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Large models for video classification

Video classification requires large models

• model architecture proposed by Miech et al. (2017)
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∼ 330M parameters (∼ 1.3 Go)

• winning solutions are large ensemble
(1st: 7 models, 2nd: 74 models, 3rd: 57 models)

This year, the challenge is focused on learning video representation
under budget constraints.
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Model compression for Deep Learning

Model compression after training

• Model distillation Hinton et al. (2015)
• Pruning Dai et al. (2018); Han et al. (2016); Lin et al. (2017)
• Sparsity regularizer Collins & Kohli (2014); Dai et al. (2018); Liu
et al. (2015)

Is it possible to devise models which are compact by nature ?

2



Model compression for Deep Learning

Model compression after training

• Model distillation Hinton et al. (2015)
• Pruning Dai et al. (2018); Han et al. (2016); Lin et al. (2017)
• Sparsity regularizer Collins & Kohli (2014); Dai et al. (2018); Liu
et al. (2015)

Is it possible to devise models which are compact by nature ?

2



Model compression for Deep Learning

Training of compact model

• constraining the weight representation
→ floating variable with limited precision Gupta et al. (2015)
→ quantization Courbariaux et al. (2015); Mellempudi et al. (2017);

Rastegari et al. (2016))
→ hashing techniques Chen et al. (2015))

• matrix factorization Denil et al. (2013); Jaderberg et al. (2014);
Yu et al. (2017)
→ use of low rank matrices and decomposition as weights matrices

• imposing structures on weight matrices
→ circulant matrices Cheng et al. (2015); Sindhwani et al. (2015)
→ vandermonde Sindhwani et al. (2015)
→ fastfood transforms Yang et al. (2015)
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Circulant matrices for Deep Learning

A n-by-n circulant matrix C is a matrix where each row is a cyclic
right shift of the previous one as illustrated below.

C = circ(c) =


c0 cn−1 cn−2 … c1
c1 c0 cn−1 c2
c2 c1 c0 c3
...

. . . ...
cn−1 cn−2 cn−3 c0


Main advantages:

• The circulant matrix C ∈ Rn×n can be compactly represented in
memory using only n real values instead of n2.

• Multiplying a circulant matrix C by a vector x can be done efficiently in
the Fourier domain
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Architecture used for the experiences

The network samples at random video and audio frames from the
input. The sample goes through an embedding layer and is reduced
with a Fully Connected layer. The results are then concatenated and
classified with a Mixture-of-Experts and Context Gating layer.
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use of circulant matrices
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Circulant matrices for Deep Learning

Base on the work of Müller-Quade et al. (1998); Schmid et al.
(2000); Huhtanen & Perämäki (2015). Any n-by-n matrix A can be
decomposed into the product of diagonal and circulant matrices as
follows:

A = D(1)C(1)D(2)C(2) . . .DnCn =
n∏
i=1

D(i)C(i) ≈
k<n∏
i=1

D(i)C(i)

The fully connected layers are then represented as follows:

h(x) = ϕ

([ k∏
i=1

D(i)C(i)
]
x+ b

)

where the parameters of each matrix D(i) and C(i) are trained using a
gradient based optimization algorithm, and k defines the number of
factors we choose for the training.
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Effect of circulant matrices over different layers
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Effect of circulant matrices with different embeddings

The figures bellow show the validation GAP of compact and Dense
fully connected layer with different embeddings according to the
number of epochs.
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Conclusion

• We propose the use of a matrix decomposition into diagonal
and circulant matrices in Deep Learning settings

• We apply this decomposition on several layers with different
embeddings

• we showed that this method allow a good compression rate
without a big loss in accuracy.
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Questions?
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