
The Uses of Interactive Explorers for Web APIs
John Daughtry
Software Engineer

Google, Inc.
Seattle, WA, USA

daughtry@google.com

Andrew Macvean
User Experience Researcher

Google, Inc.
Seattle, WA, USA

amacvean@google.com

Luke Church
Software Engineer

Google, Inc.
London, UK

lukechurch@google.com

Abstract
Interactive method invocation has become a common in-
teraction pattern in the documentation of web application
programming interfaces (APIs). One of the earliest examples
of this pattern being applied at scale is the Google APIs Ex-
plorer. In this paper, we describe eight ways developers use
such tools in software development, grounded in empirical
analyses of the Google APIs Explorer. We then explain the
utility of these tools by tying the use cases back to prior
literature on programming.

CCS Concepts • Software and its engineering → Inte-
grated and visual development environments;

Keywords Software Engineering, Human-Computer Inter-
action, Documentation, Application Programming Interfaces

1 Introduction
Web APIs are APIs invoked via HTTP. While there are a
variety of forms these APIs can take (e.g., SOAP, JSON/REST,
or gRPC), generally speaking they are a set of functions that
are invoked with parameters, do some processing, and return
a response.

In a 2013 survey of 200 executives at companies with over
$500 million in annual revenue, 77% of respondents rated
web APIs as important "to determining the overall market
position of companies in [their] sector over the next five
years" [4]. Since that time, business practices reflect this
sentiment; ProgrammableWeb reports that since 2014, nearly
2000 APIs have been added to their directory per year and
in early 2017 the directory crossed the 17,000 mark [12].
APIs are a form of user interface; they connect a human

(a developer) with a computer (the capabilities of a backend
system). APIs are hard to use for a variety of reasons, includ-
ing documentation, complex interrelationships between API
components, inappropriate abstractions, and incongruence
between coordinating APIs [13]. As user interfaces, princi-
ples and methods from human-computer interaction can be
applied to improve their usability, as Myers and Stylos have
demonstrated in a variety of contexts [9]. Even if a developer
manages to make an API work, there can be severe issues
with the resulting code, such as major security holes [1].

PLATEAU’17 Workshop on Evaluation and Usability of Programming Lan-
guages and Tools, October 23, 2017, Vancouver, CA

Hou and Li identified common patterns in online help
requests surrounding the learning and use of APIs [3]. Two
related paths towards solving these issues are the study of
API structure and documentation. The space of API design de-
cisions can be formalized [14]. And we can build knowledge
on top of those formalizations; For example, the placement
of a method within an API can have a profound impact on
development speed [15].

However, not all usability problems are best solved through
API design itself, but rather through documentation and tools.
Robillard and Deline find that the "biggest hurdle when learn-
ing an API is the documentation" [11]. A 2009 survey of soft-
ware developers at Microsoft found that 78% of respondents
claim to learn about an API by reading documentation, while
55% claim they used code examples [10]. In the same sur-
vey, the author found that inadequate or missing resources
provided the biggest obstacle to learning APIs. "If the docu-
mentation for an API is good, it solves 99% of your problems"
[11].
There is also a growing body of anecdotal evidence that

API usability, heavily influenced by the quality of the docu-
mentation and learnability of the API, impacts adoption of
an API. Myers and Stylos state that "usability can also affect
API adoption; if an API takes too long for a programmer to
learn, some organizations choose to use a different API or
write simpler functionality from scratch" [9].

The Google APIs Explorer - hereafter referred to as Ex-
plorer - is a tool that was developed to make it easier for
developers to find and try out Google’s APIs before adopting
them, without a significant time investment [6]. It can be em-
bedded within API documentation or used standalone. There
are numerous similar tools, including the Apigee API Con-
sole and the Swagger UI. Over the past few years, these tools
have quickly moved from being a novel technique to being a
standard pattern applied in industry [8]. Generally speaking,
the designs vary slightly, with these elements serving as the
common thread:

1. For each API method, a graphical form that supports
entering the request parameters and a submit button
that executes the request.

2. Slightly more advanced widgets to support setting
the appropriate form of authentication (e.g., OAuth),
payloads, or headers.

PLATEAU’17, October 23, 2017, Vancouver, CA John Daughtry, Andrew Macvean, and Luke Church

3. Response rendering that depicts the results in a human-
readable format (e.g., formatting, syntax highlighting,
element folding).

