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Abstract 
 

Video classification problem has been studied many 
years. The success of Convolutional Neural Networks 
(CNN) in image recognition tasks gives a powerful 
incentive for researchers to create more advanced video 
classification approaches. As video has a temporal 
content Long Short Term Memory (LSTM) networks 
become handy tool allowing to model long-term temporal 
clues. Both approaches need a large dataset of input 
data. In this paper three models provided to address 
video classification using recently announced YouTube-
8M large-scale dataset. The first model is based on frame 
pooling approach. Two other models based on LSTM 
networks. Mixture of Experts intermediate layer is used in 
third model allowing to increase model capacity without 
dramatically increasing computations. The set of 
experiments for handling imbalanced training data has 
been conducted. 
 
 

1. Introduction 

 
In last few years image classification problem is 

enjoying a renaissance with an arise of deep learning 
approach. Many models have been designed (AlexNet [1], 
VGGNet [2], ResNet [3], Inception [4]), which effectively 
recognize image content. The first reason of that is 
publication of the free large-scale data base of high 
resolution images ImageNet [5], and usage of highly 
effective operations on GPU-s providing high-throughput 
computing on relatively cheap cost. Prediction accuracy 
of such deep learning models approaches to human level 
performance. 

The next step in this direction is not just object 
recognition in static images but аn action recognition, 
video classification. There are few benchmarks providing 
input datasets for these problems (Sports-1M [6], UCF-
101[7] etc). Recently YouTube-8M benchmark [8] was 
published with dataset size exceeding competitors’ 
dramatically. As like as in object recognition in this area 

many hand-crafted approaches to video-frame feature 
extraction, such as Histogram of Oriented Gradients 
(HOG), Histogram of Optical Flow (HOF), Motion 
Boundary Histogram (MBH) around spatio-temporal 
interest points [9], in a dense grid [10], SIFT [11], the 
Mel-Frequency Cepstral Coefficients (MFCC) [12], the 
STIP [13] and the dense trajectories [14] existed. Set of 
video-frame features then encoded to video-level feature 
with bag of words (BoW) approach. The problem with 
BoW is that it uses only static video-frame information 
disposing of the time component, the frame ordering. 
Recurrent Neural Networks (RNN) show good results in 
modeling with time-based input data. A few papers [15, 
16] describe solving video classification problem using 
Long Short-Term Memory (LSTM) networks and achieve 
good results. 

This paper describes three models used to solve video 
classification problem for YouTube-8M. Described 
models were used in Google Cloud & YouTube-8M 
Video Understanding Challenge [17]. First model is based 
on BoW: time-based frame codes pooled then classified, 
second and third model based on LSTM approach. In 
contrast with [15, 16], we used also video soundtrack 
information as provided by YouTube-8M.  

The paper is organized as follows. Section 2 reviews 
related works of video classification problem using deep 
learning. Section 3 presents brief overview of YouTube-
8M dataset. Section 4 describes the proposed deep 
learning models to solve multi-label multi-class 
classification on YouTube-8M dataset. Section 5 provides 
results of training proposed models to dataset. Finally, 
section 6 concludes the paper by summarizing the main 
points addressed through this paper. 

 

2. Related works 

 
Video classification problem has been studied many 

years. Many approaches solving the problem has been 
developed using hand-crafted features.  

GPU progress and winning ImageNet competition by 
Krizhevsky et al. [1] made deep learning approach more 
popular. At this moment Inception-v3 network gets ~3% 
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top-5 error. Deep learning approach used for video 
classification was described in recent papers [6, 15, 16]. 
Karpathy et al. [6] proposed use a ConvNet approach 
based models on Sports-1M, UCF-101 benchmarks. Ng et 
al. [15] proposed few feature pooling architectures and 
LSTM architectures on Sports-1M, UCF-101 benchmarks. 
Abu-El-Haija et al. [16] worked on YouTube-8M, Sports-
1M benchmarks. They provided few baseline approaches 
(Deep Bag of Frames, LSTM). They used frame-level 
features and aggregated video-level features in their 
models.  

