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Abstract

We report on CMU Informedia Lab’s system used in
Google’s YouTube 8 Million Video Understanding Chal-
lenge. Our pipeline achieved 84.675% and 84.662% GAP
on our evaluation split and the official test set. We at-
tribute the good performance to three components: 1) Re-
fined video representation learning with residual links and
hypercolumns 2) Latent concept mining which captures in-
teractions among concepts. 3) Learning with temporal seg-
mentation and weighted multi-model ensemble. We con-
duct experiments to validate and analyze the contribution
of our models. We also share some unsuccessful trials when
leveraging conventional approaches such as recurrent neu-
ral networks over large-scale video dataset. All the codes
to reproduce the results will be publicly available soon.

1. Introduction

Ranging from booming personal video collections,
surveillance recordings, and professional video documen-
tary archives, we have witnessed an unprecedented growth
of a wide range of video data. Numerous methods have been
invented to understand video contents and enable searching
over huge volumes of accumulated video data. Recently re-
leased large-scale video datasets such as Google’s YouTube
8 Million (Youtube-8M) video collection bring advance-
ments in video understanding tasks and create new pos-
sibilities for many emerging applications such as person-
alized assistant like Google Home and Microsoft Cortana.
Youtube 8M is a multi-label video classification benchmark
composed of pre-extracted Inception-v3 features [23], la-
bels and their hierarchy in the knowledge graph over more
than 8 million videos.

The quantity makes Youtube-8M a unique video classi-
fication test-bed. There are 5.7 millions training videos, 1.6
millions validation videos, and 0.8 testing videos respec-
tively. The length of videos range from 120 to 500 seconds.
Frame-level feature are extracted under 1 frame per second

(FPS) sampling rate. Video level features are mean-pooled
from frame-level features. The size of topic theme pool is
4,716. Each video is with 3.4 labels on average. In compar-
ison to other weakly-labeled datasets [11], the precision is
reasonably good (∼ 85%) while recall remains poor.

Learning an effective model for video understanding at
this scale is challenging for the three reasons: First, al-
though effort in extracting features at a scale of 8 million
is alleviated, the provided frame-level features are prepos-
sessed with some unknown PCA and followed by a simple
mean pooling to generate video-level representation. We
propose to learn an attentive pooling kernel followed by
a refined representation learning module to further boost
model performance. Second, labels (classes/concepts) are
assumed to be independent in the Youtube 8M dataset,
which fails to capture the authentic underlying relationship
(such as co-occurrence, exclusion and hierarchy) between
concepts. We address this issue by learning and incorpo-
rating latent concepts for multi-label classification. Third,
multi-model ensemble at this scale is under-explored. We
design a systematic model ensemble scheme and quantify
the importance over heterogeneous models.

Our contribution in this paper is threefold: 1) We in-
vestigate feasible neural architectures to enhance mixture
of experts (MoE) model with refined representation learn-
ing via residual links and hypercolumns. 2) We introduce a
novel latent concept learning layer to capture relationships
among concepts 3) We incorporate temporal segment data
augmentation and leave-one-out ensemble to further boost
classification accuracy.

2. Related work

In this section, we briefly discuss the most related previ-
ous work falling into two categories: how to train a better
individual deep video classification model and how to fuse
these individual models to achieve best accuracy.

At the risk of oversimplification, we identify two classes
of methods to improve deep neural networks for video clas-
sification. The first class of methods is having more data.
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Generally, there are two ways that deep models can be ben-
efit from having more data. The first approach is supervised
pre-training with external data as in [24, 25]. This approach
is especially useful when the inputs are raw video frames.
However, this direction is not feasible for the Youtube-8M
dataset since we can only access pre-processed video fea-
tures. The second approach to have more data is through
augmenting internal data [24]. We design a simple way to
augment data by exploiting the fact that video information
is highly redundant and the boundary of motion is often ar-
bitrary. In addition to apply augmentation for training, we
further extend this approach at the inference phase.