While Explorer was motivated by a desire to provide an
easier way to try out an API before adoption, we are aware
of no analysis of how these tools are used in practice. Thus,
in this paper, we explore the following research questions
from various angles:

• RQ1: How do developers make use of interactive call
invocation in their work?
• RQ2: Why do these tools provide utility to developers?

2 Uncovering the uses
To uncover the answers to RQ1, we analyzed qualitative data
in StackOverflow reports that mentioned Explorer. We opted
to use StackOverflow reports instead of other data sources
(e.g., bug reports) because they provide richer contextual
information and are more likely to illuminate successful
uses of Explorer. In all, 192 threads were analyzed with the
following coding scheme:

• How were they using Explorer?
• What problem did it solve?
• What problems did they have using Explorer?

There was only one coder, but archetypes for each re-
sulting use case were reviewed in a group setting after the
analysis was complete.

The purpose of this analysis was not to uncover the distri-
bution of usage across the use cases but rather, to uncover
the variety of use cases in which Explorer is utilized. Themes
were extracted as the posts were categorized.

There are a variety of stakeholders involved in APIs. In
this paper, we adopt the nomenclature described by Stylos
and Myers [14]. Specifically, we refer to the developers that
build the APIs as API designers and the developers that code
against the API as API users.

We found that:

• API users use Explorer to:
1. Find APIs and elements within APIs
2. Evaluate the utility of APIs
3. Learn how to invoke APIs
4. Collaborate with other developers
5. Use an API without writing code
6. Reproduce results
• API designers use Explorer to:
7. Learn how to invoke their own API
8. Test API backend
9. Test API deployment

We explore each use case in greater detail in the following
sections.

2.1 API Users finding APIs
Some interactive API method invocation tools are not inte-
grated with traditional API documentation, while others are.
We found evidence that in the case of Explorer, when used
as a standalone tool, some developers do use it in place of
documentation. Although the primary API documentation
contained full descriptions of all API methods and parame-
ters, and contain significant additional information such as
code samples and troubleshooting tips, developers still use
Explorer in place of said documentation. For example, we
found evidence of API users sharing Explorer links when
docs links would have been more appropriate. This usage
provides evidence that in some cases, developers use Ex-
plorer as documentation, which will be discussed in more
detail in later sections.

2.2 API Users evaluating the utility of APIs
We found evidence of API users using Explorer to evaluate
whether or not an API method will suit their needs. If a
particular API call seems to provide a piece of data that you
need, Explorer can be used - without signing up for the API,
provisioning credentials, or writing any code - to determine
whether or not the API does indeed meet your expectations;
it allows you to quickly evaluate the utility of the API. This is
the use case described in the original launch documentation
[6].

2.3 API Users learning how to invoke APIs
When you are trying to invoke an API, it can be difficult
to format the request correctly, as discussed previously. We
found evidence that API users use Explorer to learn how to
format their requests. In some cases, API users were trying
to generate the correct payload structure. In other cases, we
found evidence of API users leveraging Explorer to learn
how to construct curl requests from the command line, using
Explorer to create the successful request and browser tools
to turn the successful request into a format appropriate for
curl.

2.4 API Users collaborating with other developers
When you are having issues writing code to invoke a web
API, the simplicity of a form-based invocation allows for
collaboration across disparate skills. For example, it becomes
trivial for a JavaScript programmer to assist a C developer.
An API user can ask a question such as: why doesn’t this
call work? and provide a link to Explorer, which depicts the
failing method invocation in language-neutral context.

2.5 API Users invoking Explorer without writing
code

When, in the course of software development, you find the
need to invoke a web API, this does not necessarily mean
that it is worth your time write code to invoke the API.

The Uses of Interactive Explorers for Web APIs PLATEAU’17, October 23, 2017, Vancouver, CA

Perhaps you need to invoke the API once, and only once.
Why write code when you can execute the API using a form
on a webpage? We found evidence of this in the data, as well
as evidence of repeat usage over time (i.e., using Explorer to
make an invocation every time it needs to be made).

2.6 API Users reproducing results
Another use case that we discovered was using Explorer as
a tool to reproduce issues. Let’s say that your code is getting
an error, and you don’t know whether this is unique to your
invocation, or a broad behavioral issue with the API. If you
can replicate the behavior in Explorer then you can isolate
the issue to either the parameters you are passing into the
method or the API behavior itself. Thus, we see evidence of
API users making claims such as: I see this same result when
I invoke the API via Explorer when filing or discussing API
issues.

