

 1

Abstract

Video classification problem has been studied many
years. The success of Convolutional Neural Networks
(CNN) in image recognition tasks gives a powerful
incentive for researchers to create more advanced video
classification approaches. As video has a temporal
content Long Short Term Memory (LSTM) networks
become handy tool allowing to model long-term temporal
clues. Both approaches need a large dataset of input
data. In this paper three models provided to address
video classification using recently announced YouTube-
8M large-scale dataset. The first model is based on frame
pooling approach. Two other models based on LSTM
networks. Mixture of Experts intermediate layer is used in
third model allowing to increase model capacity without
dramatically increasing computations. The set of
experiments for handling imbalanced training data has
been conducted.

1. Introduction

In last few years image classification problem is

enjoying a renaissance with an arise of deep learning
approach. Many models have been designed (AlexNet [1],
VGGNet [2], ResNet [3], Inception [4]), which effectively
recognize image content. The first reason of that is
publication of the free large-scale data base of high
resolution images ImageNet [5], and usage of highly
effective operations on GPU-s providing high-throughput
computing on relatively cheap cost. Prediction accuracy
of such deep learning models approaches to human level
performance.

The next step in this direction is not just object
recognition in static images but аn action recognition,
video classification. There are few benchmarks providing
input datasets for these problems (Sports-1M [6], UCF-
101[7] etc). Recently YouTube-8M benchmark [8] was
published with dataset size exceeding competitors’
dramatically. As like as in object recognition in this area

many hand-crafted approaches to video-frame feature
extraction, such as Histogram of Oriented Gradients
(HOG), Histogram of Optical Flow (HOF), Motion
Boundary Histogram (MBH) around spatio-temporal
interest points [9], in a dense grid [10], SIFT [11], the
Mel-Frequency Cepstral Coefficients (MFCC) [12], the
STIP [13] and the dense trajectories [14] existed. Set of
video-frame features then encoded to video-level feature
with bag of words (BoW) approach. The problem with
BoW is that it uses only static video-frame information
disposing of the time component, the frame ordering.
Recurrent Neural Networks (RNN) show good results in
modeling with time-based input data. A few papers [15,
16] describe solving video classification problem using
Long Short-Term Memory (LSTM) networks and achieve
good results.

This paper describes three models used to solve video
classification problem for YouTube-8M. Described
models were used in Google Cloud & YouTube-8M
Video Understanding Challenge [17]. First model is based
on BoW: time-based frame codes pooled then classified,
second and third model based on LSTM approach. In
contrast with [15, 16], we used also video soundtrack
information as provided by YouTube-8M.

The paper is organized as follows. Section 2 reviews
related works of video classification problem using deep
learning. Section 3 presents brief overview of YouTube-
8M dataset. Section 4 describes the proposed deep
learning models to solve multi-label multi-class
classification on YouTube-8M dataset. Section 5 provides
results of training proposed models to dataset. Finally,
section 6 concludes the paper by summarizing the main
points addressed through this paper.

2. Related works

Video classification problem has been studied many

years. Many approaches solving the problem has been
developed using hand-crafted features.

GPU progress and winning ImageNet competition by
Krizhevsky et al. [1] made deep learning approach more
popular. At this moment Inception-v3 network gets ~3%

Large-Scale YouTube-8M Video Understanding with Deep Neural Networks

Manuk Akopyan
Institute for System Programming

ispras.ru
manuk@ispras.ru

Eshsou Khashba
Institute for System Programming

ispras.ru
eshsou@ispras.ru

 2

top-5 error. Deep learning approach used for video
classification was described in recent papers [6, 15, 16].
Karpathy et al. [6] proposed use a ConvNet approach
based models on Sports-1M, UCF-101 benchmarks. Ng et
al. [15] proposed few feature pooling architectures and
LSTM architectures on Sports-1M, UCF-101 benchmarks.
Abu-El-Haija et al. [16] worked on YouTube-8M, Sports-
1M benchmarks. They provided few baseline approaches
(Deep Bag of Frames, LSTM). They used frame-level
features and aggregated video-level features in their
models.

YouTube-8M contains encoded features in contrast
with Sports-1M, UCF-101 datasets where various pre-
processing approaches can be applied on a raw video
frame images. Researchers in [15, 16] do not use audio
information. In public version of YouTube-8M encoded
video and audio feature for each frame are provided,
preventing any pre-processing technique on raw data.