The second classes of methods is designing better net-
work structure. Likewise, this class of methods can be
characterized into two groups: task-independent and task-
dependent. There are numerous improvements that are task-
independent. For example, dropout [20], inception structure
[22], residual structure [8], just name a few. In this work,
we explore the residual structure [8] and its variant [4] and
found that these structures not only can help to learn deeper
networks but can also improve shallow networks. There are
also improvements that are more specific to video classi-
fication tasks. Most of these improvements try to capture
temporal dependencies among frames. The general lesson
is that short-term dependency are useful and easy to cap-
ture, but long-terms ones are much more difficult to capture.
For example, Simonyan et al. [19] design a two-stream ar-
chitecture to capture variances between consecutive frames
and there are significant amount of following works that try
to further improve the network structures [24] or capture
longer-term temporal information [6, 25, 18, 13, 15]. These
work represent the state-of-the-art for video classification
and they find that sequence model such as LSTM often per-
form worse than simple BoF models. These observations
are consistent with ours on the Youtube-8M dataset.

Since the capacity of a single model is limited, re-
searchers often use an ensemble of multiple models to im-
prove video classification accuracy. Multiple models can be
learned jointly or separately followed by fusion. MoE [10]
and dropout [20] both learn a large number of single models
jointly. However, these single models are often need to be
homogeneous and the size of the model is also limited. To
explore the diverse characteristics of heterogeneous mod-
els, we train a set of different MoEs separately and fuse
them using leave-one-out [14] fusion method. Another rea-
son for learning different models is that different modalities
of data may be harder to learn at the same time. Luckily, we
find that concatenating visual data and audio data together
and feed them into the same network (early fusion) is better
than learning them separately and fuse the results later (late
fusion) for the Youtube-8M dataset.

Figure 1: Video-level and Frame-level models

3. Models

Training video-level and frame-level models differ a lot
in cost and performance. Without losing choices for prac-
tical system design, in this paper, we start with improv-
ing video-level models, which is more cost effective, and
then we treat frame-level models as models with an ad-
ditional encoding module that can be stacked upon video-
level methods.

3.1. Video Level Models

Built upon MoE models in [2] without the null experts,
we propose to improve the model accuracy in the multi-
label video classification task by refining the representation
learning with residual links and hypercolumns.

Residual Learning: While growing MoE deeper, re-
sults show that performance gain is mediocre under the
same model complexity. As shown in Fig. 1, we then ap-
ply residual links to the middle layers of expert part of MoE
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to learn better representation for multi-label classification.
We name the combined model Mixture of Residual Experts
(MoRE). Residual learning is originally designed to relieve
gradient vanishing problem when training very deep neural
networks [8]. However, we find that simply adding identity
mapping to the shallow MoE network also brings significant
improvement. Formally, the residual expert network learns
the refined representation x′ from the original input x with:

x′ = F (x,Wi) +Wsx (1)

where in practice F () is stack of a single layer perceptron
followed by a batch-normalization layer and dropout layer.
We choose a identity matrix for Ws. Note that the mix-
ture network which determines the weights of individual
classes over experts still take original input instead of the
learned representation. We find that using deep structure for
the mixture network harm the performance with or without
residual links.

Hypercolumn: Similar to MoRE, we also design Mix-
ture of Hypercolumn Experts (MoHCE). In a typical CNN,
higher convolutional layers can capture high-level global
context. But they could miss low-level details, thus numer-
ous approaches have built predictors based on the concate-
nation of multi-stage features [4] [16]. We propose to for-
mulate a hypercolumn by concatenating features from dif-
ferent layers of a MLP. Formally, the final feature is given
by:

H(x) = [F1(x), F2(x), ..., Fn(x)] (2)

where Fi(x) denotes the feature of i-th layer. This hyper-
column is then fed into mixture of experts (MoE) models to
produce final predictions. For MoHCE, we also use stan-
dard batch-normalization and dropout techniques to regu-
larize the network training.

