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Abstract
Acquiring data for text-to-speech (TTS) systems is expensive.
This typically requires large amounts of training data, which is
not available for low-resourced languages. Sometimes small
amounts of data can be collected, while often no data may
be available at all. This paper presents an acoustic modeling
approach utilizing long short-term memory (LSTM) recurrent
neural networks (RNN) aimed at partially addressing the lan-
guage data scarcity problem. Unlike speaker-adaptation sys-
tems that aim to preserve speaker similarity across languages,
the salient feature of the proposed approach is that, once con-
structed, the resulting system does not need retraining to cope
with the previously unseen languages. This is due to language
and speaker-agnostic model topology and universal linguistic
feature set. Experiments on twelve languages show that the
system is able to produce intelligible and sometimes natural
output when a language is unseen. We also show that, when
small amounts of training data are available, pooling the data
sometimes improves the overall intelligibility and naturalness.
Finally, we show that sometimes having a multilingual system
with no prior exposure to the language is better than building
single-speaker system from small amounts of data for that lan-
guage.
Index Terms: speech synthesis, low-resourced languages, long
short-term memory, recurrent neural networks

1. Introduction
In recent years, statistical parametric speech synthesis has seen
a shift of interest from Hidden Markov Models (HMMs) [1] to
neural networks, starting with the work of Zen et al. [2], who
demonstrated that feed-forward deep neural networks (DNNs)
can achieve better naturalness than HMM systems. The per-
formance of statistical parametric speech synthesis has fur-
ther improved with the introduction of long short-term memory
(LSTM)-based recurrent neural networks (RNNs) [3, 4] and,
more recently, direct PCM (audio) generative models [5].

Despite recent advances in parametric speech synthesis,
as well as wider availability of versatile tools for constructing
speech synthesis systems, there still remain fundamental chal-
lenges. The primary challenge is the speech data acquisition,
which can be a very labor-intensive and expensive process for
constructing a high-quality system. This problem has been ap-
proached from several angles. Speaker adaptation techniques
are suitable when some data from a prior collection is available
and one needs to adapt this data to a new speaker using a small
set of recordings [6, 7, 8]. However, this approach may not ap-
ply for under-resourced languages, when no source corpora are
available. In this scenario, crowd-sourcing the data from multi-
ple speakers and building an average voice is possible [9]. For
the majority of the world’s languages, in the long tail of the dis-
tribution [10], even these approaches may not be feasible, due

to the lack of sufficient audio data, linguistic resources, or ade-
quate infrastructure [11].

In this work we constrain the problem to a specific scenario
where one is guaranteed to have some minimal linguistic rep-
resentation of a particular (possibly under-resourced) language.
This allows one to develop a (possibly very basic) linguistic
front-end that outputs linguistic features which serve as an input
to the acoustic model. The acoustic model is trained on multi-
ple languages and may never observe the target language in its
training data. This type of acoustic models, the multilingual
multi-speaker (MLMS) models, were proposed in [12, 13, 14].
These approaches utilize a large input feature space consist-
ing of “concatenated“ language-dependent components, one for
each language. In [13], there are several language-specific RNN
output layers, whereas in [14] the multiple RNN output layers
are speaker-specific and language-agnostic.

The approach taken in this paper is different: the goal is to
investigate a uniform MLMS model which is both language-
and speaker-agnostic, apart from a very limited fixed set of
language- and speaker-identifying features. The input feature
space takes any input from the linguistic front-end without en-
coding it as a sub-space of an input feature space, the internal
layers have no language or speaker-specific structure and there
is a single output layer. Controlled by the input features the
output layer can generate acoustic parameters for any speaker,
gender and language combination. Crucially, the input feature
space does not need reconfiguration to support new languages.
It is particularly interesting to investigate how well this model
copes with “unseen” languages or languages for which very lit-
tle amounts of training data is available.

This paper is organized as follows: an overview of proposed
multilingual model architecture is given in Section 2. Experi-
ments and results are described in detail in Section 3. We con-
clude the paper in Section 4.

2. Multilingual Architecture
In this section we present the MLMS acoustic model that, to-
gether with the vocoder [15], forms a standalone back-end com-
ponent in a multilingual text-to-speech system. The input to the
back-end is a set of linguistic features. The output is streamed
audio (linear PCM). The following properties set the proposed
architecture apart from the ones recently reported in the liter-
ature [13, 14]: (1) A compact input feature space that does
not need updating to support new languages; and (2) a simple
network architecture similar to a single-speaker system. These
properties are described in more detail next.

