YouTube-8M Kaggle Competition: Challenges and Methods

Haosheng Zou*, Kun Xu*, Jialian Li, Jun Zhu
Presented by: Yinpeng Dong
All from Tsinghua University
2017.7.26

Contents

- Introduction & Definition
- Challenges
- Our Methods & Results
- Other Methods

Introduction

GAP evaluation

$$GAP = \sum_{i=1}^{20N} \frac{p(i)}{i} \cdot \frac{1}{M}$$

 Low confidence predictions should be suppressed enough (3.4 labels / video on average).

Problem Definition

- We focus on exploiting frame-level features.
- 4716 binary classification tasks.
- Input: $\{v_1, v_2, ..., v_T\}, \{a_1, a_2, ..., a_T\}$
- Output: Probability of labelling $e_1, e_2, ..., e_{4716}$.
- Rough model:
- Frame understanding block: fixed-length descriptor x_{video}
- Classifiers block: 4716 binary classifications

Challenges

- Dataset Scale
- 2. Noisy Labels
- 3. Lack of Supervision
- 4. Temporal Dependencies
- 5. Multi-modal Learning
- 6. Multiple Labels
- 7. In-class Imbalance

1. Dataset Scale:

- 5M (or 6M) training videos, 225 frames / video, 1024
 (+128) dimension features / frame.
- Disk I/O in each mini-batch.
- Validation takes several (~10) hours.
- Downsample; smaller validation set; ...

2. Noisy Labels:

- Rule-based annotated labels, not crowdsourcing
- □ 14.5% recall w.r.t. crowdsourcing, positive → negative
- Negative dominates; learning the annotation system
- Ensemble; more randomness; ...

- 3. Lack of Supervision:
 - No information about each frame.
 - Only video-level supervision for the whole model.
- Attention; auto-encoders; ...
- 4. Temporal Dependencies:
 - Features haven't yet taken into account.
 - Humans can still understand videos at 1 fps.
- RNNs; clustering-based models (e.g. VLAD); ...

- 5. Multi-modal Learning:
 - "every label in the dataset should be distinguishable using visual information alone"
 - Audio features do help.
- Different fusion techniques.

6. Multiple Labels:

- □ Uniquely extracted x_{video} should be incredibly descriptive for 4716 binary classification tasks.
- Labels all usually present or not in groups. Implicit correlation from a shared frame understanding block may not be sufficient.

- 7. In-class Imbalance:
 - □ 5M training videos
 - > 500K positive: 3 labels
 - > 100K positive: < 400 labels</p>
 - Hundreds of positive: ~ 1000 labels
 - □ Imbalance ratio $\frac{100K}{5M} = \frac{1}{50}$ for 90% binary classification
- Loss manipulation; specific techniques; ...

Our Methods, High-Level

- Random cropping: Take 1 frame every 5 frames
 - Rougher temporal dependencies
 - Only the start index is randomized
- Multi-Crop Ensemble:
 - One model, varying the start index
 - Uniformly averaging
- Early Stopping:
 - Fix 5 epochs of training at most
 - Train directly on training and validation sets.

Our Methods, Model

Prototype: stacked LSTM (1024-1024) + LR / 2MoE

- Layer Normalization
- Late Fusion

Our Methods (cont.)

Attention

Bidirectional LSTM

Our Results

Model	Public	Private
baseline (on Kaggle)	0.74711	0.74714
prototype (full, visual only)	0.78105	0.78143
prototype (full)	0.80224	0.80207
prototype (crop)	0.80204	0.80190
BiLSTM+LR+LN	0.80761	0.80736
BiLSTM+MoE	0.81055	0.81067
BiLSTM+MoE+attention	0.81232	0.81227
BiLSTM+MoE (full)	0.81401	0.81399
ENSEMBLE (16)	0.83477	0.83470
ENSEMBLE (36)	0.83670	0.83662

Other Methods

- Separating Tasks
 - Different frame understanding block, thus different video descriptor for each meta-task
 - 25 verticals as meta-tasks, too slow (15 exmpls / s)
- Loss Manipulation
 - Ignore negative labels when predicted confidence < 0.15
- Unsupervised Representation Learning
 - Using visual to reconstruct both visual and audio features

Conclusion

- Dataset Scale
- 2. Noisy Labels
- 3. Lack of Supervision
- 4. Temporal Dependencies
- 5. Multi-modal Learning
- 6. Multiple Labels
- 7. In-class Imbalance

Thank you! Q & A