3.2. Frame Level Models

Recurrent Neural Network Models (LSTMs). Videos
as a collection of frames are inherently rich with tempo-
ral information. Although many efforts have been made in
training recurrent neural networks (RNNs) for video classi-
fication, finding a feasible representation remains an open
question since its challenging to 1) regularize RNNs and 2)
pool representative information frame by frame. Viewing
video v as a sequence of frame-level features xv1:Fv

, where
xvj is the feature on j-th frame, the video-level representa-
tion learning from frame-level features with RNN is:

x′ = P ({Γ(xt,ht−k)}k=1...K,t=1...T (3)

where P () is the pre-defined or learned pooling kernel. Γ()
is the RNN function with t as the time index and k as the
recurrence time index. For example, in [2], the authors
use long short term memory (LSTM) network for Γ() and
the pooling function is a simple concatenation of the last

output and the hidden state x = o−1||h−1. In this work
we compare performance of different RNNs and RNNs
with the learned pooling kernel by attending to individual
frames. On the other hand, since videos usually contain
a lengthy sequence of frames, we also experiment regular-
ization methods for RNN such as dropout, zone-out [12],
layer-wise batch-normalization [5] to avoid the vanishing
gradient problem.

Intriguingly, experimental results shows that these mod-
els with recurrent link do not outperform simple attentive
pooling for the PCA-ed features in the Youtube 8M dataset.

Attentive Pooling Models (Deep BoF, NetVLAD): An-
other direction to exploit temporal information is to use at-
tentive pooling of the encoded input features. We propose
to remove the RNN module Γ() from Eq. 3 and directly
learn a pooling function P ({xt}) =

∑
t αtE(xt), where

E(.) is some learnable encoding/transformation and αt is
the (attentive) pooling weight. There are many possible de-
sign choices of E(.). One example is sparse encoding for
deep bag-of-Frames (DBoF) in [2], where mean pooling has
been utilized to aggregate the encoded frames into video-
level representation.

A simple yet effective improvement can be achieved is
to make the pooling function learnable. As generalized
in NetVLAD [3], the pooling weights are calculated with
a trained soft-attention from frames inputs to some given
cluster center. In our frame-level models, we enhance orig-
inal NetVLAD with an additional multi-layer perceptron
for sparse feature encoding. Formally, the attentive pool-
ing weights are calculated as:

αtk =
wk

TE(xt)∑K
i wk

TE(xi)
(4)

where K is number of clusters. To make the representation
more condense, our model learn another dense layerG(.) to
reduce the dimension after concatenation. The final video
representation x′ ∈ Rdbecomes:

x′ = G({
∑
t

αt1{E(xt)−c1}||...||
∑
t

αtK{E(xt)−cK})

(5)

3.3. Latent Concept Learning

Classes (or semantic concepts as the more general term)
may share complex relationships with each other. As can
be seen from the Youtube-8M EDA1, one concept may fre-
quently co-occur with another concept. For example, chairs
and tables can usually be seen together in the indoor-scene
videos. Additionally, hierarchical structure of the concepts
may also be encoded within the relationships between con-
cepts. For instance, ”iPhone6”, ”iPhone5” belong to the

1https://www.kaggle.com/philschmidt/
youtube8m-eda
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category ”iPhone”. One approach to disentangle the hier-
archical structure among concepts is to map concept names
using hand-crafted knowledge graph2. However, the direct
alignment between video labels and the knowledge graph
entities remains unclear, making the built-upon graphical
structure un-grounded. To address these issues, we propose
appending an additional deep neural network at the output
of MoRE to directly capture the relationship between con-
cepts.

