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Introduction
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m Low confidence predictions should be suppressed
enough (3.4 labels / video on average). I




Problem Definition

"
& \We focus on exploiting frame-level features.
m 4716 binary classification tasks.

m Input:{vy, vy, ..., vr}{aqg, ay, ..., ar}
m Qutput: Probability of labelling eq, e,, ..., €471¢-

m Rough model:
m Frame understanding block: fixed-length descriptor

Xvideo

m Classifiers block: 4716 binary classifications




Challenges
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Dataset Scale

Noisy Labels

Lack of Supervision
Temporal Dependencies
Multi-modal Learning
Multiple Labels

In-class Imbalance




Challenges (cont.)

1. Dataset Scale:

5M (or 6M) training videos, 225 frames / video, 1024
(+128) dimension features / frame.

Disk 1/0O in each mini-batch.
Validation takes several (~10) hours.

s Downsample; smaller validation set; ...

2. Noisy Labels:
Rule-based annotated labels, not crowdsourcing
14.5% recall w.r.t. crowdsourcing, positive—negative
Negative dominates; learning the annotation system

s Ensemble: more randomness: ...




Challenges (cont.)

3. Lack of Supervision:
No information about each frame.
Only video-level supervision for the whole model.

s Attention; auto-encoders; ...

4. Temporal Dependencies:
Features haven't yet taken into account.
Humans can still understand videos at 1 fps.

= RNNSs; clustering-based models (e.g. VLAD); ...




Challenges (cont.)

©. Multi-modal Learning:

' “every label in the dataset should be distinguishable
using visual information alone”

Audio features do help.
m Different fusion techniques.

6. Multiple Labels:

Uniquely extracted x,,;40., should be incredibly
descriptive for 4716 binary classification tasks.

Labels all usually present or not in groups. Implicit
correlation from a shared frame understanding block
may not be sufficient.




Challenges (cont.)

¥ . In-class Imbalance:
-1 5M training videos
m > 500K positive: 3 labels

m > 100K positive: < 400 labels
m Hundreds of positive: ~ 1000 labels

. 100K 1 .
Imbalance ratio 7 = oo for 90% binary
classification

m Loss manipulation; specific techniques; ...




Our Methods, High-Level

= Random cropping: Take 1 frame every 5 frames
Rougher temporal dependencies
Only the start index is randomized
= Multi-Crop Ensemble:
One model, varying the start index
Uniformly averaging
= Early Stopping:
Fix 5 epochs of training at most
Train directly on training and validation sets.




Our Methods, Model

a Prototype: stacked LSTM (1024-1024) + LR / 2MoE

4716 binary classifiers
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Our Methods (cont.)

s Attention

4716 binary classifiers

video
feature
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s Bidirectional LSTM




Our Results

Model

Public Private
baseline (on Kaggle) 0.74711 | 0.74714
prototype (full, visual only) | 0.78105 | 0.78143
prototype (full) 0.80224 | 0.80207
prototype (crop) 0.80204 | 0.80190
BiLSTM+LR+LN 0.80761 | 0.80736
BiLSTM+MOoE 0.81055 | 0.81067
BiLSTM+MoE+attention 0.81232 | 0.81227
BiLSTM+MoE (full) 0.81401 | 0.81399
ENSEMBLE (16) 0.83477 | 0.83470
ENSEMBLE (36) 0.83670 | 0.83662




Other Methods

s Separating Tasks

Different frame understanding block, thus different
video descriptor for each meta-task

25 verticals as meta-tasks, too slow (15 exmpls / s)
s Loss Manipulation

Ignore negative labels when predicted confidence <
0.15

s Unsupervised Representation Learning

Using visual to reconstruct both visual and audio
features




Conclusion
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Thank you!
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