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Abstract

Video classification problem has been studied many
years. The success of Convolutional Neural Networks
(CNN) in image recognition tasks gives a powerful
incentive for researchers to create more advanced video
classification approaches. As video has a temporal
content Long Short Term Memory (LSTM) networks
become handy tool allowing to model long-term temporal
clues. Both approaches need a large dataset of input
data. In this paper three models provided to address
video classification using recently announced YouTube-
8M large-scale dataset. The first model is based on frame
pooling approach. Two other models based on LSTM
networks. Mixture of Experts intermediate layer isused in
third model allowing to increase model capacity without
dramatically increasing computations. The set of
experiments for handling imbalanced training data has
been conducted.

1. Introduction

In last few years image classification problem is
enjoying a renaissance with an arise of deep legrni
approach. Many models have been designed (Alext§et [
VGGNet [2], ResNet [3], Inception [4]), which eftaely
recognize image content. The first reason of tlsat i
publication of the free large-scale data base gh hi
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many hand-crafted approaches to video-frame feature
extraction, such as Histogram of Oriented Gradients
(HOG), Histogram of Optical Flow (HOF), Motion
Boundary Histogram (MBH) around spatio-temporal
interest points [9], in a dense grid [10], SIFT Jjlthe
Mel-Frequency Cepstral Coefficients (MFCC) [12]eth
STIP [13] and the dense trajectories [14] existeek of
video-frame features then encoded to video-levalufe
with bag of words (BoW) approach. The problem with
BoW is that it uses only static video-frame infotina
disposing of the time component, the frame ordering
Recurrent Neural Networks (RNN) show good resuits i
modeling with time-based input data. A few papdss, [
16] describe solving video classification problesing
Long Short-Term Memory (LSTM) networks and achieve
good results.

This paper describes three models used to soheovid
classification problem for YouTube-8M. Described
models were used in Google Cloud & YouTube-8M
Video Understanding Challenge [17]. First modddased
on BoW: time-based frame codes pooled then clasksifi
second and third model based on LSTM approach. In
contrast with [15, 16], we used also video sourddtra
information as provided by YouTube-8M.

The paper is organized as follows. Section 2 review
related works of video classification problem usiegp
learning. Section 3 presents brief overview of Yob@-
8M dataset. Section 4 describes the proposed deep
learning models to solve multi-label multi-class
classification on YouTube-8M dataset. Section Svjgles
results of training proposed models to datasetallyin
section 6 concludes the paper by summarizing thie ma

resolution images ImageNet [5], and usage of highly points addressed through this paper.

effective operations on GPU-s providing high-thriopigt
computing on relatively cheap cost. Prediction azcy
of such deep learning models approaches to hunvah le
performance.

The next step in this direction is not just object
recognition in static images bun action recognition,
video classification. There are few benchmarks iliog
input datasets for these problems (Sports-1M [6J,FU
101[7] etc). Recently YouTube-8M benchmark [8] was

published with dataset size exceeding competitors’

dramatically. As like as in object recognition hist area

2. Related works

Video classification problem has been studied many
years. Many approaches solving the problem has been
developed using hand-crafted features.

GPU progress and winning ImageNet competition by
Krizhevsky et al. [1] made deep learning approacuem
popular. At this moment Inception-v3 network geg$o-



top-5 error. Deep learning approach used for video feature]
classification was described in recent papers §,15]. rgb_list
Karpathy et al. [6] proposed use a ConvNet approach audio_list
based models on Sports-1M, UCF-101 benchmarkstNg e ]

al. [15] proposed few feature pooling architectuaesl Video-level features dataset. Features in this dataset
LSTM architectures on Sports-1M, UCF-101 benchmarks are aggregated from the frame-level features diatase
Abu-El-Haija et al. [16] worked on YouTube-8M, Stssr In our models we are going to use the frame-level