Unlike the approach in [21] which uses an additional
layer to absorb label noise by twiddling the regularization
term, we propose to learn the latent concepts represented in
the middle layer of deep residual network directly and in-
corporate original MoRE output for final classification. In
practice, we add an additional 2-layered residual network
(we called it latent concept layer, LC-layer) with batch nor-
malization with input dropout at the output of MoRE:

y′ = P (G(F (y,WLC
i ),WLC

s )) (6)

where y′, y ∈ R4716, WLC
i and WLC

s are the LC-layer
parameters, G() is the aggregation function and P () is
the final output layer with sigmoid function for multi-label
classification. To further alleviate error propagation of ill-
classified concepts at the early training stage, we first train
without LC(.) for 10 epochs and then append a randomly
initialize LC(.) to start latent concept learning. We find
that this late-fire strategy is critical to mine reasonable latent
concepts and improve final classification performance. For
the aggregation function G(), we explore add(), max(),
append() and find that add() delivers the performance.

3.4. Ensemble

We use leave-one-out method [14] to determine the fu-
sion weights of individual models. For a defined eval-
uation metric s and model set M , the fusion weight
wm,

∑
m wm = 1 for model m ∈ M is proportional to

dm = sM−m− sM , which is the performance drop without
model m in comparison to the baseline performance sM . A
typical choice of the baseline is the result fusing all models
equally. In the Youtube-8M video understanding challenge,
we use Global Average Precision (GAP) (Details in Section
4) to calculate the weights.

4. Experiments
4.1. Training and Evaluation

Features: In the Youtube-8M dataset, raw visual fea-
tures are extracted from Google’s Inception-v3 model
trained on Imagenet [23]. Raw audio features are extracted
from a CNN-inspired architecture trained for audio clas-
sification as described in [9]. Both visual and audio fea-
tures follow an unknown PCA whitening process to further

2https://developers.google.com/knowledge-graph/

reduce the dimension to 1,024 and 128 respectively. The
video-level features are mean-pooled from frame-level fea-
tures. For training we use the original training set and 15

16 of
the validation set. We evaluated our models on the excluded
1
16 validation split. The difference in GAP between our 1

16
validation split and the real test set by Google is less than
0.02%.

Model Training Details. All our models are trained
with cross entropy loss using the Adagrad algorithm [7]
with a 0.0002 learning rate and a 0.8 exponential decrease
over 8 million examples. We also experimented different
loss function such as weighted label loss as in [17], opti-
mizer such as momentum and RMSProp but didn’t found
them beneficial for convergence speed. Common tech-
niques for training neural models including gradient clip-
ping(0.8), dropout(0.8 keep rate), and batch normalization
are applied. The mini-batch size is 1,024 (videos) for video
level models and 256 (frames) for frame level models.

For video level models, the input is a simple concate-
nation of l2-normalized mean rgb and mean audio features
provided by the original dataset. We vary the size of num-
ber of mixtures while setting the unit of hidden layer in the
residual expert 4,096. Deep MoE shares the same amount
of parameter as MoRE but without residual links. The num-
ber of latent concepts we learned in the LC-layer is 4,096.
We train 80,000 and 160,000 steps for extended training
split and for data augmentation respectively. For frame-
level models (DBoF, NetVLAD), we set size of sparse cod-
ing 4,096, sample from 80% of frames, and then compress
final representation into a 2,400 dimension vector. The di-
mension is also 2,400 for LSTM models (dimension for Bi-
directional LSTM is doubled.) The typical step for conver-
gence is 360,000.

Our code is based on Tensorflow [1]. We use AWS p2-
2xlarge instances (Intel Xeon E5-2670 CPU and NVIDIA
K80 GPU) to train our models. For most models, we ex-
periment hyper parameters of each model such that each
model can maximally fit into 12 GB GPU memory3. There
is a notable difference in cost of storage and computation
for training video level and frame level models. Training
video level models takes around 150 GB storage and around
8 hours to converge while frame-level models takes around
2TB and roughly 5 days to converge. The cost (computation
and storage) ratio between a video-level and a frame-level
model is roughly 1:16.