2.7 API Designers learning how to invoke their API
Interestingly, we found evidence of API designers leveraging
Explorer to learn how to invoke their ownAPIs. In retrospect,
this makes sense. For example, just because you write the
code that tells your system to require authentication doesn’t
mean that you know anything about how to perform the
authentication required to make a call succeed. While this is
an extreme example, it illustrates the point that API designers
can face many of the same hurdles as API users when trying
to invoke their own APIs.

2.8 API Designers testing a backend
We also found evidence that API designers use Explorer to
test changes to their API. Rather than (or perhaps in addition
to) testing their API via code, API designers can use Explorer
to test changes to their API surface (e.g., authentication or
required parameters), API behavior (e.g., latency or response
codes), or backend code (e.g., does the API behave the same
now that I’ve redeployed) as they iterate on their API.

2.9 Testing API deployment
If you are an API designer, and you want to deploy a new
instance of a web API, whether to your local machine or
to the cloud, there can be a number of steps involved in
setting up your new environment. We found evidence of
Explorer being used by API designers to test whether or not
a deployment was successful.

3 Distribution
In the previous section, we summarized our analysis of how
Explorer can be used in the lives of programmers. We found
that it served not only API users, but also API designers. And,
we uncovered a variety of use cases spanning a variety of
development activities, from testing API design changes to

collaborating over an API consumption issue. Given these
use cases, we next turned to the question of distribution.
Does one particular area of development dominate our

usage? To answer this question, we turned to a user sur-
vey. Based on our prior analysis, our hypothesis was that
Explorer usage would not be dominated by any particular
development stage. To test this hypothesis, we implemented
into Explorer an in-product intercept survey [7], which sur-
veyed a random subset of users as they worked with the
tool. We asked developers to self-report to us the activity in
which they were engaged: evaluating the capabilities of an
API, testing an API they themselves were building, learning
how to use an API, or debugging their use of an API. In total,
we gathered feedback from 129 users over the course of a 2
month period.
The results are presented in figure 1, and support our

hypothesis that no single use case dominates the usage of
Google’s APIs Explorer.

Figure 1. Explorer usage breakdown with 95% confidence
intervals.

4 Usage Context
The general interaction pattern employed by the Google
APIs Explorer can be housed in many contexts. Indeed, at
the time of our analyses, Explorer was available from within
our developers console, embedded within our documenta-
tion, and as a standalone tool. We analyzed months of usage
logs, and again found evidence of Explorer being used as
documentation, as well as evidence that Explorer is often
used by developers who read API method documentation.

4.1 Standalone Explorer is used as documentation
Explorer is available as a standalone tool as well as being
available as a widget within documentation. We knew from
our initial analysis that Explorer can be used as a documenta-
tion source, so wemeasured the percentage of sessions where
a user navigated the standalone Explorer resource hierarchy
but never clicked our Execute button. Our hypothesis was
that if Explorer was heavily used as a documentation tool,
then we would see that usage reflected in this metric. Indeed,
we found that during a one month interval, >50% of usage
sessions demonstrated this pattern.

PLATEAU’17, October 23, 2017, Vancouver, CA John Daughtry, Andrew Macvean, and Luke Church

4.2 Explorer is often used within method
documentation

If Explorer serves such a variety of use cases, then we hy-
pothesized that its usage within API documentation sessions
should be relatively high when a user navigates to the doc-
umentation of a specific API method. What we found dur-
ing our one month analysis window was that nearly 1 in 4
API documentation sessions involved using Explorer. This is
significantly higher usage than we expected given that we
embedded Explorer far below the fold on these pages (at the
time).

5 A tool to overcome barriers
While the analyses presented in earlier sections satisfied our
desire to understand how Explorer is used by developers, we
did not feel that it adequately addressed our second research
question; why are tools like Explorer so useful to developers?
Ko, Myers, and Aung [5] described six barriers to pro-

gramming. In this section, we discuss our previous analyses
through the lens of these barriers.

5.1 Design Barriers
A design barrier is encountered when a developer doesn’t
know what they want to build. We did not find any evidence
of Explorer assisting with design barriers.

5.2 Selection Barriers
A selection barrier is encountered when a developer knows
what they want but don’t know what to use to accomplish
their goal.With respect to web APIs, this includes identifying
which method to use or which parameters to pass to a partic-
ular method. We saw evidence of Explorer being used in both
contexts. For example, Explorer is used to navigate the avail-
able methods, execute each quickly (or at least faster than
writing code to invoke them) and evaluate the responses, and
as a way to collaborate with others to overcome selection
barriers.