2.1. Linguistic features

Typically, the input to the acoustic model in statistical paramet-
ric speech synthesis consists of many diverse types of linguistic
features. The features may include positional information (po-
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Figure 1: Rank r vs. frequencyN plots for individual phonemes
p: Global counts Np in pronunciation dictionaries (a) and lan-
guage counts Nl (b).

sition of a phone in a syllable, number of syllables in a sentence,
phrase finality), morphology (gender, number and case), syntax
(marking intonational phrases), and so on.

More often than not, the set of linguistic features available
for a low-resource language is limited by the lack of linguistic
analysis components. For example, it is hard to find a reliable
dependency tree parser for Burmese or a high-quality morpho-
logical analyzer for Belarusian. Nevertheless, it is often possi-
ble to build a minimal system without these features that is still
“better than nothing”.

2.1.1. Canonical phonological representation

The training set (described in detail in Section 3) contains di-
verse corpora for many languages and dialects following differ-
ent phonological transcription conventions. In order to train the
acoustic model on multilingual data, we transform each of the
single-speaker phonemic configurations into a unified canonical
IPA representation [16], similar to [12]. At present, this pro-
cess is quite involved because it requires linguistic expertise for
constructing the mappings for each of the individual languages.
Additional difficulty presents itself when these mappings dis-
agree due to differences between transcribers, diverging tran-
scription conventions, or the lack of native speakers to guide
the design. For example, /2̃ũ/ may not be the most accurate
representation of a particular diphthong found in Nepali. Nev-
ertheless, the canonical IPA representation yields a reasonably
compact phonological description for many languages we deal
with.

Figure 1a shows the logarithmic plot of rank (rp) vs. fre-
quency (Np) distribution of canonical phonemes (p) obtained
by the mapping (474 in total). These phonemes are encountered
in pronunciation lexicons for 59 language/region pairs repre-
sented by phonological mapping and are ranked according to
their frequency of occurrence. The degree of sharing of canon-
ical phonemes p among 59 language/region pairs is shown in
Figure 1b. Here the phonemes are ranked (rp) according to
the number of languages that share them (Nl). The plot shows
reasonably high degree of sharing for approximately up to 70
phonemes shared by 10 languages or more. The coverage is
poor for the long tail of about 250 phonemes that are only used
in one language. This issue needs addressing by revisiting the
phoneme inventories and choosing less sparse phoneme repre-
sentation. However, we hypothesize that, due to partial decom-
position of each phoneme into corresponding articulatory fea-
tures (such as place of articulation) [17, 18], even the long-tail
phonemes still contribute to the overall model.

2.1.2. Phylogenetic language features

We use language and region identifying features based on the
BCP-47 standard [19] to model the similarity between various
accents of the same language. This works well in practice for
languages like English, where the language code enforces addi-
tional degree of similarity between American English (EN-US)
and Australian English (EN-AU). This, however, is not sufficient
for modeling the similarity between related languages. The lan-
guage code for Slovak (SK), for example, tells us nothing about
how it relates to Czech (CS).

In order to model one aspect of potential language similar-
ity we employ a feature encoding of a traditional, if imperfect,
phylogenetic language classification tree [20] that represents re-
lated clusters of languages down to a depth of four levels. Some
languages in our representation – e.g. Hungarian – require three
categorical features to encode their tree, while others – e.g.
Marathi – require four categorical features.

2.2. LSTM-RNN acoustic model

We use LSTM-RNNs designed to model temporal sequences
and long-term dependencies between them [21]. These types of
models have been shown to work well in speech synthesis ap-
plications [3, 22, 23, 4]. Our architecture is very similar to one
proposed by Zen et al. [4, 24]: unidirectional LSTM-RNNs for
duration and acoustic parameter prediction are used in tandem
in a streaming fashion. Given the linguistic features, the goal of
the duration LSTM-RNN is to predict the duration (in frames)
of the phoneme in question. This prediction, together with the
linguistic features, is then given to the acoustic model which
predicts smooth acoustic parameter trajectories. The smoothing
of transitions between consecutive acoustic frames is achieved
in the acoustic model by using recurrent units in the output
layer.