1M benchmarks. They provided few baseline appraache dataset only.
(Deep Bag of Frames, LSTM). They used frame-level
features and aggregated video-level features inr the
models. 4.Modéls
YouTube-8M contains encoded features in contrast
with Sports-1M, UCF-101 datasets where various pre- . . . -
processing approaches can be applied on a raw videg _Th|s sectlon_ provides descr_lptlon of th? modelsiuse
frame images. Researchers in [15, 16] do not us@au train and predict themes of V'deo.' .The first mme.d
information. In public version of YouTube-8M encade " Bag-of-Frames approach — mink-batch of inpueeid
video and audio feature for each frame are provided frame featur_es pooled along time axis to QEt.V'M
preventing any pre-processing technique on raw data featur_es. Th_|s allows to model static spatial infation
Shazeer et al. [18] present intermediate the MgEr|a over tlme axis. . o
which increase model capacity without a proportiona As input data_l has time axis (t'm? based) we decided
increase in computation. In the proposed approaeh t use RN_N’ which allows _extract|0n of the temporal
MOE layer is stacked between LSTM layers. The information of a sequential input data. The secomnudiel

: resents a network with few LSTM layers and cléessif
presented model was applied to the tasks of Iaru=guagp . )
modeling and machine translation and competitigeilte The third model also is RNN based, but here we add

have been achieved intermediate MoE layer based on [18, 19].

In this work the MoE layer in combination of LSTM

layers was used for video classification problem. .
4.1.Bag-of-Frames ar chitecture

3. Input Data Bag-of-words (or as in our case Bag-of-Frames)
representation is widely used in the video clasaifon

The YouTube-8M benchmark contains 4716 classesProPlem [15, 16, 22, 23]. Each input sample cowesis
and more than 8 million videos. The benchmark it sp (© & Video, has a set of video-labels, and a segueh
into three subsets: Train (~5,7M), Validate (~1,6af)d frame features. _Frame_ feature could b_e a handecraft
Test (~0.8M). YouTube-8M is available in two datase fe_:ature for each input wdeo-fra_me or as in ouecasaw
the frame-level features dataset and the vided-leve Vid€0-frame encoded by Inception-v3.
features dataset.

Frame-level features dataset. Original videos have

Sigmoid classifier

been preprocessed to extract frame-level featiash T
video is decoded at 1 fps up to the first 360 sdsamd
then decoded frames are feed into the Inception-v3 FC2
network. Features vector of length 2048 is takeforee
classification layer. To reduce feature dimensiori®24 T
PCA and quantization is applied.

Also, audio features are extracted from videos fj FCI
added to the dataset.

The total size of frame-level dataset is about B,7T T

Extracted features are stored in tfrecords fornmak are

available on Internet [8]. Each video record hae th FHapeEpoling

following structure: T
context[ i
video id Inpuet { frame-level
label_list features)
- igure 1. Bag-of-Frames architecture.
F 1.B f-F h



Bag-of-Frames architecture is illustrated in Figdre
For each sample in a training dataset there isteofse
frame-level features and ground-truth video-leadiells.
We need to train model to predict video-level Iabétput
data patch_size, max_frames, feature size) is sent to
FramePooling layer, where pooling between time &am
of each sample is applied. As in [15] we use maolipg
to get one feature-vector from all time-based fraevel
features of each input sample. After FramePoolagi

two FC layers are used. And on the top level we use

sigmoid classifier.

In Figure 2 Simple_LSTM architecture is presented.
We useN LSTM layers, each layer h&sdden_size units.
Configurations withN=[2, 3], hidden_size=[1024, 2048]
have been testedd LSTM Layers are stacked so that
output of (-1)-th layer is input for thé-th layer. Stacked
LSTM network is unrollednax_frames times. Weighted
sum of outputs of LSTM_N layer is sent to sigmoid
classifier:

max_frames

Sigmoid_input= Z w; * out 1)
i=1

Batch Normalization layer is added after Input, FC1 whereout; is unrolled LSTM_N layergth outputw; is a

and FC2 layers to provide stability, convergenceesp
and some regularization. Also dropout is appliedhe
output of Input and FC1 layers (with probabilitg).This
model is trained with 90 frames for each input slemp
(max_frames=90) in time dimension. Sigmoid cross
entropy loss is used to train multi-class multidhb

classifier. RMSProp with decay rate 0.9 is used as

optimizer. We use base learning rate*1hich decay
after each 2*10samples.

4.2.Simple_L STM architecture

In Bag-of-Frames architecture frame-level featwaes
pooled (max) along time axis, and hence we areirigos
frame ordering information. In this section we ddes
simple LSTM architecture, which allows to model don
term temporal information. LSTM networks may cortnec
previous information to the present task (e.g. eohn
information from the previous frames of a videothe
current frame), they are capable of learning largat
dependencies.