5.3 Coordination Barriers
A coordination barrier is encountered when a developer
knowswhat things to use but not how to use them together to
accomplish their task.With respect to web APIs, this includes
the coordination of API invocations with authentication (e.g.,
OAuth). We saw evidence that Explorer is used to get around
authentication coordination issues allowing users to focus
on the API specific tasks. For example, you can use Explorer
to validate hypotheses about parameters and return types
without writing authentication code. We also saw evidence
that it helped convey the concepts of authentication and that
it can be useful a tool to assist with some of the simplest
authentication barriers (e.g., OAuth scope selection).

The collaboration evidence discussed earlier indicates po-
tential improvements that can be made around coordination.

For example, cases where a user needs to retrieve a numeric
identifier from one method to pass into another method. It
is an open research question whether additional lightweight
interactions could be automatically generated by the tool to
aid in this coordination.

5.4 Use Barriers
Use barriers are encountered when you know what to use,
but you don’t know how to use it. This is where Explorer’s
utility is most clear to the casual observer. Explorer provides
a quick and easy way to learn about the API parameters
and responses without having to simultaneously deal with
other issues, including but not restricted to: authentication,
client libraries, platforms, credential provisioning, language
idioms, and syntactic issues. There are a number of avenues
where support for these cases could be improved, to include:
conditional field requirements, field format guidance, and
error response interpretation.

5.5 Understanding Barriers
An understanding barrier is encountered when a developer
knows what they want but it didn’t do what they expected.
With respect to web APIs, we see evidence of Explorer be-
ing used to help overcome these barriers through collabora-
tion. As discussed previously, developers discuss issues over
Explorer invocations instead of over code, which removes
language and execution overhead.

5.6 Information Barriers
Information barriers are encountered when you have a hy-
pothesis about why something occurred, but can’t find in-
formation that can verify your understanding. We found
evidence of developers using Explorer to quickly test hy-
potheses that could be hard to test otherwise. For example, a
developer whose code is failing can try the same parameters
in Explorer to test their hypothesis that the parameters are
correct. Without Explorer, their test would be significantly
more complicated to test, and in some cases insurmountable
(e.g., a developer than only known Python can’t be expected
to test this by recreating the call in Java). This is particularly
relevant to issues that can surround client libraries, as Ex-
plorer exposes the raw API invocations while client libraries
often wrap the raw invocation into constructs idiomatic to a
particular language. Another example we have seen is test-
ing a hypothesis that the API itself has broken as opposed
to the developer’s own code.

6 Cognitive Dimensions Analysis
The analysis in sections 2-5 present an understand of how
tools like the Explorer are used and why they are of bene-
fit to developers. We can use this information to continue
to guide their development using the lens of the Cognitive
Dimensions of Notations (CDNs) [2]. In CDNs terms the

The Uses of Interactive Explorers for Web APIs PLATEAU’17, October 23, 2017, Vancouver, CA

activities that the users are performing with the tool are Ex-
ploratory Design, Incrementation, and Search. We’ll consider
the Explorer interface’s support for these activities along a
few critical dimensions.

6.1 Progressive Evaluation, Viscosity, and Hidden
Dependencies

For developers exploring whether an API fits their needs
or learning how to invoke an API, it is important that they
can get feedback about whether they are going in the right
direction and to make changes with as little effort as possible.
The Explorer supports this workflow via good progressive
evaluation (each call can be run one at a time), low viscosity
(everything is atomic, so there is little knock-on or repetition
viscosity). The nature of the Explorer as a tool for issuing
single concrete API calls results in few hidden dependencies
other than on the authentication state of the API which is
explicitly displayed. It is of course possible for an API to add
hidden dependencies, beyond those in the tool.

6.2 Juxtaposition and Visibility
As well as discouraging hidden dependencies, Web APIs
tend to encourage visibility of possible options (via the API
listing) and of the information being transferred (via the
explicit display of the request and response). Juxtaposition is
an important property when debugging, where it is useful to
be able to display multiple API calls and results side by side
for comparison. This is achieved for free by using a stateless
browser based UI.

6.3 Abstraction, Secondary Notation and Sharing
The primary design tradeoff in the simplicity of the Explorer
interface is abstraction. The interface has a very low abstrac-
tion barrier. The developer needs to understand little more
than the API that is being explored. However, it is also an
’abstraction hating’ system in that there is little ability to
define and reuse new abstractions within the system other
than by sharing an API call and its parameters as a URL.
It is an open research question whether there additional

lightweight abstraction mechanisms could be supported to
enable more complex use cases without interfering with the
current usability properties of the system.