Because we deal with significantly larger amount of train-
ing data and a more diverse set of linguistic features and record-
ings, the main difference between our model and the model
in [4] is in the number of units in the rectified linear unit
(ReLU) [25] and LSTM layers, as well as the number of re-
current units in the output layer of the acoustic model. The
details of the duration and acoustic models are provided in the
next section.

3. Experiments
The multilingual corpus used for training the acoustic models
has over 800 hours of audio and consists of 37 distinct lan-
guages. These languages belong to the original group of 59
language/region pairs (described in Section 2) for which acous-
tic training data is available. Some languages, such as English,
have different speaker datasets corresponding to different re-
gional accents. For some accents (like EN-US) we have several
speakers. Figure 2 shows on a logarithmic scale the relative dis-
tribution of languages within the training data in terms of num-
ber of training utterances. The distribution is heavily skewed
towards “big” languages, and English in particular.

The corpus has both male and female speakers and is quite
mixed: Most datasets are single-speaker, while others, like
Bangladeshi Bengali and Icelandic, have recordings from multi-
ple speakers [9]. The recording conditions vary: some speakers
were recorded in anechoic chambers, while others in a regular
recording studio setup or on university campuses. The F0 range
of the speaker varies from low F0 males (Estonian) to high F0

females (Korean). No speaker normalization was performed on
the data.
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Figure 2: Number of training utterances per language displayed
on logarithmic scale.

3.1. Methodology: System details

The speech data was downsampled to 22.05 kHz. Then
mel-cepstral coefficients [26], logarithmic fundamental fre-
quency (logF0) values (interpolated in the unvoiced regions),
voiced/unvoiced decision (boolean value) [27], and 7-band ape-
riodicities were extracted every 5 ms, similar to [24]. These
values form the output features for the acoustic LSTM-RNN
and serve as input vocoder parameters [15]. The output features
for the duration LSTM-RNN are phoneme durations (in sec-
onds). The input features for both the duration and the acoustic
LSTM-RNN are linguistic features. The acoustic model sup-
ports multi-frame inference [24] by predicting four frames at
a time, hence the training data for the model is augmented by
frame shifting up to four frames. Both the input and output
features were normalized to zero mean and unit variance. At
synthesis time, the acoustic parameters were synthesized using
the Vocaine vocoding algorithm [15].

The architecture of the acoustic LSTM-RNN consists of
2 × 512 ReLU layers [25] followed by 3 × 512-cell LSTMP
layers [28] with 256 recurrent projection units and a linear re-
current output layer [4]. The architecture of the duration LSTM-
RNN consists of 1× 512 ReLU layer followed by a single 512-
cell LSTMP layer with a feed-forward output layer with linear
activation. For both types of models the input and forget gates
in each memory cell are coupled since distributions of gate ac-
tivations for input and forget gates were previously reported as
being correlated [29]. The duration LSTM-RNN was trained
using an ε-contaminated Gaussian loss function [24], whereas
for acoustic LSTM-RNN the L2 loss function was used because
we observed it to lead to better convergence rates.

3.2. Model configurations and evaluation

The experiments focus on two scenarios: In the first scenario,
the model is trained on the corpus that excludes 12 languages
(for six of which no acoustic data is available). The excluded
group includes two Dravidian, two Indo-Aryan, one Romance,
one Baltic, one North-Germanic, one Finno-Ugric and four
Slavic languages. Each excluded language has some “relatives”
remaining in the training data, apart from the Dravidian (Tamil
and Telugu) and Baltic (Lithuanian) languages. At synthesis
time, given the linguistic front-end features for each of the ex-
cluded languages, we synthesize the test sentences in the unseen

languages using the above acoustic model (H , for “held-out”)
and verify the intelligibility of the output by subjective listening
tests.

In the second scenario, we train an all-inclusive (I) model
on all the data (37 languages). In this case we are primarily in-
terested to find out whether training the language together with
the others improves the overall synthesis quality. The dimen-
sion of acoustic model input feature vectors is 2,152 for the first
scenario (H) and 2,973 for the second (I).

In both scenarios, several configurations are tested for each
language. Because the acoustic model can be “controlled” by
the speaker and gender identifying input features, it is interest-
ing to see how these features affect the synthesis quality. We test
the following combinations: speaker and gender features unset
(default, D), set to the highest quality female speaker (EN-US,
F )), highest quality male speaker (EN-GB, M ), speaker of the
“closest” language (C). In addition, for the second scenario,
where we have the training data available for the language, we
also test setting the speaker and gender features for this speaker
(S).