Evaluation Metric. We report our results in three met-
rics: Mean Average Precision (mAP) and Precision at equal
recall rate (PERR) [2] and Global Average Precision (GAP).
The GAP metric takes the predicted labels that have the
highest k (k = 20) confidence scores for each video, then

3MoRE24 and MoHCE12 share roughly the same parameters.
MoRE28 and MoRE30 can also fit but the training is sometimes unstable.
For frame level models, we use MoRE8 as the classification model
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treats each prediction as an individual data point in a long
list of global predictions sorted by their confidence scores.
The list are then be evaluated with Average Precision across
all of the predictions and all the videos. Formally,

AP =

N∑
i=1

p(i)∆r(i) (7)

where N = 20 × number if videos, p(i) is the precision,
and r(i) is the recall given the first i predictions. For de-
tailed definition and interpretation of this new metric, read-
ers may refer to Google’s metric page4.

4.2. Temporal Segment Data Augmentation

To alleviate missing of temporal information to boost
classification performance while constraining the data size
and training time, we propose to temporally segment videos
followed by pooling to generate more temporal informative
features for training video-level models. Specifically, we
temporally split frames in a video in to N segments (each
with length bFv/sc) and then perform a fixed pooling func-
tions P with normalization over video segments to generate
video-level features: {P (xvsi−1:si)}i=1...N . In practice we
choose N = 3 and use a simple mean pooling function µ(.)
from frame-level rgb and audio features to generate addi-
tional video-level features for training. With 4 times larger
augmented training data 30 → 120 GB, we observe con-
sistent performance boost with the training time for conver-
gence will be roughly doubled. Additionally, as can be seen
in Appendix, increase of N and other pooling functions
such as standard deviation do not help final performance.
[25] proposed to randomly sample one short snippet from
each segment for training, which in our experiment cause
over-fitting in the Youtube-8M dataset.

Similar techniques can also be applied at the inference
phase. By feeding the same model with 3 mean-pooled seg-
ments and the original mean-pooled feature, we merged the
4 inference results with a fixed weight (0.1, 0.1, 0.1, 0.7)
into one final prediction for a model. We name this ap-
proach segmented inference.

4.3. Results of Video-level Models

Table 1 summarizes the performance of video level mod-
els. Models with refined representation with residual learn-
ing (MoRE) and hypercolumn (MoHCE) deliver a signifi-
cant 1.5 ∼ 2% gain in GAP. Increasing model capacity by
adding more experts result in consistent however marginal
gain. Learning the latent concept provides an additional
0.5 ∼ 1% performance boost in GAP and and PERR (and
hit@1). But note that learning latent concept may slightly
harm mAP for some models. One possible explanation is
propagation of classification error from MoRE.

4https://www.kaggle.com/c/youtube8m#evaluation

Table 1: Video-level Model Performance, LC stands for la-
tent concept learning, SI stands for segmented inference,
DA stands for data augmentation

Model Name GAP
(%)

mAP
(%)

PERR
(%)

Baseline1 (MoE2) 78.41 41.58 70.9
Baseline3 (MoE8) 79.30 42.20 71.9
Deep MoE8 79.67 43.20 72.5
MoRE8 81.15 44.49 73.6
MoRE16 81.32 44.71 73.8
MoRE24 81.61 47.30 74.3
MoHCE12 82.15 48.76 74.6
MoRE24 + LC 82.37 49.63 75.1
MoHCE12 + LC 82.42 47.39 74.9
MoRE24 + LC + SI 82.56 49.68 75.1
MoRE28 + LC + SI 82.67 50.04 75.3
MoHCE12 + LC + SI 82.62 47.89 75.1
MoRE28 + LC + DA 82.78 50.47 75.5
MoRE30 + LC + DA 82.79 50.74 75.6
MoRE28 + LC + SI + DA 82.97 50.89 75.6
MoHCE12 + LC + SI + DA 83.28 50.41 76.0

Temporal segment data augmentation has proved use-
ful. Data augmentation for training fuels up roughly 0.3%
GAP gain. Segmented inference by predicting upon multi-
ple temporal segments brings about 0.2% GAP gain.