As well as abstraction, it’s very useful for developers col-
laborating around an API to be able to add commentary as
to what a particular API call is doing, or to comment on the
result before sharing. There is currently no explicit support
for such secondary notation in the URL sharing mechanism.
This means that comments can’t be shared associated with
the call and instead need to be written in, for example, a sep-
arate email. We observed that in the absence of this support
separate tools like StackOverflow were used to discuss the
APIs, providing Secondary Notation by wrapping the API
in free text. Whilst this is clearly effective, it decouples the
API from the discussion. We suggest that exploring explicit

secondary notation support in the design of interfaces for
interactive method invocation would be a fruitful avenue for
further research.

7 Conclusions
In this paper, we explored two research questions. First, we
addressed the question of how these tools are used by devel-
opers in the wild by analyzing the usage of the Google APIs
Explorer, and described how Explorer is used in a variety
of ways by both API designers and API users. Second, we
addressed the question of why these tools provide value by
tying them to the barriers of programming uncovered by
Ko et al and CDNs. Further, our CDNs analysis highlighted
possible areas of improvement via better abstraction sup-
port and secondary notation. We see many opportunities for
continued applied research within this domain.
We do not claim that our list of uses is exhaustive. This

paper is the result of industrial research aimed at informing
tool design; while wewere conscious of methodological rigor,
we stopped our explorations when we felt that we collected
the most important and most actionable results. Were we to
continue this work with the aim of a complete descriptive
theory of use, we would focus on other sources of data,
such as conducting similar evaluations on other tools in
this space (e.g., SwaggerUI). However, we do feel that it
provides enough context and variety to inform the design
and maintenance of such tools.
Explorer, and the general interaction pattern it employs,

could be broadly characterized as a graphical notation sys-
tem. Ultimately, our focus was on understanding our tool
so that as we built new versions of Explorer, we could re-
tain what was working well for developers and extend the
functionality in useful ways. Explorer continues to evolve;
we released a new version earlier this year and continue to
iterate on it’s design.

Acknowledgments
Special thanks to the many people who have contributed to
theGoogle APIs Explorer, including JasonHall, JakeMoshenko,
Tony Aiuto, John Boswell, Joe Ashear, Ryan Kuykendall,
Mugur Marculescu, Mo Chang, and Craig Citro. We’d also
like to thank those who reviewed drafts of this paper, includ-
ing John Boswell and Emerson Murphy-Hill.

References
[1] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and

Matthew Smith. 2013. Rethinking SSL Development in an Appified
World. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security (CCS ’13). ACM, New York, NY, USA,
49–60. https://doi.org/10.1145/2508859.2516655

[2] T. R. G. Green. 1989. Cognitive Dimensions of Notations. In Proceedings
of the Fifth Conference of the British Computer Society, Human-Computer
Interaction Specialist Group on People and Computers V. Cambridge
University Press, New York, NY, USA, 443–460. http://dl.acm.org/
citation.cfm?id=92968.93015

https://doi.org/10.1145/2508859.2516655
http://dl.acm.org/citation.cfm?id=92968.93015
http://dl.acm.org/citation.cfm?id=92968.93015

PLATEAU’17, October 23, 2017, Vancouver, CA John Daughtry, Andrew Macvean, and Luke Church

[3] Daqing Hou and Lin Li. 2011. Obstacles in Using Frameworks and APIs:
An Exploratory Study of Programmers’ Newsgroup Discussions. In
Proceedings of the 2011 IEEE 19th International Conference on Program
Comprehension (ICPC ’11). IEEE Computer Society, Washington, DC,
USA, 91–100. https://doi.org/10.1109/ICPC.2011.21

[4] Bryan Kirschner. 2015. The Perceived Relevance of APIs. (2015).
Retrieved Jul 2, 2017 from http://apigee.com/about/api-best-practices/
perceived-relevance-apis

[5] Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning
Barriers in End-User Programming Systems. In Proceedings of the 2004
IEEE Symposium on Visual Languages - Human Centric Computing
(VLHCC ’04). IEEE Computer Society, Washington, DC, USA, 199–206.
https://doi.org/10.1109/VLHCC.2004.47

[6] Anton Lopyrev and Jason Hall. 2011. Introducing the Google APIs
Explorer. (March 2011). Retrieved Jul 2, 2017 from https://developers.
googleblog.com/2011/03/introducing-google-apis-explorer.html

[7] Hendrik Müller and Aaron Sedley. 2014. HaTS: Large-scale In-product
Measurement of User Attitudes & Experiences with Happiness Track-
ing Surveys. In Proceedings of the 26th Australian Computer-Human In-
teraction Conference on Designing Futures: The Future of Design (OzCHI
’14). ACM, New York, NY, USA, 308–315. https://doi.org/10.1145/
2686612.2686656

[8] John Musser. 2014. 10 Reasons Developers Hate Your API (and what
to do about it). (May 2014). GlueCon.