Finally, for those languages for which we have speaker-
specific data, we test the best-performing multilingual configu-
rations from the above experiments (BestH and Best I) against
acoustic models bootstrapped from speaker-specific data. The
Vocaine vocoder [15] requires a gender-specific configuration,
which currently defaults to females. We also use this default
configuration for male speakers, which may negatively affect
the vocoding quality.

For each subjective Mean Opinion Score (MOS) listening
test we used 100 sentences not included in the training data for
evaluation. Each rater was a native speaker of a language be-
ing tested and had to evaluate a maximum of 100 stimuli. Each
item was required to have at least 5 ratings. The raters used
headphones. After listening to a stimulus, the raters were asked
to rate the naturalness of the stimulus on a 5-point scale (1: Bad,
2: Poor, 3: Fair, 4: Good, 5: Excellent). Each participant had
one minute to rate each stimulus. The rater pool for each lan-
guage included at least 8 raters. Evaluation results are discussed
next.

3.3. Results and Discussion

Table 1 shows the results of subjective listening tests for 12 lan-
guages not seen during the training of the (“held-out”) acoustic
model H (with 31 languages). For each language four con-
figurations corresponding to different speaker/gender pairs de-
scribed in the previous section were tested. The most related
language in the training set shown in the table is denoted C,
shown alongside the number of raters participating in the exper-
iment. No closest speaker/gender evaluation was conducted for
Dravidian languages (Tamil and Telugu) since these have no re-
lated languages in the training set. For Lithuanian (Baltic), Pol-
ish was chosen as the most related language even though these
languages are not mutually intelligible [30]. As can be seen
from the best results (shown in bold), there is no single winning
speaker/gender feature combination across different configura-
tions. Female gender is always preferred to male. On the scale
between “poor” and “fair”, the best scores for all languages lean
towards “fair” (> 2.5). The intelligibility and naturalness of
five out of 12 languages is rated as fair (> 3.0), with Bengali
being best out of the pack.

Table 2 shows MOS results (along with confidence inter-
vals) for six languages which were included in the training
of the combined (“inclusive”) acoustic model I (with 37 lan-
guages). Out of 12 languages under investigation (Table 1),
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Table 1: Subjective Mean Opinion Scores (MOS) (along with confidence intervals) for languages in various configurations for acoustic
model (H) trained without these languages. The superscripts denote speaker and gender feature combinations: speaker/gender feature
unset (D), best female speaker (F ), best male speaker (M ), speaker/gender of the “closest“ language (C).

Language Family Code (L) HD HF HM HC C Raters
Bengali Indo-Aryan BN − 3.83±0.10 3.45±0.10 3.91±0.10 Hindi 14
Marathi Indo-Aryan MR 3.16±0.12 2.95±0.12 2.73±0.12 3.13±0.12 Hindi 9
Tamil Dravidian TA 2.78±0.08 2.89±0.08 2.68±0.07 − − 10
Telugu Dravidian TE 2.53±0.11 2.50±0.11 2.35±0.10 − − 11
Estonian Finno-Ugric ET 2.55±0.09 2.51±0.08 2.17±0.09 2.55±0.09 Finnish 11
Icelandic Germanic IS 2.78±0.06 2.69±0.05 2.30±0.08 2.72±0.07 Norwegian 9
Lithuanian Baltic LT 2.48±0.05 2.35±0.05 2.39±0.05 2.50±0.06 Polish 10
Romanian Romance RO 2.69±0.09 2.80±0.09 2.74±0.09 2.70±0.09 Italian 16
Serbian Slavic SR 3.21±0.05 3.25±0.05 2.92±0.05 3.23±0.04 Russian 10
Slovak Slavic SK 2.71±0.08 2.39±0.07 2.21±0.10 2.66±0.09 Czech 8
Slovenian Slavic SL 3.15±0.10 3.10±0.11 2.90±0.11 3.10±0.10 Russian 9
Ukrainian Slavic UK 3.08±0.09 2.72±0.08 2.83±0.09 3.17±0.09 Russian 16

Table 2: Subjective Mean Opinion Scores (MOS) for languages in various configurations for acoustic model (I) that includes these
languages. The superscripts denote speaker and gender feature combinations: speaker/gender feature unset (D), best female speaker
(F ), best male speaker (M ), speaker/gender of the “closest“ language (C), speaker/gender of this language (S).

