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Abstract

This paper introduces the system we developed for the
Google Cloud & YouTube-8M Video Understanding Chal-
lenge, which can be considered as a multi-label classifica-
tion problem defined on top of the large scale YouTube-8M
Dataset [1]. We employ a large set of techniques to aggre-
gate the provided frame-level feature representations and
generate video-level predictions, including several variants
of recurrent neural networks (RNN) and generalized VLAD.
We also adopt several fusion strategies to explore the com-
plementarity among the models. In terms of the official met-
ric GAP@20 (global average precision at 20), our best fu-
sion model attains 0.84198 on the public 50% of test data
and 0.84193 on the private 50% of test data, ranking 4th
out of 650 teams worldwide in the competition.

1. Introduction
In the past several years, we have witnessed the suc-

cess of Convolutional Neural Networks (CNN) in image
understanding tasks like classification [16, 17], segmenta-
tion [11], and object detection/localization [13]. It is now
well-known that state-of-the-art CNNs [16, 18, 17, 7, 22]
are superior to the traditional approaches using hand-crafted
features. Encouraged by these progresses, many researchers
have applied CNNs to video understanding tasks. However,
different from images, videos contain not only visual infor-
mation but also auditory soundtracks. Also, the continuous
frames in videos carry rich motion and temporal informa-
tion that can hardly be captured by CNN prediction on in-
dividual frames, since the CNNs do not naturally handle
sequential inputs. In contrast, Recurrent Neural Networks
(RNN) are designed to perform sequential modeling tasks.
Combined together, CNN and RNN have been proven ef-
fective for video analysis [19, 21].

Successful models cannot be trained without large-scale
annotated datasets like the ImageNet [6], FCVID [9] and
ActivityNet [4]. More recently, YouTube-8M [1] has been
released as a benchmark dataset for large-scale video under-
standing, which contains 8-million videos annotated with

over 4,000 class labels and each video is provided with a
sequence of frame level features. The Google Cloud &
YouTube-8M Video Understanding Challenge is based on
this new dataset.

Since the challenge only provides pre-computed visual
features (using CNN of [18]) and audio features without
giving the original videos, we can neither obtain extra fea-
tures like optical flows nor compute frame features with
different CNNs. Therefore, aggregating the sequence of
frame-level features for video-level classification becomes
one of the key directions to tackle this challenge. In our
solution, we explore standard RNNs and several variants as
means of learning a global descriptor from frame level fea-
tures. We also adopt the idea of a trainable VLAD layer [2]
to perform feature aggregation in temporal dimension. Fur-
thermore, we employ feature transformation to train our
models on features from different time scales. We show that
these methods are complementary to each other and com-
bining them can produce very competitive results.

2. Related Works
In this section, we briefly review related methods for

video classification, particularly those related to our ap-
proach developed for the challenge. In general, the first step
is to process video frames or optical flows [15] by CNNs
to get intermediate layer activations as frame features. Af-
ter that, the frame representations are aggregated for video-
level prediction.

In [1, 24, 21], the authors utilized LSTMs to aggre-
gate frame features extracted by CNNs. Over the years,
researchers have developed several solutions to improve
the performance of RNNs. The Gated Recurrent Unit
(GRU) [5] can often be used in replace of the LSTMs
while being more computationally efficient. Semeniuta et
al. [14] proposed recurrent dropout to regularize RNNs
during training. The recently proposed Layer Normaliza-
tion [3] and Recurrent Weighted Average (RWA) [12] can
help RNNs to converge faster. In addition, Wu et al. [20]
found residual connections can help train deeply stacked
RNNs.

Methods other than RNNs can also be applied for aggre-
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Figure 1. Typical pipeline of a frame-level prediction model. The inputs are a sequence of frame features. During training we save check-
points for our models at different number of iterations, and generate one set of predictions based on each checkpoint’s model parameters
during testing. These predictions are then fused as the final prediction of this model. Fusing predictions at different iterations is found
helpful.

gating frame features. In [24], the authors evaluated sev-
eral feature pooling strategies to pool frame features over
time. Karpathy et al. [10] used several fusion methods to
fuse information in the temporal domain. In [2], the authors
proposed a new generalized VLAD layer to aggregate im-
age representations from CNNs spatially in a trainable man-
ner. Similar idea can be adopted to aggregate a sequence of
frame representations temporally.

To further improve the classification performance, fusing
multiple models is crucial. Simonyan et al. [15] used simple
linear weighted fusion. Xu et al. [23] proposed a decision-
level fusion approach which optimizes the weights and
thresholds for multiple features in the confidence scores.
Besides fusion at decision level, Jiang et al. [9] proposed
a feature fusion layer to identify and utilize the feature cor-
relations in neural networks.

3. Our Approach
For video-level models based on averaged frame fea-

tures, we directly adopt Mixture of Experts (MoE) from [1].
We use different number of mixtures such as 4, 8 and 16.
In the following we mainly focus on frame-level models,
which is more important in our approach.