[9] Brad A. Myers and Jeffrey Stylos. 2016. Improving API Usability. Com-
mun. ACM 59, 6 (May 2016), 62–69. https://doi.org/10.1145/2896587

[10] Martin P. Robillard. 2009. What Makes APIs Hard to Learn? Answers
from Developers. IEEE Softw. 26, 6 (Nov. 2009), 27–34. https://doi.org/
10.1109/MS.2009.193

[11] Martin P. Robillard and Robert Deline. 2011. A Field Study of API
Learning Obstacles. Empirical Softw. Engg. 16, 6 (Dec. 2011), 703–732.
https://doi.org/10.1007/s10664-010-9150-8

[12] Wendell Santos. 2013. ProgrammableWeb API Directory Eclipses
17,000 as API Economy continues to surge. (March 2013). Re-
trieved Jul 2, 2017 from https://www.programmableweb.com/news/
programmableweb-api-directory-eclipses-17000-api-economy-continues-surge/
research/2017/03/13

[13] Christopher Scaffidi. 2006. Why Are APIs Difficult to Learn and Use?
Crossroads 12, 4 (Aug. 2006), 4–4. https://doi.org/10.1145/1144359.
1144363

[14] Jeffrey Stylos and Brad Myers. 2007. Mapping the Space of API Design
Decisions. In Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing (VLHCC ’07). IEEE Computer Society,
Washington, DC, USA, 50–60. https://doi.org/10.1109/VLHCC.2007.36

[15] Jeffrey Stylos and Brad A. Myers. 2008. The Implications of Method
Placement on API Learnability. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of Software Engineer-
ing (SIGSOFT ’08/FSE-16). ACM, New York, NY, USA, 105–112. https:
//doi.org/10.1145/1453101.1453117

https://doi.org/10.1109/ICPC.2011.21
http://apigee.com/about/api-best-practices/perceived-relevance-apis
http://apigee.com/about/api-best-practices/perceived-relevance-apis
https://doi.org/10.1109/VLHCC.2004.47
https://developers.googleblog.com/2011/03/introducing-google-apis-explorer.html
https://developers.googleblog.com/2011/03/introducing-google-apis-explorer.html
https://doi.org/10.1145/2686612.2686656
https://doi.org/10.1145/2686612.2686656
https://doi.org/10.1145/2896587
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1007/s10664-010-9150-8
https://www.programmableweb.com/news/programmableweb-api-directory-eclipses-17000-api-economy-continues-surge/research/2017/03/13
https://www.programmableweb.com/news/programmableweb-api-directory-eclipses-17000-api-economy-continues-surge/research/2017/03/13
https://www.programmableweb.com/news/programmableweb-api-directory-eclipses-17000-api-economy-continues-surge/research/2017/03/13
https://doi.org/10.1145/1144359.1144363
https://doi.org/10.1145/1144359.1144363
https://doi.org/10.1109/VLHCC.2007.36
https://doi.org/10.1145/1453101.1453117
https://doi.org/10.1145/1453101.1453117

	Abstract
	1 Introduction
	2 Uncovering the uses
	2.1 API Users finding APIs
	2.2 API Users evaluating the utility of APIs
	2.3 API Users learning how to invoke APIs
	2.4 API Users collaborating with other developers
	2.5 API Users invoking Explorer without writing code
	2.6 API Users reproducing results
	2.7 API Designers learning how to invoke their API
	2.8 API Designers testing a backend
	2.9 Testing API deployment

	3 Distribution
	4 Usage Context
	4.1 Standalone Explorer is used as documentation
	4.2 Explorer is often used within method documentation

	5 A tool to overcome barriers
	5.1 Design Barriers
	5.2 Selection Barriers
	5.3 Coordination Barriers
	5.4 Use Barriers
	5.5 Understanding Barriers
	5.6 Information Barriers

	6 Cognitive Dimensions Analysis
	6.1 Progressive Evaluation, Viscosity, and Hidden Dependencies
	6.2 Juxtaposition and Visibility
	6.3 Abstraction, Secondary Notation and Sharing

	7 Conclusions
	Acknowledgments
	References