Code (L) ID IF IM IC IS C
BN − − 4.06±0.09 3.88±0.10 − Hindi
ET 2.69±0.09 2.53±0.09 2.55±0.08 2.71±0.10 2.72±0.09 Finnish
IS 2.86±0.05 2.79±0.06 2.80±0.05 − − −
LT 2.54±0.06 2.44±0.06 − 2.67±0.06 2.52±0.06 Polish
SK 3.85±0.07 3.68±0.07 2.60±0.09 3.70±0.06 3.84±0.06 Czech
UK 3.48±0.10 3.48±0.10 3.17±0.09 3.41±0.09 3.41±0.09 Russian

Table 3: Best MOS scores for held-out multilingual AM
(H), inclusive multilingual AM (I) vs. single-language AMs
(Single) (with a source O).

L Best H Best I Single O
BN 3.91±0.10 4.06±0.09 3.63±0.09 Goog
MR 3.16±0.12 − 1.26±0.07 IIIT
TA 2.89±0.08 − 2.65±0.08 IIIT
TE 2.53±0.11 − 3.26±0.13 IIIT
ET 2.55±0.09 2.72±0.09 3.78±0.12 Goog
IS 2.78±0.06 2.86±0.05 3.07±0.07 Goog
LT 2.50±0.06 2.67±0.06 1.85±0.08 Goog
SK 2.71±0.08 3.85±0.07 4.05±0.07 Goog
UK 3.17±0.09 3.48±0.10 3.75±0.11 Goog

at the time of writing there is no training data for Romanian,
Serbian and Slovenian. The training data for Marathi, Tamil
and Telugu from the lower audio quality IIIT corpus [31] was
recorded at 16 kHz and was not included in the training of
the combined 22.05 kHz model. Since Bengali and Icelandic
are multi-speaker datasets, there is no unique speaker associ-
ated with them (hence IS is left blank). Results for the rest
of speaker/gender feature combinations are shown for each lan-
guage. Best results are shown in bold. The scores of three out
of six languages is in the “fair” range (> 3.2). Because Bengali
is a multi-speaker male database, setting the gender feature to
male seems to yield the best score (≈ 4.0). Pooling the data
from other languages does not seem to dramatically improve
Estonian, Icelandic and Lithuanian, even though the results lean
from “poor” to “fair” (> 2.5).

Table 3 shows three-way comparison between the best per-
forming configurations obtained with the “held-out” (H) acous-
tic model, combined acoustic model (I) and single-speaker
LSTM-RNN system (Single) bootstrapped from the single-
speaker database (denoted O). Best scores are shown in bold.
For Bengali, Marathi, Tamil and Lithuanian, the multilingual
acoustic model outperforms a single-speaker acoustic model.

The improvement is most evident in case of Lithuanian, for
which only a comparatively small database of around 1,000 ut-
terances was available, not enough samples for training decent
LSTM system. The huge improvement of Marathi over the IIIT
system, as well as improvement of Tamil, can be attributed to
the presence of Hindi to which both Marathi and Tamil are pho-
netically close. We attribute comparatively poor results from
the “disappointing” batch of languages (e. g., Icelandic, Esto-
nian, Slovak, Telugu and Ukrainian) to our suboptimial phono-
logical features - the amount of linguistic sharing between these
languages and other related languages in our database needs im-
proving.

4. Conclusions
This paper investigated a multilingual acoustic modeling ap-
proach featuring a language- and speaker-agnostic model topol-
ogy and a universal phonemic feature set. Experiments were
conducted on twelve low-resource languages from diverse lan-
guage families. We’ve shown that in two cases using an acous-
tic model with languages held out during training is better than
building a dedicated single-speaker system from a small dataset.
For two other cases, joint training with other languages also
improves over a single-speaker system. These results support
the hypothesis that the proposed approach may in certain situ-
ations benefit languages with small amounts of training data or
no data at all. We also show that the complete absence of any
training data may not necessarily lead to bad intelligibility – for
all the languages in the held-out experiment the MOS scores
are > 2.5 (anchoring the rating scale may be required in future
work), while five of them display fair naturalness (> 3.0).
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