Shazeer et al. [18] present intermediate the MoE layer,
which increase model capacity without a proportional
increase in computation. In the proposed approach the
MoE layer is stacked between LSTM layers. The
presented model was applied to the tasks of language
modeling and machine translation and competitive results
have been achieved.

In this work the MoE layer in combination of LSTM
layers was used for video classification problem.

3. Input Data

The YouTube-8M benchmark contains 4716 classes

and more than 8 million videos. The benchmark is split
into three subsets: Train (~5,7M), Validate (~1,6M) and
Test (~0.8M). YouTube-8M is available in two datasets:
the frame-level features dataset and the video-level
features dataset.

Frame-level features dataset. Original videos have
been preprocessed to extract frame-level features. Each
video is decoded at 1 fps up to the first 360 seconds and
then decoded frames are feed into the Inception-v3
network. Features vector of length 2048 is taken before
classification layer. To reduce feature dimension to 1024
PCA and quantization is applied.

Also, audio features are extracted from videos [20] and
added to the dataset.

The total size of frame-level dataset is about 1,7TB.
Extracted features are stored in tfrecords format and are
available on Internet [8]. Each video record has the
following structure:

context[
 video_id
 label_list
]

feature[
 rgb_list
 audio_list
]
Video-level features dataset. Features in this dataset

are aggregated from the frame-level features dataset.
In our models we are going to use the frame-level

dataset only.

4. Models

This section provides description of the models used to

train and predict themes of video. The first model based
on Bag-of-Frames approach – mini-batch of input video-
frame features pooled along time axis to get video-level
features. This allows to model static spatial information
over time axis.

As input data has time axis (time based) we decided to
use RNN, which allows extraction of the temporal
information of a sequential input data. The second model
presents a network with few LSTM layers and classifier.
The third model also is RNN based, but here we add
intermediate MoE layer based on [18, 19].

4.1. Bag-of-Frames architecture

Bag-of-words (or as in our case Bag-of-Frames)

representation is widely used in the video classification
problem [15, 16, 22, 23]. Each input sample corresponds
to a video, has a set of video-labels, and a sequence of
frame features. Frame feature could be a hand-crafted
feature for each input video-frame or as in our case a raw
video-frame encoded by Inception-v3.

Figure 1. Bag-of-Frames architecture.

 3

Bag-of-Frames architecture is illustrated in Figure 1.
For each sample in a training dataset there is a set of
frame-level features and ground-truth video-level labels.
We need to train model to predict video-level labels. Input
data (batch_size, max_frames, feature_size) is sent to
FramePooling layer, where pooling between time frames
of each sample is applied. As in [15] we use max-pooling
to get one feature-vector from all time-based frame-level
features of each input sample. After FramePooling layer
two FC layers are used. And on the top level we use
sigmoid classifier.

Batch Normalization layer is added after Input, FC1,
and FC2 layers to provide stability, convergence speed
and some regularization. Also dropout is applied to the
output of Input and FC1 layers (with probability 0.3). This
model is trained with 90 frames for each input sample
(max_frames=90) in time dimension. Sigmoid cross
entropy loss is used to train multi-class multi-label
classifier. RMSProp with decay rate 0.9 is used as
optimizer. We use base learning rate 10-4, which decay
after each 2*107 samples.

4.2. Simple_LSTM architecture

In Bag-of-Frames architecture frame-level features are

pooled (max) along time axis, and hence we are loosing
frame ordering information. In this section we consider
simple LSTM architecture, which allows to model long-
term temporal information. LSTM networks may connect
previous information to the present task (e.g. connect
information from the previous frames of a video to the
current frame), they are capable of learning long-term
dependencies.

Figure 2. Simple_LSTM architecture.

In Figure 2 Simple_LSTM architecture is presented.
We use N LSTM layers, each layer has hidden_size units.
Configurations with N=[2, 3], hidden_size=[1024, 2048]
have been tested. N LSTM Layers are stacked so that
output of (i-1)-th layer is input for the i-th layer. Stacked
LSTM network is unrolled max_frames times. Weighted
sum of outputs of LSTM_N layer is sent to sigmoid
classifier:

Sigmoid_input= ∑
=

max_frames

1

*
i

ii outw (1)

where outi is unrolled LSTM_N layers i-th output, wi is a
weight:

wi= frames

i

max_ (2)

Therefore the output of the first time frame gets
minimal weight and the output of the last time frame gets
maximal weight.

