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YouTube-8M challenge

e 6.1M video IDs
3862 classes
 Multi-class Multi-label video classification.

 Evaluation metric: Global Average Precision (GAP).

GAP = Z p(1)A(4)
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videos associated with a same label form a cluster, whereas others are separated to some degree.
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Data augmentation is for visual features only, by adding small noise to the feature vector.

T =x; +~vZ, 7 ~ N(0,0%)

Over-sampling: a single label with less than 10* samples. For each sample x;, find K nearest neighbors x; (L2-distance)
* Interpolation:

e Extrapolation:

ZC; — X; -+ >\€(QZ'7; — .’,Ej)

Sub-sampling (random-sampling): a single label with more than 10* samples.
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Before data augmentation: 5,001,275; After data augmentation: 23,590,464 (472%)

# samples per class after sub/over-sampling
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Label counts before and after data augmentation in feature space
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Knowledge distillation

Identify powerful and efficient baseline models (last-year winners) regardless of their model sizes:

* Training set: train????.tfrecord + validate???[0-4,6-9].tfrecord
e Validation set: validate???5.tfrecord
e Baseline models:

Model family Brief description

Learnable Pooling Gated NetVLAD with 256 clusters
Learnable Pooling Gated NetFV with 128 clusters

Bag of Words Gated soft-DBoW with 4096 clusters

Bag of Words Soft-DBoW with 8000 clusters

Learnable Pooling Gated NetRVLAD with 256 clusters

RNN Gated recurrent unit (GRU) with 2 layers and 1024 cells per layer
RNN LSTM with 2 layers and 1024 cells per layer

Context gating:
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All models are kept original, trained with Adam optimizer (LR = 0.0002 with exponential decay 0.8 for every 4M samples)
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Approach: combine efficient submodels to have a better performance.

e periment | testaap (0

Single baseline model (gated NetVLAD) 85.75 (Val GAP)

Single gated NetVLAD model + video-level MoE model trained with 85.98 (Val GAP)
augmented dataset in feature space

Single gated NetVLAD model + regularized DNN exploiting label 87.88 (Val GAP)
relationship
A simple average ensembling of all of the 7 models 88.27

A simple average ensembling of two sets of all of the 7 models (14 88.62
models in total)

Ensembled using learned weights 88.73
Distilled model 87.29

GAP performance per experiment
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Approach: ... but how to combine?

e Simple average

* Per-model linearly-weighted average

* Per-model and per-class linearly-weighted average

Gated NetVLAD 0.2367

Gated NetFV 0.1508
Gated soft-DBoW  0.1590
Soft-DBoW 0.1000
Gated NetRVLAD  0.1968
GRU 0.1306
LSTM 0.0621

Learned weights for 7 baseline models.
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* Exploit correlation and diversity of video label relationship, by using an extra regularization term.
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Approach: training a student model ( < 1GB) based on a teacher model (ensemble of 7 baseline models).
e Student model: NetVLAD with the last FC of 800 hidden weights (instead of 1024)
* Loss function: weighted sum of two cross-entropy losses (with teacher model prediction p and with ground truth q)

L=X-CE(p,p)+ (1—X)-CE(p,q)

| Experiment | TestGAP (%)

Ensembled using learned weights 88.73
Distilled model 87.29

GAP performance after knowledge distillation
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