3.1. Frame-Level Models

We treat frame-level models as means of aggregating
frame features, which produce a compact video-level rep-
resentation. By default, we feed this video-level represen-
tation into an MoE model as the final classifier. Figure 1
gives a general pipeline of our frame-level model.

3.1.1 Variants of RNNs

Table 1 contains a list of the RNNs we adopted, which are
mainly LSTMs, GRUs and their variants.

All of the RNNs and their variants share the same under-
lying mechanism. Generally an RNN cell takes a sequence
(x1,x2, ...,xT ) as input. It operates on this sequence step
by step, from t = 1 to t = T . At time step t, the RNN cell
processes current input xt and the previous cell state ct−1,
producing an output ht at cell state ct. Thus the RNN cell
can be viewed as a function f as

ht, ct = f(xt, ct−1).

After the entire sequence is processed by an RNN cell, we
have a sequence of states (c1, c2, ..., cT ). Generally we
choose cT to be the representation for this sequence of data.
We can also stack multiple RNN cells. The higher layer
RNN cell’s input is the output of the lower layer cell. The
final state is the concatenation of the final states produced
by all the layers. Residual connections can then be added
between layers as in [20].

The recurrent dropout variant applies dropout to the cell
inputs and outputs at each time step. The bidirectional vari-
ant has two RNN cells operating on the normal inputs and
the reverse (xT ,xT−1, ...,x1), and then concatenates the
outputs of the two cells as the final output.

In addition, based on the idea that in many videos the
most informative contents appear around the middle of the
video, we introduce a variant of bidirectional RNN. We split
the inputs into two equal subsequences (x1,x2, ...,xT/2−1)
and (xT ,xT−1, ...,xT/2), feed them to a bidirectional
RNN, and then concatenate the final states cT/2−1 and cT/2

as the video representation. This variant brings some im-
provement in our final result.

To better leverage the temporal information captured by
the provided frame-level features, we use a simple feature
transformation method in some of the model training pro-
cesses. By taking the difference between adjacent frame
pairs as model input, the model can make predictions ex-
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Model Variations
LSTM —
LSTM Layer normalization & Recurrent dropout
RNN Residual connections
GRU —
GRU Bi-directional
GRU Recurrent dropout
GRU Feature transformation
RWA —
NetVLAD —
DBoF —

Table 1. Frame level models. No variation in the second column
means the original implementation is adopted. DBoF is from [1].

plicitly based on the trend of feature changes. Although this
feature transformation can cause a performance drop for a
single model, we notice some performance gain by fusing
the result with that of the models without using this feature
transformation.

Besides, we train our RNNs with frame features at differ-
ent time scales. We achieve this by slicing the sequence of
frame features into subsequences with equal length in tem-
poral dimension, and imposing mean pooling of the frame
features in every subsequence to form a sub-sampled se-
quence as the RNN input. The length of the subsequence
varies.

Batch normalization [8] can be applied to the RNN cell
output to accelerate convergence.

3.1.2 VLAD Aggregation

In [2], Arandjelovic et al. proposed NetVLAD, using a
VLAD layer to pool descriptors extracted from CNNs. The
pooling operates on the spatial dimensions of the descrip-
tors. Here we borrow this idea to pool video frame fea-
tures temporally. Given the sequence of frame features
(x1,x2, ...,xT ), which is T × D-dimensional and T may
vary across samples since the video length is different. We
wish to pool frame features into a fixed length K × D-
dimensional descriptor. Here K is a parameter we can ad-
just as a trade-off between computation cost and perfor-
mance.

We first randomly sample S out of T frame features,
denoted by R = (r1, r2, ..., rS). R can be viewed as
a S × D-dimensional matrix. The cluster mean is de-
noted by (u1,u2, ...,uK), which is a K × D-dimensional
trainable parameter. We compute the strength of associa-
tion by 1D-convolving R into a S × K-dimensional ma-
trix A = (a1,a2, ...,aS). We use a 1-D convolution kernel
with width of 1 and output channel of k here. Then we ap-
ply soft-max to A, so that

∑K
k=1 aik = 1. The aggregated

descriptor is computed by

vk =

S∑
i=1

aik(ri − uk)

The resulted descriptors (v1,v2, ...,vK) are concate-
nated to be the new video level representation. Since this
aggregation method is different from the RNN based meth-
ods, the results produced by this model can be a good com-
plement to that of the RNNs during fusion. Compared with
RNNs, the computational cost of this method is lower.

3.2. Label Filtering

The class distribution in the YouTube-8M dataset is im-
balanced. Some classes have many positive samples, while
some have much fewer samples. In order to better predict
those labels with relatively small occurrence probability, we
use label filters in some of the model training processes.
The labels with high occurrence probability are discarded
during training since they are well-trained for other models
based on the full set of the labels. Two filter thresholds are
used in our approach, making these models focusing only
on 2,534 and 3,571 classes with fewer positive training sam-
ples, respectively.