Batch Normalization layer is added after Input layer to
provide stability, convergence speed, and some
regularization. Dropout is applied to the output of each
LSTM layer (with probability 0.4). In some experiments
residual connections have been used. We trained this
model with max_frames=90 in time dimension. Sigmoid
cross entropy loss is used to train multi-class multi-label
classifier. RMSProp with decay rate 0.9 is used as
optimizer. We used base learning rate 2*10-4, which
decay after each 107 samples.

4.3. LSTM_MoE architecture

The idea of the Mixture of Experts [19] is to train a set

of experts, where each expert specializes on a subset of

Figure 3. Lstm_MoE architecture.

 4

cases. To choose expert for each sample gating network is
designed. The output of gating network is softmax layer,
which provides probability of choosing particular expert
(number of output probabilities is equal to number of
experts).

In early works [19, 24, 25, 26] the MoE was used as a
top layer. Shazeer et al. [18] proposed to use MoEs as a
general purpose neural network component. We
implemented MoE layer in Tensorflow library [27] and
used it in the third model.

In Figure 3 LSTM_MoE architecture is presented.
LSTM_MoE is similar to Simple_LSTM except for the
following details:
• only 2 LSTM layers are used
• hidden_size=512
• output of the LSTM_1 layer is input for the MoE

layer, output of the MoE layer is input for the
LSTM_2 layer.

Figure 4. MoE layer.

In Figure 4 schematic presentation of MoE layer is
provided. Output from the LSTM_1 layer is sent to gating
network. Gating network selects a sparse combination of
the experts to process each input sample. This kind of
sparse selection allows saving computations.

MoE layer consists of Gating network and a set of n
Expert networks. We used n=64 Expert networks, 4 of
which are active for each sample. Each Expert network
consists of two FC layers with 1024 hidden units.

Gating network tends to choose the same experts. To
provide load balancing two loss functions Lossimportance,
Lossload are provided which are used to penalize such a
behavior.

Importance(X)= ∑
∈ Xx

xG)((3)

Lossimportance(X)=wimportance*CV(Importance(X))2 (4)
where G(x) is output of gating network, CV is coefficient
of variation of the set of importance values, and wimportance
is hyper-parameter.

Load(X)= ∑
∈ Xx

xP)((5)

Lossload(X)= wload*CV(Load(X))2 (6)
where P(x, i) is the probability that G(x)i is nonzero, given
a new random choice of noise on element i, but keeping
the already-sampled choices of noise on the other
elements, CV is coefficient of variation of the set of load
values, and wload is hyper-parameter.

LSTM_MoE is a very memory consuming model, so
only limited experiments with this model have been done.

5. Experiments

In this section we report the results of experiments on

YouTube-8M dataset. We compare the results of training
BoF, Simple_LSTM, LSTM_MoE on the large-scale
YouTube-8M frame-level dataset. All models have been
implemented on the Tensorflow library.

For the evaluation we use Hit@1 and Global Average
Precision (GAP) metrics.

Hit@1. This is the fraction of test samples where the
top-1 prediction contains in the ground truth labels of the
sample.

Hit@1(X)=

∑
∈Xx

ns(x))](predictiolabels(x)[
|X|

argmax
1

 (7)

where X is a testing set of samples, labels(x) is a vector of
ground truth labels (0 or 1), predictions(x) are predicted
labels, argmax(vec) is an index of maximum value in the
vector vec.

GAP. Definition of GAP corresponds to the one
provided on competition site [17]. Let N be a number of
predictions, p(i) is the precision, and r(i) is the recall.

GAP=∑
=

∆
N

i

irip
1

)(*)((8)

Model Hit@1 GAP
Step

number
BoF_4096 0.78 0.66 60k

Simple_LSTM_residual 0.82 0.75 200k

Simple_LSTM_2048 0.85 0.77 100k

Simple_LSTM_l3_2048 0.87 0.79 80k

LSTM_MoE_512 0.8 0.76 50k

Frame-level_LSTM 0.645 --- ---

Video-level_MoE 0.633 --- ---

Table 1. Results of various configurations on YouTube-8M.