4.4. Results of Frame-level Models

As can be seen in Table 2, surprisingly, the recurrent neu-
ral network models (with or without regularization mecha-
nisms) do not achieve good performance. Attentive pooling
methods like deep bag-of-feature, NetVLAD seems to be
more feasible for frame-level training. We suspect this re-
sult is due to the prepossessing of the YT8M dataset. Sub-
tle temporal difference may be missing due to PCA. Deep
NetVLAD model with codebook size one achieve the best
performance. The decreasing performance with increasing
code book size also indicates that there might not separable
clusters with the PCA-ed features.

Comparing performance of video and frame-level mod-
els, the mean-pooled features along with simple data aug-
mentation provide a strong baseline and achieve competi-
tive single model performance. The result shows that video-
level models may be more cost effective than frame-level
models.

4.5. Ensemble Results

We iteratively grow the ensemble set by randomly
adding grouped models from 64 trained models (42 video-
level and 22 frame-level models with GAP > 81.0) fol-
lowed by leave-one-out to remove detrimental models. Ta-
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Table 2: Frame-level Model Performance

Model Name GAP(%) mAP(%) PERR(%)
baseline1 LSTM 79.43 37.43 72.2
baseline2 DBoW 78.34 36.97 70.9
bi-LSTM 79.98 38.51 72.5
LSTM + zoneout [12] 80.15 40.27 72.4
LSTM + batch norm [5] 80.03 40.21 72.4
LSTM + attn pooling 80.10 40.33 73.2
DBoW + attn pooling 79.89 40.94 72.5
VLAD + MoRE8 81.71 46.18 74.1
NetVLAD + LC (k = 1) 82.47 48.37 75.1
NetVLAD + LC (k = 2) 82.11 48.33 74.9
NetVLAD + LC (k = 4) 81.65 47.61 74.4
NetVLAD + LC (k = 8) 81.29 45.54 74.1

ble 3 records the growth of set. Both video and frame-level
model are required to achieve higher GAP.

Table 4 summarizes the final ensemble set with detailed
weights determined by leave-one-out. Surprisingly, the best
single model is not always the most important one for en-
semble. The weights are not proportional to the model per-
formance. We hypothesize that the GAP are greatly affected
by hard examples instead of easy examples. The best model
may have a wide range of coverage but are not special-
ized in detecting those hard examples. Ensemble of simple
models can reach those low-hanging fruits, however, it does
not help classifying hard examples. We also found out that
regularization mechanisms (e.g. dropout) share the similar
phenomena. Training complementary models (for example,
ensemble with both video and frame level models) are crit-
ical for achieving better GAP.

We provide our insight why video-level models (with
mean-pooled feature) and frame-level models can be com-
plimentary. Mean pooling is robust against noises over
shots in a video. However, in some cases, a few shots define
the labels of a video and therefore frame-level models have
a better chance to localize them. Depending on the under-
lying shot variants of the videos in the Youtube-8M dataset,
there might be some trade-off between the two approaches.

Finding a approach to guild training complementary
models for ensemble remains open. Readers should be care-
ful when interpreting single model performance and its sig-
nificance for ensemble.

Our final ensemble achieve 84.68% GAP on the valida-
tion split and 84.66 on the test split. Leave-one-out analysis
indicates that video level models contributes 54% of ensem-
ble weight while 46% from frame-level models. The result
shows that to some extent the simple mean-pooled features
(video-level models) are strong enough and are crucial for
ensemble. Although frame-level models are more general
and critical for ensemble, they alone might not be the best

Table 3: Model Ensemble Performance. V means number
of video-level models and F for frame-level models

# Model V F GAP(%) mAP(%) PERR(%)
10 10 0 83.84 51.65 76.2
12 10 2 84.07 52.00 76.5
14 12 2 84.34 52.86 76.8
18 12 6 84.42 53.28 76.9
18 11 7 84.47 53.39 76.9
21 12 9 84.52 53.64 77.0
26 17 9 84.56 53.79 77.0
34 18 16 84.68 54.01 77.2

choice in sense of performance (roughly same or slightly
worse) and cost in comparison to video-level models.