YouTube-8M contains encoded features in contrast 
with Sports-1M, UCF-101 datasets where various pre-
processing approaches can be applied on a raw video 
frame images. Researchers in [15, 16] do not use audio 
information. In public version of YouTube-8M encoded 
video and audio feature for each frame are provided, 
preventing any pre-processing technique on raw data. 

Shazeer et al. [18] present intermediate the MoE layer, 
which increase model capacity without a proportional 
increase in computation. In the proposed approach the 
MoE layer is stacked between LSTM layers. The 
presented model was applied to the tasks of language 
modeling and machine translation and competitive results 
have been achieved. 

In this work the MoE layer in combination of LSTM 
layers was used for video classification problem. 

 

3. Input Data 

 
The YouTube-8M benchmark contains 4716 classes 

and more than 8 million videos. The benchmark is split 
into three subsets: Train (~5,7M), Validate (~1,6M) and 
Test (~0.8M). YouTube-8M is available in two datasets: 
the frame-level features dataset and the video-level 
features dataset.  

Frame-level features dataset. Original videos have 
been preprocessed to extract frame-level features. Each 
video is decoded at 1 fps up to the first 360 seconds and 
then decoded frames are feed into the Inception-v3 
network. Features vector of length 2048 is taken before 
classification layer. To reduce feature dimension to 1024 
PCA and quantization is applied. 

Also, audio features are extracted from videos [20] and 
added to the dataset. 

The total size of frame-level dataset is about 1,7TB. 
Extracted features are stored in tfrecords format and are 
available on Internet [8]. Each video record has the 
following structure: 

context[ 
 video_id 
 label_list 
] 

feature[ 
 rgb_list 
 audio_list 
] 
Video-level features dataset. Features in this dataset 

are aggregated from the frame-level features dataset. 
In our models we are going to use the frame-level 

dataset only.  
 

4. Models 

 
This section provides description of the models used to 

train and predict themes of video. The first model based 
on Bag-of-Frames approach – mini-batch of input video-
frame features pooled along time axis to get video-level 
features. This allows to model static spatial information 
over time axis.  

As input data has time axis (time based) we decided to 
use RNN, which allows extraction of the temporal 
information of a sequential input data. The second model 
presents a network with few LSTM layers and classifier. 
The third model also is RNN based, but here we add 
intermediate MoE layer based on [18, 19].  

 

4.1. Bag-of-Frames architecture 

 
Bag-of-words (or as in our case Bag-of-Frames) 

representation is widely used in the video classification 
problem [15, 16, 22, 23]. Each input sample corresponds 
to a video, has a set of video-labels, and a sequence of 
frame features. Frame feature could be a hand-crafted 
feature for each input video-frame or as in our case a raw 
video-frame encoded by Inception-v3.  

 
Figure 1. Bag-of-Frames architecture. 
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Bag-of-Frames architecture is illustrated in Figure 1. 
For each sample in a training dataset there is a set of 
frame-level features and ground-truth video-level labels. 
We need to train model to predict video-level labels. Input 
data (batch_size, max_frames, feature_size) is sent to 
FramePooling layer, where pooling between time frames 
of each sample is applied. As in [15] we use max-pooling 
to get one feature-vector from all time-based frame-level 
features of each input sample. After FramePooling layer 
two FC layers are used. And on the top level we use 
sigmoid classifier. 

Batch Normalization layer is added after Input, FC1, 
and FC2 layers to provide stability, convergence speed 
and some regularization. Also dropout is applied to the 
output of Input and FC1 layers (with probability 0.3). This 
model is trained with 90 frames for each input sample 
(max_frames=90) in time dimension. Sigmoid cross 
entropy loss is used to train multi-class multi-label 
classifier. RMSProp with decay rate 0.9 is used as 
optimizer. We use base learning rate 10-4, which decay 
after each 2*107 samples. 

