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Large models for video classification

Video classification requires large models

- model architecture proposed by Miech et al. (2017)

Embedding ! Dim Reduction ! Classification
Video | FC |
3 ; 3 i Context
| conca | 0 Gating
Audio | FC

~ 330M parameters (~ 1.3 Go)

- winning solutions are large ensemble
(1st: 7 models, 2nd: 74 models, 3rd: 57 models)
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This year, the challenge is focused on learning video representation
under budget constraints.



Model compression for Deep Learning

Model compression after training

- Model distillation Hinton et al. (2015)
- Pruning Dai et al. (2018); Han et al. (2016); Lin et al. (2017)

- Sparsity regularizer Collins & Kohli (2014); Dai et al. (2018); Liu
etal (2015)
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Is it possible to devise models which are compact by nature ?
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- constraining the weight representation

— floating variable with limited precision Gupta et al. (2015)
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Rastegari et al. (2016))

— hashing techniques Chen et al. (2015))
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Model compression for Deep Learning

Training of compact model

- constraining the weight representation

— floating variable with limited precision Gupta et al. (2015)

— quantization Courbariaux et al. (2015); Mellempudi et al. (2017);
Rastegari et al. (2016))

— hashing techniques Chen et al. (2015))

- matrix factorization Denil et al. (2013); Jaderberg et al. (2014);
Yu et al. (2017)

— use of low rank matrices and decomposition as weights matrices

- imposing structures on weight matrices
— circulant matrices Cheng et al. (2015); Sindhwani et al. (2015)
— vandermonde Sindhwani et al. (2015)
— fastfood transforms Yang et al. (2015)



Circulant matrices for Deep Learning

A n-by-n circulant matrix C is a matrix where each row is a cyclic
right shift of the previous one as illustrated below.

Co | Cp—1 Cp—2 ... G
Gt Co Cp— )
C = circ(c) = G G G G
Ch—1 Ch—2 Cp—3 Co

Main advantages:
- The circulant matrix C € R™*" can be compactly represented in
memory using only n real values instead of n’.

- Multiplying a circulant matrix C by a vector x can be done efficiently in
the Fourier domain



Architecture used for the experiences

The network samples at random video and audio frames from the
input. The sample goes through an embedding layer and is reduced
with a Fully Connected layer. The results are then concatenated and
classified with a Mixture-of-Experts and Context Gating layer.

Embedding ! Dim Reduction ! Classification
Video : FC :
| | Context
! concat ! MoE :
! | Gating
Audio | |

use of circulant matrices



Circulant matrices for Deep Learning

Base on the work of Miiller-Quade et al. (1998); Schmid et al.
(2000); Huhtanen & Peramaki (2015). Any n-by-n matrix A can be
decomposed into the product of diagonal and circulant matrices as
follows:

R<n
A—pOcMp@c®  pren — H p ) ~ [ oV

The fully connected layers are then represented as follows:

ool

where the parameters of each matrix D() and C() are trained using a
gradient based optimization algorithm, and k defines the number of
factors we choose for the training.




Effect of circulant matrices over different layers

Comparison of the effect of compactness
over different layers with the base model
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lant matrices with different embeddings

The figures bellow show the validation GAP of compact and Dense
fully connected layer with different embeddings according to the
number of epochs.
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Conclusion

- We propose the use of a matrix decomposition into diagonal
and circulant matrices in Deep Learning settings

- We apply this decomposition on several layers with different
embeddings

- we showed that this method allow a good compression rate
without a big loss in accuracy.



Questions?
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