Kaggle Competition Google Cloud & YouTube-8M Video Understanding Challenge 5th place solution

Deep Learning Methods for Efficient Large Scale Video Labeling

M. Pękalski, X. Pan and M. Skalic

CVPR'17 Workshop on YouTube-8M Large-Scale Video Understanding Honolulu, HI July 26, 2017

Agenda

- 1. Team You8M
- 2. Models
- 3. Data Augmentation and Feature Enginnering
- 4. Training Methods
- 5. Key to Success

Team You8M

Marcin Pękalski: Master's degree in Mathematics and Master's degree in International Economics. Currently a data scientist at Kambi, a B2B sportsbook provider. *Stockholm, Sweden*.

Miha Skalic: Holds Master's degree in Biotechnology. Now working towards a PhD in Biomedicine at University Pompeu Fabra . *Barcelona, Spain*.

Xingguo E. Pan: Trained as a physicist. After getting a PhD, he went into the financial industry. *Chicago, USA*.

Frame level Models

Bi-directional LSTM

- Dynamic length RNN
- Two models running in oposite directions
- MoE with two experts applied to last layer
- 6 epochs took 3 days

Bi-directional GRU

- Similar structure as LSTM
- Layer sizes 625x2, 1250
- Trained with 5 folds

Bi-directional LSTM model

Video level models

MoNN3Lw

3 FC layers:

- 2305x8
- 2305x1
- 2305x3

3 experts

Features

- mean_rgb/audio
- std rgb/audio
- num_frames

5 epochs took 9 hours on GeForce GTX 1080ti

MoNN: Mixture of neural network experts

Models

GAP

single checkpoint

single fold

0.823

MoNN

GAP

models of same

family, checkpoints and folds ensemble

0.835

GAP All models ensemble

Model Correlation

Models	MoNN	LSTM	GRU
MoNN	1.0	0.96	0.96
LSTM		1.0	0.98
GRU			1.0

Data augmentation & Feature engineering

Video splitting:

- Split one video into two halves
- training samples: 6.3 million => 18.9 million

Video Level features:

- mean-rgb/audio
- std-rgb/audio
- 3rd moments of rgb/audio
- num_frames
- Moments of entire video
- top/bottom 5 per feature dimension

Training

Being able to see the out-of-sample GAP greatly facilitated our management of the training process and of model and feature selection.

Example:
Both yellow and red
models can well fit
the train data, but
yellow model peaked
around 20 K steps on
test data.

Monitor out-of-sample performance while training

Training

Dropout

Truncated Labels

Batch, Global and No Normalization

Exponential Moving Average

Training on Folds

Boosting Network

Training Methods that we experimented with and that helped to deepen our understanding of the data and models.

Key to Success			

We tried a lot of **different architectures** (wide and narrow, deep and shallow, dropouts, ema, boosting, etc.). **Combined** video and frame level models.

Tried **different ensemble weighting** techniques, utilizing

individual model's GAP score and the correlation between models.

Generated **different features**: pre-assembled them into data

for efficient training process.

Data augmentation.

Training on **folds of data** and averaging the results over folds and checkpoints.

Resources & Acknowledgement s

arXiv Paper:

https://arxiv.org/abs/1706.04572

Source Code:

• https://github.com/mpekalski/Y8M ©Apache License, version 2

Acknowledgements:

 The authors would like to thank the Computational Bio-physics group at University Pompeu Fabra for letting us use their GPU computational resources. We would also like to thank Jose Jimenez for valuable discussions and feedback.