3.3. Model Fusion Strategies

Our final prediction is a linear weighted fusion of predic-
tion scores produced by multiple models. Specifically, the
fusion is done in two stages.

Stage 1. We get predictions from multiple model check-
points saved during training. The checkpoint is chosen after
the model is trained for more than 3 epochs. We fuse these
predictions as a final result for this model. This stage can
be regarded as intra-model fusion.

Stage 2. We fuse predictions from different models gen-
erated in Stage 1 to get our final prediction. This can be
regarded as inter-model fusion.

We try the following three simple strategies to determine
the fusion weights:

Empirical fusion weights: Weights are assigned based on
empirical experience of model performance. Better models
are assigned with higher weights.

Brute-force Search of fusion weights: On the validation
set, we can perform grid-search of fusion weights to identify
the best model combination.

Learning for fusion weights: We can also train a linear
regression model to learn the fusion weights on the valida-
tion set.

3.4. Implementation Details

All of our models are trained based on the starter Ten-
sorFlow code1. Layer and Batch normalization are directly

1https://github.com/google/youtube-8m
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available in TensorFlow. For RWA, we take the authors’
open source implementation2. For residual connections in
RNN, we use an open source implementation3.

We concatenate the provided visual and audio features
before model training. For our NetVLAD model, we sep-
arately process visual and audio features through VLAD
layer, and then concatenate them afterwards. We generally
stack 2 layers of RNNs.

Please refer to this link4 for more details.

4. Evaluation
The models are trained and evaluated on machines with

the following settings: OS of Ubuntu 14.04 with gcc version
4.8.4, CUDA-8.0, TensorFlow 1.0.0 and GPU of GeForce
GTX TITAN X. The learning rates of our RNN models and
NetVLAD models are 0.001 with exponentially decay af-
ter each epoch with a decay rate of 0.95. The batch sizes
are 128 or 256. Model checkpoints are automatically saved
during training every 0.5 hours.

4.1. The Challenge Dataset

The videos in the YouTube-8M dataset are sampled uni-
formly on YouTube to preserve the diverse distribution of
popular contents. Each video is between 120 and 500 sec-
onds long. The selected videos are decoded at 1 frame-per-
second up to the first 360 seconds (6 minutes). The decoded
frames are fed into the Inception network [18] and the ReLu
activation of the last hidden layer is extracted. After apply-
ing PCA to reduce feature dimensions to 1024, the resulted
features are provided in the challenge as frame-level fea-
tures. The video-level features are simply the mean of all
the frame features of the video. There are 4,716 classes in
total. A video sample may have multiple labels and the av-
erage number of classes per video is 1.8. Table 2 gives the
dataset partition used in this challenge competition.

Partition Number of Samples
Train 4,906,660

Validate 1,401,828
Test 700,640
Total 7,009,128

Table 2. Dataset partition of the YouTube-8M dataset in the chal-
lenge.

4.2. Evaluation Metric

In the challenge, the predictions are evaluated by Global
Average Precision (GAP) at 20. For a result with N predic-
tions (label/confidence pairs) sorted by its confidence score,

2https://github.com/jostmey/rwa
3https://github.com/NickShahML/tensorflow with latest papers
4http://github.com/forwchen/yt8m

the GAP is computed as:

GAP =

N∑
i=1

p(i)∆r(i),

where N is the number of final predictions (if there are 20
predictions for each video, then N = 20 ∗ #V ideos ), p(i)
is the precision for the first i predictions, and ∆r(i) is the
change in recall. We denote the total number of positives
in these N predictions as m. If prediction i is correct then
∆r(i) = 1/m, otherwise ∆r(i) = 0.

4.3. Results

In the challenge, our submissions are generated by fusing
multiple models. Here provide details of one setting with
competitive results. Table 3 gives the details. This setting
produces a GAP@20 of 0.83996 on the public 50% of test
set.

We further provide results of some models and their fu-
sion in Table 4. We can see that the performance can always
be improved by appropriately fusing more model predic-
tions. The single NetVLAD is from the prediction of one
model trained for 10k iterations. Our NetVLAD produces
competitive results to the RNNs, which is appealing con-
sidering its low computation cost. Ensemble 1 is the fusion
of all the models in Table 3. Ensemble 2 produces our best
result, coming from the fusion of Ensemble 1 with some
additional models. Details can be found at this link5.

5. Conclusion
We have introduced an approach to aggregate frame-

level features for large-scale video classification. We
showed that fusing multiple models is always helpful. We
also proposed a variant of VLAD to aggregate sequence of
frame features temporally, which can produce good results
with lower computational cost than RNN. Adding all the
carefully designed strategies together, our system ranked
4th out of 650 teams worldwide in the challenge compe-
tition.
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