Sigmoid classilier

i
A

LSTM N ¢»

o LSTM N

T Unroll stacked LSTM layers
max_frames time

} t

weight:
i
~ max_ frames @

Therefore the output of the first time frame gets
minimal weight and the output of the last time feagets
maximal weight.

Batch Normalization layer is added after Input fatge
provide stability, convergence speed, and some
regularization. Dropout is applied to the outputeafch
LSTM layer (with probability 0.4). In some experinte
residual connections have been used. We trainesd thi
model with max_frames=90 in time dimension. Sigmoid
cross entropy loss is used to train multi-classtiribel
classifier. RMSProp with decay rate 0.9 is used as
optimizer. We used base learning rate 2*10-4, which
decay after each 18amples.

Wi

4.3.LSTM_MOE architecture

The idea of the Mixture of Experts [19] is to trairset
of experts, where each expert specializes on s&etobs

Sigmoid classifier
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Figure 2. Simple_LSTM architecture.
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Figure 3. Lstm_MOoE architecture.




cases. To choose expert for each sample gatingrietsy
designed. The output of gating network is softneyet,
which provides probability of choosing particulatpert
(number of output probabilities is equal to numlodr
experts).

In early works [19, 24, 25, 26] the MOE was use@as
top layer. Shazeer et al. [18] proposed to use Maa
general purpose neural network component. We
implemented MoE layer in Tensorflow library [27]dan
used it in the third model.

In Figure 3 LSTM_MoE architecture is presented.
LSTM_MoE is similar to Simple_LSTM except for the
following details:
only 2 LSTM layers are used
hidden_size=512
output of the LSTM_1 layer is input for the MoE
layer, output of the MoE layer is input for the

LSTM_2 layer.

/ﬁoE layer

Gixd,| [660.4

Expert 3 & s

Expertn

4

Figure 4. MoE layer.

In Figure 4 schematic presentation of MoE layer is
provided. Output from the LSTM_1 layer is sent #tigg
network. Gating network selects a sparse combinaifo

Load(X)= XZD:X P(x) (5)
Lossload(x): Wload*CV( Load(x»2 (6)

whereP(x, i) is the probability tha®G(x); is nonzero, given
a new random choice of noise on elemieriut keeping
the already-sampled choices of noise on the other
elements, CV is coefficient of variation of the sétoad
values, anavi,oq is hyper-parameter.

LSTM_MoE is a very memory consuming model, so
only limited experiments with this model have beeme.

5. Experiments

In this section we report the results of experirmet
YouTube-8M dataset. We compare the results ofitrgin
BoF, Simple_LSTM, LSTM_MoE on the large-scale
YouTube-8M frame-level dataset. All models haverbee
implemented on the Tensorflow library.

For the evaluation we usd¢it@1 andGlobal Average
Precision (GAP) metrics.

Hit@1. This is the fraction of test samples where the
top-1 prediction contains in the ground truth Iabef the
sample.

Hit@1(X)=

|% Z labels(x)[ argmaXpredictions(x))] (7)
xOX
whereX is a testing set of sampléabels(x) is a vector of
ground truth labels (0 or lpredictions(x) are predicted
labels,argmax(vec) is an index of maximum value in the
vectorvec.

GAP. Definition of GAP corresponds to the one
provided on competition site [17]. L&t be a number of
predictionsp(i) is the precision, andi) is the recall.

aap=3, p(i) * Ar ()

the experts to process each input sample. This &ind
sparse selection allows saving computations.

MoE layer consists of Gating network and a seh of

Expert networks. We usea=64 Expert networks, 4 of

which are active for each sample. Each Expert nd&two

consists of two FC layers with 1024 hidden units.
Gating network tends to choose the same experts. T

provide load balancing two loss functioh®sSportance:
Losseqq are provided which are used to penalize such g

behavior.

8
. Ste
Model Hit@1 | AP | 2P
BoF_4096 0.78 0.66 60k
Simple_LSTM_residual 0.82 0.75 200
Simple_LSTM_2048 0.85 0.77 100K
| Simple_LSTM_[3_204§ 0.87 0.79 80k
LSTM_MoE_512 0.8 0.76 50k
Frame-level _LSTM 0.645
Video-level_MoE 0.633

I mportance(X)= x%'x G (x) )

LOSS mportance(X):Wi mportanoe*CV( I mportance(X))2 (4)
whereG(X) is output of gating network, CV is coefficient
of variation of the set of importance values, @&)gorance
is hyper-parameter.