5. Conclusion
In this paper, we share our exploration of feasible neural

network architectures for large-scale video tagging. We in-
troduce two enhanced versions of mixture-of-expert model:
mixture-of-residual-expert (MoRE) model with residual
representation learning and mixture-of-hypercolumn-expert
(MoHCE) model that boost performance for both video and
frame level models. The proposed delayed-start layer for
latent concept learning also demonstrates its favored capa-
bility to capture the underlying relationships over concepts.
Moreover, our temporal segment data augmentation pro-
vides a simple yet effective way to improve system perfor-
mance. In frame-level model experiments, we observed that
pooling based methods consistently outperform recurrent
neural network models. Our leave-one-out ensemble en-
able us to quantify the importance of heterogeneous video-
level and frame-level models and achieve 84.662% GAP.
While training complementary models is shown to be criti-
cal but a mechanism to guide complementarity is still under-
explored. We would expect a improved framework to train
and ensemble specialized models for large-scale video un-
derstanding in the future.
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Appendix A. Ensemble Table
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Table 4: Final Ensemble Set

Model Name GAP (%) mAP (%) PERR (%) Ensemble Weight
NetVLAD8 180f MoRE8 2400 deep ckpt274921 81.294 45.541 74.1 36
NetVLAD8 180f MoRE8 2400 deep ckpt280260 81.194 45.564 74.0 35
NetVLAD8 180f MoRE8 1600 deep ckpt265814 81.249 46.883 74.1 34
MoRE30 LC deep 1st 82.851 50.228 75.6 31
MoRE30 LC deep drop 1st 82.004 49.866 75.1 28
MoRE28 LC deep 1st 80.427 48.214 73.7 28
MoRE30 LC deep 2nd 82.868 50.522 75.6 28
NetVLAD4 180f MoRE8 2400 deep 82.164 48.077 74.9 27
MoRE30 LC deep drop 2nd 82.038 50.232 75.2 27
MoRE30 LC deep drop 3rd 82.786 50.744 75.6 27
MoHCE16 LC 1st 82.702 48.593 75.3 27
NetVLAD2 180f MoRE8 2400 deep dp 82.066 48.380 74.8 26
MoRE28 LC deep 2nd 81.867 48.782 74.8 26
MoHCE16 LC 2nd 81.881 47.614 74.6 26
NetVLAD8 180f MoRE8 81.827 45.308 74.3 26
MoRE30 LC deep 3rd 81.734 49.663 74.8 25
MoRE30 LC deep l3 1st 81.104 48.789 74.3 25
MoRE28 LC deep 3rd 82.783 50.472 75.5 25
MoHCE12 concat deep LC 83.281 50.412 76.0 25
MoRE28 LC deep 4th 82.669 50.575 75.5 25
NetVLAD8 1200 82.005 45.612 74.4 25
NetVLAD4 180f MoRE8 2400 deep dp ckpt304488 81.650 47.577 74.5 24
MoRE28 LC deep 5th 81.854 50.080 74.9 24
NetVLAD4 180f MoRE8 2400 deep dp ckpt299007 81.604 47.610 74.4 24
NetVLAD1 180f MoRE8 4096 deep dp 82.318 48.627 75.1 24
NetVLAD4 180f MoRE8 2400 81.971 45.607 74.5 24
MoRE28 LC deep 6th 81.669 49.510 74.6 23
NetVLAD2 180f MoRE8 2400 deep 82.102 48.281 74.8 23
MoRE30 LC deep l3 2nd 82.476 49.810 75.2 23
NetVLAD4 180f MoRE8 81.942 45.330 74.4 23
MoRE28 LC residual 82.753 50.314 75.5 22
NetVLAD2 180f MoRE8 2400 deep dp 82.108 48.327 74.9 22
NetVLAD1 180f MoRE8 4096 deep 82.048 48.309 74.7 22
NetVLAD1 180f MoRE8 2400 deep dp 82.472 48.387 75.1 22
MoRE28 LC deep 7th 82.700 50.016 75.4 22
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