 

4.2. Simple_LSTM architecture 

 
In Bag-of-Frames architecture frame-level features are 

pooled (max) along time axis, and hence we are loosing 
frame ordering information. In this section we consider 
simple LSTM architecture, which allows to model long-
term temporal information. LSTM networks may connect 
previous information to the present task (e.g. connect 
information from the previous frames of a video to the 
current frame), they are capable of learning long-term 
dependencies. 

 
Figure 2. Simple_LSTM architecture. 

In Figure 2 Simple_LSTM architecture is presented. 
We use N LSTM layers, each layer has hidden_size units. 
Configurations with N=[2, 3], hidden_size=[1024, 2048] 
have been tested. N LSTM Layers are stacked so that 
output of (i-1)-th layer is input for the i-th layer. Stacked 
LSTM network is unrolled max_frames times. Weighted 
sum of outputs of LSTM_N layer is sent to sigmoid 
classifier: 

Sigmoid_input= ∑
=

max_frames

1

*
i

ii outw      (1) 

where outi is unrolled LSTM_N layers i-th output, wi is a 
weight: 

wi= frames

i

max_             (2) 

Therefore the output of the first time frame gets 
minimal weight and the output of the last time frame gets 
maximal weight.  

Batch Normalization layer is added after Input layer to 
provide stability, convergence speed, and some 
regularization. Dropout is applied to the output of each 
LSTM layer (with probability 0.4). In some experiments 
residual connections have been used. We trained this 
model with max_frames=90 in time dimension. Sigmoid 
cross entropy loss is used to train multi-class multi-label 
classifier. RMSProp with decay rate 0.9 is used as 
optimizer. We used base learning rate 2*10-4, which 
decay after each 107 samples. 

 

4.3. LSTM_MoE architecture 

 
The idea of the Mixture of Experts [19] is to train a set 

of experts, where each expert specializes on a subset of  

 
Figure 3. Lstm_MoE architecture. 
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cases. To choose expert for each sample gating network is 
designed. The output of gating network is softmax layer, 
which provides probability of choosing particular expert 
(number of output probabilities is equal to number of 
experts). 

In early works [19, 24, 25, 26] the MoE was used as a 
top layer. Shazeer et al. [18] proposed to use MoEs as a 
general purpose neural network component. We 
implemented MoE layer in Tensorflow library [27] and 
used it in the third model. 

In Figure 3 LSTM_MoE architecture is presented. 
LSTM_MoE is similar to Simple_LSTM except for the 
following details:  
• only 2 LSTM layers are used  
• hidden_size=512 
• output of the LSTM_1 layer is input for the MoE 

layer, output of the MoE layer is input for the 
LSTM_2 layer. 

 
Figure 4. MoE layer. 

In Figure 4 schematic presentation of MoE layer is 
provided. Output from the LSTM_1 layer is sent to gating 
network. Gating network selects a sparse combination of 
the experts to process each input sample. This kind of 
sparse selection allows saving computations.  

MoE layer consists of Gating network and a set of n 
Expert networks. We used n=64 Expert networks, 4 of 
which are active for each sample. Each Expert network 
consists of two FC layers with 1024 hidden units.  

Gating network tends to choose the same experts. To 
provide load balancing two loss functions Lossimportance, 
Lossload are provided which are used to penalize such a 
behavior.  

Importance(X)= ∑
∈ Xx

xG )(          (3) 

Lossimportance(X)=wimportance*CV( Importance(X))2 (4) 
where G(x) is output of gating network, CV is coefficient 
of variation of the set of importance values, and wimportance 
is hyper-parameter.  

Load(X)= ∑
∈ Xx

xP )(            (5) 

Lossload(X)= wload*CV(Load(X))2       (6) 
where P(x, i) is the probability that G(x)i is nonzero, given 
a new random choice of noise on element i, but keeping 
the already-sampled choices of noise on the other 
elements, CV is coefficient of variation of the set of load 
values, and wload is hyper-parameter. 

