was used (Table 2). The results in Table
1 and Table 2 have shown that training with bigger batch
sizes and more steps at the expense of the maximum length
can produce better performances on the validation set. Gen-
erally speaking, better pre-trained models make better seg-
ment classifiers. The pre-trained models shown here are the
best ones I was able to get at the end of the competition.

The batch size of 128 was used to train all segment clas-
sifiers. Local experiments showed that using smaller batch
sizes (e.g. 32) hurts validation performance.

Three NeXtVLAD-based and three DBoF-based
context-agnostic models were trained (Table 3).
NeXtVLAD-based models have better AUC than DBoF-
based ones, but their validation loss (Equation 2) is more
unstable.

The final ensemble has six context-aware models with
NeXtVLAD segment encoders, and a model with DBoF
segment encoder is also shown in the last row in Table 1
for reference. The total parameter counts and trainable (not
frozen) parameter counts are shown in Table 5.

The final ensemble (first row in Table 6) got
MAP@100, 000 = 0.80102 for the private test set, which
landed it at the seventh place on the private leaderboard.
Post-competition analysis shows that only the two best pre-
trained models — ”dbof-3” and ”nxvlad-2” — were needed
to get to the seventh place (last two rows in Table 6). It also
shows that ensembles with only context-aware or context-
agnostic models have worse performance than a mixture of
two, strengthening the theory that the mixture of two can
better accommodate the different characteristics of the tar-
get labels.

5. Conclusions
This paper presents a transfer learning approach to The

3rd YouTube-8M Video Understanding Challenge. Video-
level models are pre-trained on the frame-level features
dataset from the previous Youtube-8M challenges[1]. Two
types of segment classifier are created from the video-level
models and fine-tuned on the segment dataset. Negative la-
bel mining and a custom weighted cross entropy loss func-
tion are introduced to improve the fine-tuning. The exper-
iment results have demonstrated that while using only one
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Name Batch Size Steps Params H D Max Length N Log Loss Recall Precision
dbof-1 32 120k 38M 4096 2048 ∞ 5 0.003230 63.5 82.56
dbof-2 32 100k 36M 4096 2048 200 4 0.003314 61.84 83.44
dbof-3 128 100k 36M 4096 2048 150 4 0.002805 70.11 82.22

Table 1. Video-level Context-gated DBoF Models and their validation scores. (H: frame feature size; D: video feature size; N: # of MoE
mixtures)

Name Batch Size Steps Params C G Max Length N Log Loss Recall Precision
nxvlad-1 32 120k 26M 64 32 200 4 0.003101 61.15 87.16
nxvlad-2 48 200k 33M 64 16 150 4 0.002744 65.33 87.70

Table 2. Video-level NeXtVLAD models and their validation scores. (C: # of cluster; G: # of groups; N: # of MoE mixtures.)

Base Steps Fold Loss AUC
nxvlad-2 12k 2 0.5769 83.00
nxvlad-2 8k 1 0.5010 83.57
nxvlad-2 12k 0 0.5570 82.96
dbof-3 8k 2 0.4965 82.71
dbof-3 8k 1 0.5104 82.56
dbof-3 9k 0 0.5233 82.34

Table 3. Context-Agnostic Models and their local CV scores.
(Batch Size = 128)

Video Segment Steps Fold Loss AUC
dbof-1 nxvlad-2 12k 6 0.4961 82.44
dbof-1 nxvlad-2 12k 7 0.4889 82.89
dbof-2 nxvlad-2 12k 5 0.4878 82.84
nxvlad-2 nxvlad-2 15k 5 0.5106 82.73
dbof-3 nxvlad-2 9k 3 0.4852 82.58
dbof-3 nxvlad-2 9k 4 0.4848 82.47
nxvlad-2 dbof-3 9k 7 0.4972 82.58

Table 4. Context-Aware Models and their local CV scores. The
last row did not make it into the final ensemble. (Batch Size =
128. FC Dimension = 2048. Max length = 150.)

Video Segment Total Trainable
dbof-1 nxvlad-2 64M 36M
dbof-2 nxvlad-2 62M 35M
dbof-3 nxvlad-2 65M 37M
nxvlad-2 nxvlad-2 59M 35M
nxvlad-2 dbof-3 67M 43M

Table 5. Parameter counts of context-aware models.

of the context-agnostic or context-aware architecture alone
can already get seventh place on the private leaderboard,
a mixture of context-agnostic and context-aware segment
classifiers can give a further 0.006 to 0.01 improvements on
the MAP@100, 000 metric.

The hyper-parameters (e.g., training steps, batch sizes)

Aware Agnostic Public Private
6 6 0.812170.812170.81217 0.801020.801020.80102
0 6 0.80333 0.79020
6 0 0.80304 0.79388
3 3 (dbof) 0.80775 0.79630
3 3 (nxvlad) 0.810510.810510.81051 0.800090.800090.80009

Table 6. Ensemble Results. (Aware: # of context-aware mod-
els; Agnostic: # of context-agnostic models; Public & Private:
MAP@100K in the respective leaderboard.

of the models were not fully tuned due to time constraints.
Most of the models in the final ensemble were trained in the
last two days of the competition. Small improvements can
be expected by further tuning the hyper-parameters.
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