Results. Table 1 contains the best results of
experiments on BoF, Simple_LSTM, LSTM_MoE
models. For all experiments in Table 1 the inputs are
frame-level features (rgb, audio) with sizes 1024 and 128,

 5

max_frames is 90.
Very often the first few seconds of video are not very

informative in terms of video classification as they contain
some text or intro animation which does not help in
classification. So we skip first few seconds (frames) of the
input data. This allows to improve evaluation metrics by
~0.6%. In all our experiments the first 20 frames of input
data are skipped.

BoF_4096 represents the BoF model. The number of
hidden units in FC1 and FC2 is 4096. The batch size is
512. The model was trained for 60k steps (~11 epochs) on
Tesla K40 GPU. The training time was 2 days.

Simple_LSTM_residual represents the Simple_LSTM
model. The number of hidden units in LSTM_1 and
LSTM_2 is 1024. For both LSTM layers residual
connection is used. The batch size is 256. The model was
trained for 200k steps (~10 epochs) on Quadro P6000
GPU. The training time was 7 days.

Simple_LSTM_2048 represents the Simple_LSTM
model. The number of hidden units in LSTM_1 and
LSTM_2 is 2048. The batch size is 256. The model was
trained for 100k steps (~5 epochs) on Tesla K40 GPU.
The training time was 8 days.

Simple_LSTM_l3_2048 represents the Simple_LSTM
model. Three LSTM layers are used in this configuration.
The number of hidden units in each LSTM layer is 2048.
The batch size is 256. The model was trained for 80k
steps (~4 epochs) on Tesla K40 GPU. The training time
was 13 days.

LSTM_MoE_512 represents the LSTM_MoE model.
The number of hidden units in LSTM_1 and LSTM_2 is
512. We used n=64 Expert networks, 4 of which are
active for each sample. Each Expert network consists of
two FC layers with 1024 hidden units. The batch size is
128. The model was trained for 50k steps (~2 epochs) on
Quadro P6000 GPU. The training time was 3 days.

Also some configurations from Table 1 were trained
for additional time steps (+100k) but without essential
improvements. The network just plateaus for each of the
provided model configurations.

Frame-level_LSTM and Video-level_MoE shows the
best performance in [16]. Our models improve baseline
performance (Hit@1 metric) for 14-23%.

Label_id Sample_number Sample_number
(%)

1 ~860k ~0.052
2 ~680k ~0.041
3 ~520k ~ 0.031
… … …

2100 501 3.01e-05
… … …

4715 99 5.95e-06
4716 100 6.01e-06

Table 2. Label counts in training set.

The training set ground-truth label analysis showed that
labels are heavily unbalanced. Table 2 provides number of
labels in training set. The ratio of the most frequent and
least frequent label counts is 8.6k.

Figure 5. Sum of label numbers (in %) in training set.

In Figure 5 x-axis corresponds to label id and y-axis
corresponds to sum of label counts in percents. 95% of all
labels in training set compose of first 1834 labels.

One of the possible reasons of models plateau may be
the label imbalance: networks just learn well for few top
classes and for the most input samples they predict label
from that top set of labels (majority classes).

In the next attempt to handle imbalanced training data
we use penalized loss function. We put additional cost on
the model for making classification mistakes on the
minority class during training. We penalize false negative
cases in loss function giving penalty coefficient inversely
to number of labels in training set.

Model Hit@1 GAP Step
number

Simple_LSTM_3_2048_bal 0.73 0.61 80k
Simple_LSTM_2048_bal 0.71 0.59 80k
LSTM_MoE_512_bal 0.57 0.32 50k

Table 3. Results of penalized model performance.

Unfortunately the penalized models converge slowly
and need more time to train. In Table 3 the results of
experiments working with the penalized models are
provided.

Simple_LSTM_3_2048_bal represents penalized
model Simple_LSTM. The number of LSTM layers is 3,
the number of hidden units in LSTM layers is 2048. The
model was trained with max_frames=120 in time
dimension. The batch size is 128. The model was trained
for 80k steps (~2 epochs) on Tesla K80 GPU. The
training time was 2 days.

Simple_LSTM_2048_bal represents penalized model
Simple_LSTM. Hyper-parameters are the same as for
Simple_LSTM_2048. The model was trained for 80k

 6

steps (~4 epochs) on Tesla K40 GPU. The training time
was 6 days.