LSTM_MoE is a very memory consuming model, so 
only limited experiments with this model have been done. 

 

5. Experiments 

 
In this section we report the results of experiments on 

YouTube-8M dataset. We compare the results of training 
BoF, Simple_LSTM, LSTM_MoE on the large-scale 
YouTube-8M frame-level dataset. All models have been 
implemented on the Tensorflow library.  

For the evaluation we use Hit@1 and Global Average 
Precision (GAP) metrics. 

Hit@1. This is the fraction of test samples where the 
top-1 prediction contains in the ground truth labels of the 
sample. 

Hit@1(X)= 

∑
∈Xx

ns(x))](predictiolabels(x)[
|X|

argmax
1

 (7) 

where X is a testing set of samples, labels(x) is a vector of 
ground truth labels (0 or 1), predictions(x) are predicted 
labels, argmax(vec) is an index of maximum value in the 
vector vec.  

GAP. Definition of GAP corresponds to the one 
provided on competition site [17]. Let N be a number of 
predictions, p(i) is the precision, and r(i) is the recall. 

GAP=∑
=

∆
N

i

irip
1

)(*)(           (8) 

Model Hit@1 GAP 
Step 

number 
BoF_4096 0.78 0.66 60k 

Simple_LSTM_residual 0.82 0.75 200k 

Simple_LSTM_2048 0.85 0.77 100k 

Simple_LSTM_l3_2048 0.87 0.79 80k 

LSTM_MoE_512 0.8 0.76 50k 

Frame-level_LSTM 0.645 --- --- 

Video-level_MoE 0.633 --- --- 

Table 1. Results of various configurations on YouTube-8M. 

Results. Table 1 contains the best results of 
experiments on BoF, Simple_LSTM, LSTM_MoE 
models. For all experiments in Table 1 the inputs are 
frame-level features (rgb, audio) with sizes 1024 and 128, 
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max_frames is 90.  
Very often the first few seconds of video are not very 

informative in terms of video classification as they contain 
some text or intro animation which does not help in 
classification. So we skip first few seconds (frames) of the 
input data. This allows to improve evaluation metrics by 
~0.6%. In all our experiments the first 20 frames of input 
data are skipped. 

BoF_4096 represents the BoF model. The number of 
hidden units in FC1 and FC2 is 4096. The batch size is 
512. The model was trained for 60k steps (~11 epochs) on 
Tesla K40 GPU. The training time was 2 days. 

Simple_LSTM_residual represents the Simple_LSTM 
model. The number of hidden units in LSTM_1 and 
LSTM_2 is 1024. For both LSTM layers residual 
connection is used. The batch size is 256. The model was 
trained for 200k steps (~10 epochs) on Quadro P6000 
GPU. The training time was 7 days. 

Simple_LSTM_2048 represents the Simple_LSTM 
model. The number of hidden units in LSTM_1 and 
LSTM_2 is 2048. The batch size is 256. The model was 
trained for 100k steps (~5 epochs) on Tesla K40 GPU. 
The training time was 8 days. 

Simple_LSTM_l3_2048 represents the Simple_LSTM 
model. Three LSTM layers are used in this configuration. 
The number of hidden units in each LSTM layer is 2048. 
The batch size is 256. The model was trained for 80k 
steps (~4 epochs) on Tesla K40 GPU. The training time 
was 13 days. 

LSTM_MoE_512 represents the LSTM_MoE model. 
The number of hidden units in LSTM_1 and LSTM_2 is 
512. We used n=64 Expert networks, 4 of which are 
active for each sample. Each Expert network consists of 
two FC layers with 1024 hidden units. The batch size is 
128. The model was trained for 50k steps (~2 epochs) on 
Quadro P6000 GPU. The training time was 3 days. 