Table 1. Results of various configurations on Yobd@8M.

Results. Table 1 contains the best results of
experiments on BoF, Simple_LSTM, LSTM_MoE
models. For all experiments in Table 1 the inputs a
frame-level features (rgb, audio) with sizes 108d 428,



max_frames is 90.

Very often the first few seconds of video are netyv
informative in terms of video classification asytto®ntain
some text or intro animation which does not help in
classification. So we skip first few seconds (frainef the
input data. This allows to improve evaluation netrby
~0.6%. In all our experiments the first 20 framésnput
data are skipped.

BoF_4096 represents the BoF model. The number of
hidden units in FC1 and FC2 is 4096. The batch size
512. The model was trained for 60k steps (~11 epoch
Tesla K40 GPU. The training time was 2 days.

Simple_LSTM_residual represents the Simple_LSTM
model. The number of hidden units in LSTM_1 and
LSTM_2 is 1024. For both LSTM layers residual
connection is used. The batch size is 256. The heae

trained for 200k steps (~10 epochs) on Quadro P6000

GPU. The training time was 7 days.

Simple_LSTM_2048 represents the Simple_LSTM
model. The number of hidden units in LSTM_1 and
LSTM_2 is 2048. The batch size is 256. The moded wa
trained for 100k steps (~5 epochs) on Tesla K40 GPU
The training time was 8 days.

Simple_LSTM_I3_2048 represents the Simple_LSTM
model. Three LSTM layers are used in this confiama
The number of hidden units in each LSTM layer 420
The batch size is 256. The model was trained fd¢ 80
steps (~4 epochs) on Tesla K40 GPU. The trainimg ti
was 13 days.

LSTM_MOoE_512 represents the LSTM_MoE model.
The number of hidden units in LSTM_1 and LSTM_2 is
512. We used n=64 Expert networks, 4 of which are
active for each sample. Each Expert network cansist
two FC layers with 1024 hidden units. The batcle s&

The training set ground-truth label analysis shothed
labels are heavily unbalanced. Table 2 provideshaurof
labels in training set. The ratio of the most frexuand
least frequent label counts is 8.6k.
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Figure 5. Sum of label numbers (in %) in trainieg. s

In Figure 5 x-axis corresponds to label id and igax
corresponds to sum of label counts in percents. 66&dl
labels in training set compose of first 1834 labels

One of the possible reasons of models plateau reay b
the label imbalance: networks just learn well fewftop
classes and for the most input samples they préabet
from that top set of labels (majority classes).

In the next attempt to handle imbalanced trainiatad
we use penalized loss function. We put additionst on
the model for making classification mistakes on the
minority class during training. We penalize falsgative
cases in loss function giving penalty coefficiamidrsely

to number of labels in training set.

128. The model was trained for 50k steps (~2 epozhs
Quadro P6000 GPU. The training time was 3 days.

Also some configurations from Table 1 were trained

for additional time steps (+100k) but without essdn

improvements. The network just plateaus for eacthef

Model Hit@l| GAP | Step
number
Simple_LSTM_3 2048 bal 0.73 0.61 80k
Simple_LSTM_2048_bal 0.71 0.59 80k
LSTM_MoE_512 bal 0.57 0.32] 50k

provided model configurations.

Frame-level _LSTM and Video-level _MoE shows the
best performance in [16]. Our models improve baseli
performance (Hit@1 metric) for 14-23%.

Label_id | Sample_numbegr Sample_number
(%)

1 ~860k ~0.052

2 ~680k ~0.041

3 ~520k ~0.031
2100 501 3.01e-05
4715 99 5.95e-06
4716 100 6.01e-06

Table 2. Label counts in training set.

Table 3. Results of penalized model performance.

Unfortunately the penalized models converge slowly
and need more time to train. In Table 3 the resofts
experiments working with the penalized models are
provided.

Simple_LSTM_3_2048_bal represents penalized
model Simple_LSTM. The number of LSTM layers is 3,
the number of hidden units in LSTM layers is 20%8e
model was trained with max frames=120 in time
dimension. The batch size is 128. The model wasetda
for 80k steps (~2 epochs) on Tesla K80 GPU. The
training time was 2 days.