LSTM_MoE_512_bal represents penalized model
LSTM_MoE. Hyper-parameters are the same as for
LSTM_MoE_512. The model was trained for 50k steps
(~2 epochs) on Quadro P6000 GPU. The training time
was 3 days.

Because of lack of time we have trained just three
configurations and have not well tuned these set of
experiments (tuning of these setups planed as future
works).

The results in Table 3 are lower than in Table 1,
perhaps more time and/or tuning of hyper-parameters will
give better results. Also other approaches to handle with
imbalanced classes (under-sampling majority classes,
over-sampling minority classes etc) are to be applied.

6. Conclusion

We have presented three deep learning models for

video classification. All provided models were trained on
frame-level input data from the YouTube-8M dataset. The
first model (BoF) used frame pooling approach.
Simple_LSTM and LSTM_MoE used LSTM layers for
the long-term temporal dependency modeling. In
LSTM_MoE model Mixture of Experts layer have been
implemented and trained.

In the input dataset we skip the first few seconds
(frames) as they are usually useless in video classification
tasks.

Our best model configurations improve baseline
performance (Hit@1 metric) for 14-23%.

Also we have conducted the set of experiments for
handling imbalanced training data by using penalized loss
function. This leads to more distributed prediction results
but drops overall Hit@1 and GAP metrics. These
experiments are a subject for further tuning and
improvements.

References

1. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

2. K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

3. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385,
2015.

4. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.

In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826, 2016.

5. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

6. A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with
convolutional neural networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1725–1732, Columbus, Ohio, USA, 2014.

7. K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of
101 human actions classes from videos in the wild. In
CRCV-TR-12-01, 2012.

8. YouTube-8M Dataset.
https://research.google.com/youtube8m/.

9. I. Laptev, M. Marszaek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In Proc.
CVPR, pages 1–8, Anchorage, Alaska, USA, 2008.

10. H. Wang, M. M. Ullah, A. Klser, I. Laptev, and C. Schmid.
Evaluation of local spatio-temporal features for action
recognition. In Proc. BMVC, pages 1–11, 2009.

11. D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 2004.

12. Z. Xu, Y. Yang, I. Tsang, N. Sebe, and A. Hauptmann.
Feature weighting via optimal thresholding for video
analysis. In ICCV, 2013.

13. I. Laptev. On space-time interest points. IJCV, 2007.
14. H. Wang and C. Schmid. Action recognition with improved

trajectories. In ICCV, 2013.
15. J. Y.-H. Ng, M. J. Hausknecht, S. Vijayanarasimhan, O.

Vinyals, R. Monga, and G. Toderici. Beyond short
snippets: Deep networks for video classification. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4694–4702, 2015.

16. Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul
Natsev, George Toderici, Balakrishnan Varadarajan,
Sudheendra Vijayanarasimhan. YouTube-8M: A Large-
Scale Video Classification Benchmark. arXiv:1609.08675
(2016).

17. Google Cloud & YouTube-8M Video Understanding
Challenge. https://www.kaggle.com/c/youtube8m/.

18. Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy
Davis, Quoc Le, Geoffrey Hinton, Jeff Dean. Outrageously
Large Neural Networks: The Sparsely-Gated Mixture-of-
Experts Layer. arXiv preprint arXiv:1701.06538.

19. Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G.
E. 1991. Adaptive mixtures of local experts. Neural Comp.
3, 79-87.

20. Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort
F. Gemmeke, Aren Jansen, Channing Moore, Manoj
Plakal, Devin Platt, Rif A. Saurous, Bryan Seybold,
Malcolm Slaney, Ron Weiss, Kevin Wilson. CNN
Architectures for Large-Scale Audio Classification.
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE (2017).

21. S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural
networks for human action recognition. In ICML, 2010.

22. K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In NIPS, 2014.

 7

23. Bangpeng Yao, Dirk Walther, Diane Beck, and Li Fei-fei.
Hierarchical mixture of classification experts uncovers
interactions between brain regions. In NIPS. 2009.

24. Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.
Expert gate: Lifelong learning with a network of experts.
CoRR, abs/1611.06194, 2016. URL
http://arxiv.org/abs/1611.06194.

25. Ekaterina Garmash and Christof Monz. Ensemble learning
for multi-source neural machine translation. In
staff.science.uva.nl/c.monz, 2016.

26. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, Xiaoqiang
Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. arXiv:1603.04467
(2016).