Also some configurations from Table 1 were trained 
for additional time steps (+100k) but without essential 
improvements. The network just plateaus for each of the 
provided model configurations. 

Frame-level_LSTM and Video-level_MoE shows the 
best performance in [16]. Our models improve baseline 
performance (Hit@1 metric) for 14-23%. 

Label_id Sample_number Sample_number 
(%) 

1 ~860k ~0.052 
2 ~680k ~0.041 
3 ~520k ~ 0.031 
… … … 

2100 501 3.01e-05 
… … … 

4715 99 5.95e-06 
4716 100 6.01e-06 

Table 2. Label counts in training set. 

The training set ground-truth label analysis showed that 
labels are heavily unbalanced. Table 2 provides number of 
labels in training set. The ratio of the most frequent and 
least frequent label counts is 8.6k. 

 
Figure 5. Sum of label numbers (in %) in training set. 

In Figure 5 x-axis corresponds to label id and y-axis 
corresponds to sum of label counts in percents. 95% of all 
labels in training set compose of first 1834 labels. 

One of the possible reasons of models plateau may be 
the label imbalance: networks just learn well for few top 
classes and for the most input samples they predict label 
from that top set of labels (majority classes).  

In the next attempt to handle imbalanced training data 
we use penalized loss function. We put additional cost on 
the model for making classification mistakes on the 
minority class during training. We penalize false negative 
cases in loss function giving penalty coefficient inversely 
to number of labels in training set. 

Model Hit@1 GAP Step 
number 

Simple_LSTM_3_2048_bal 0.73 0.61 80k 
Simple_LSTM_2048_bal 0.71 0.59 80k 
LSTM_MoE_512_bal 0.57 0.32 50k 

Table 3. Results of penalized model performance. 

Unfortunately the penalized models converge slowly 
and need more time to train. In Table 3 the results of 
experiments working with the penalized models are 
provided.  

Simple_LSTM_3_2048_bal represents penalized 
model Simple_LSTM. The number of LSTM layers is 3, 
the number of hidden units in LSTM layers is 2048. The 
model was trained with max_frames=120 in time 
dimension. The batch size is 128. The model was trained 
for 80k steps (~2 epochs) on Tesla K80 GPU. The 
training time was 2 days. 

Simple_LSTM_2048_bal represents penalized model 
Simple_LSTM. Hyper-parameters are the same as for 
Simple_LSTM_2048. The model was trained for 80k 
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steps (~4 epochs) on Tesla K40 GPU. The training time 
was 6 days. 

LSTM_MoE_512_bal represents penalized model 
LSTM_MoE. Hyper-parameters are the same as for 
LSTM_MoE_512. The model was trained for 50k steps 
(~2 epochs) on Quadro P6000 GPU. The training time 
was 3 days. 

Because of lack of time we have trained just three 
configurations and have not well tuned these set of 
experiments (tuning of these setups planed as future 
works). 

The results in Table 3 are lower than in Table 1, 
perhaps more time and/or tuning of hyper-parameters will 
give better results. Also other approaches to handle with 
imbalanced classes (under-sampling majority classes, 
over-sampling minority classes etc) are to be applied.  

 

6. Conclusion 

 
We have presented three deep learning models for 

video classification. All provided models were trained on 
frame-level input data from the YouTube-8M dataset. The 
first model (BoF) used frame pooling approach. 
Simple_LSTM and LSTM_MoE used LSTM layers for 
the long-term temporal dependency modeling. In 
LSTM_MoE model Mixture of Experts layer have been 
implemented and trained.  

In the input dataset we skip the first few seconds 
(frames) as they are usually useless in video classification 
tasks.  

Our best model configurations improve baseline 
performance (Hit@1 metric) for 14-23%. 

Also we have conducted the set of experiments for 
handling imbalanced training data by using penalized loss 
function. This leads to more distributed prediction results 
but drops overall Hit@1 and GAP metrics. These 
experiments are a subject for further tuning and 
improvements. 
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