Simple_LSTM_2048_bal represents penalized model
Simple_LSTM. Hyper-parameters are the same as for
Simple_LSTM_2048. The model was trained for 80k



steps (~4 epochs) on Tesla K40 GPU. The trainimg ti In Proceedings of the IEEE Conference on Computer

was 6 days. Vision and Pattern Recognition, pages 2818-2826620
LSTM_MoE_512_bal represents penalized model ®:J- Deng, W. Dong, R. Socher, L.-J. Li, K. Li, andRei-Fei.

LSTM_MOE. Hyper-parameters are the same as for ImageNet: A Large-Scale Hierarchical Image Databbse

- . CVPRO09, 2009.

LSTM_MoE_512. The model was frained for 5_0_k Steps 6. A. Karpathy, G. Toderici, S. Shetty, T. Leung, Rk®ankar,

(2 gpé)chs) on Quadro P6000 GPU. The training time and L. Fei-Fei. Large-scale video classificationthwi

was 3 days.

convolutional neural networks. In IEEE Conferenae o

Because of lack of time we have trained just three Computer Vision and Pattern Recognition (CVPR),gsag
configurations and have not well tuned these set of 1725-1732, Columbus, Ohio, USA, 2014.
experiments (tuning of these setups planed as eutur 7.K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dateof
works). 101 human actions classes from videos in the wiid.

The results in Table 3 are lower than in Table 1, _ YoCuBrSt\)/e;glzvl-lZ-OL 2012.
pgrhaps more time and/or tuning of hyper-paramaﬁﬂs https://research.google.com/youtube8m/.
give better results. Also other approaches to famth o | ) ;o) "M, Marszaek, C. Schmid, and B. Rozenfeld
imbalanced classes (under-sampling majority classes | earning realistic human actions from movies. Irc@r
over-sampling minority classes etc) are to be appli CVPR, pages 1-8, Anchorage, Alaska, USA, 2008.

10.H. Wang, M. M. Ullah, A. Kilser, |. Laptev, and Cct8nid.
Evaluation of local spatio-temporal features forticac
recognition. In Proc. BMVC, pages 1-11, 2009.

11.D. G. Lowe. Distinctive image features from scaleariant
keypoints. IJCV, 2004.

We have presented three deep learning models forl2.z. Xu, Y. Yang, I. Tsang, N. Sebe, and A. Hauptmann
video classification. All provided models were tr@dl on Feature weighting via optimal thresholding for \dde
frame-level input data from the YouTube-8M data3ée analysis. In ICCV, 2013. _
first model (BoF) used frame pooling approach. 13.1. Laptev. On space-tlm_e mter_est points. _L_JCV,'_BOQ
Simple_LSTM and LSTM_MoE used LSTM layers for 14.H. Wang_and C. Schmid. Action recognition with ioped
the long-term temporal dependency modeling. In trajectories. In ICCV, 2013.

. ) 15.J. Y.-H. Ng, M. J. Hausknecht, S. Vijayanarasimh@n,

!_STM_MOE model M|xture of Experts layer have been Vinyals, R. Monga, and G. Toderici. Beyond short

implemented and trained. snippets: Deep networks for video classification.|EEE

In the input dataset we skip the first few seconds  Conference on Computer Vision and Pattern Recagniti
(frames) as they are usually useless in video ifilzetson (CVPR), pages 4694-4702, 2015.
tasks. 16.Sami Abu-El-Haija, Nisarg Kothari, Joonseok LeeulPa

Our best model configurations improve baseline Natsev, George Toderici, Balakrishnan Varadarajan,
performance (Hit@1 metric) for 14-23%. Sudheer_ldra Vljayanarammhan. YouTube-SM: A Large-

Also we have conducted the set of experiments for (Szzaiz)v'deo Classification Benchmark. arXiv:160808
handlllng |mpalanced training d,ata} by using p'er!dlims 17.Google Cloud & YouTube-8M Video Understanding
function. This leads tp more distributed prgdlctresults Challenge. https://www.kaggle.com/c/youtube8m/.
but drops overallHit@l and GAP metrics. These

. ) . 18.Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziakndy
experiments are a subject for further tuning and Davis, Quoc Le, Geoffrey Hinton, Jeff Dean. Outkaggly

Dataset.

6. Conclusion

improvements. Large Neural Networks: The Sparsely-Gated Mixtufre-o
Experts Layer. arXiv preprint arXiv:1701.06538.
19.Jacobs, R. A., Jordan, M. I., Nowlan, S. J., andtdfi, G.
E. 1991. Adaptive mixtures of local experts. Ne@amp.
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