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Abstract

Consensus Monte Carlo is an algorithm for conducting Monte Carlo based Bayesian inference
on large data sets distributed across many worker machines in a data center. The algorithm
operates by running a separate Monte Carlo algorithm on each worker machine, which only sees
a portion of the full data set. The worker-level posterior samples are then combined to form a
Monte Carlo approximation to the full posterior distribution based on the complete data set.
We compare several methods of carrying out the combination, including a new method based on
approximating worker-level simulations using a mixture of multivariate Gaussian distributions.
We find that resampling and kernel density based methods break down after 10 or sometimes
fewer dimensions, while the new mixture-based approach works well, but the necessary mixture
models take too long to fit.

1 Introduction

This article compares several implementations of consensus Monte Carlo methods for performing

Monte Carlo based Bayesian inference in big data problems. By “big data” I mean a data set too

large to be processed by a single machine. This is the definition used by computer engineers, who

are largely responsible for creating the big data phenomenon by introducing widely used tools for

managing massive data sets on distributed clusters (e.g. Dean and Ghemawat, 2008; Chang et al.,

2008). In principle these same tools could be used to implement scalable Bayesian inference on

massive data sets stored in data centers.

Data centers are extremely large, shared, clusters of computers which can contain many tens

of thousands of machines. Compute time in a data center is very cheap. Low end machines can

be rented for as little as one or two cents per hour, which makes it inexpensive to pool hundreds

or even thousands of machines to solve challenging computational problems. The data center

computing model offers effectively infinite processing power, memory, and disk. The challenge is
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that communicating between machines in a data center is expensive. Scott et al. (2016) presented

an example where repeated broadcast communications on a 500 machine cluster took a median of

roughly .25 seconds per broadcast. This degree of latency makes parallel versions of traditional

Bayesian computations untenable in a data center. For example, consider a data augmentation

algorithm that alternates between worker machines imputing latent variables and a central node

simulating parameters given complete data. With .25 second communication latency, such a scheme

could produce at most 2 draws per second, even if none of the nodes actually did any computing.

If communication is expensive, a natural strategy is to avoid communicating altogether by par-

titioning the data among workers, running a full posterior simulation on each worker, and then

combining the simulations as workers finish their simulation runs. Scott et al. (2016) named this

approach “consensus Monte Carlo” (CMC). Motivating CMC is the fact that posterior distribu-

tions tend to be mathematically separable. Let y denotes the full data set, partitioned into S

“shards” y = (y1, . . . ,yS). Assuming conditional independence given θ across shards, the posterior

distribution can be written as a product of independent distributions

p(θ|y) ∝ p(θ)
S∏

s=1

p(ys|θ) =
∏
s

p(ys|θ)p(θ)1/S

∝
∏
s

p(θ|ys).

(1)

Wang and Dunson (2013) refer to p(θ|ys) as a “subposterior” distribution. Each data shard is

assigned to a worker machine, which generates a Monte Carlo sample θ
(s)
1 , . . . , θ

(s)
G ∼ p(θ|ys) from

its associated subposterior. The main challenge with consensus Monte Carlo is how the simulated

values from different workers can be combined into a global set of “consensus” draws approximating

the full posterior distribution. This paper is primarily concerned with comparing different com-

bination methods, which fall into three categories: averaging, resampling, and explicitly modeling

the subposterior distributions. We also introduce a previously unexplored strategy of combining

subposteriors using finite- and Dirichlet process mixture models.

CMC is orthogonal to other “big data” efforts in the Bayesian literature which focus on im-

proving the poor scaling characteristics of typical MCMC algorithms. Dramatic speed increases
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can sometimes be achieved using subsampling methods (e.g. taking a random subsample of the

data with each MCMC iteration, see for example Maclaurin and Adams (2014), Bardenet et al.

(2014), Ahn et al. (2014), Quiroz et al. (2016), or Chen et al. (2016)), or by multi-threaded imple-

mentations of standard algorithms implemented on multi-core processors or massively multi-core

graphics processing units (e.g. Suchard et al., 2010; Lee et al., 2010). These techniques are im-

portant complements to consensus Monte Carlo because they allow individual worker machines to

quickly simulate from subposteriors based on larger data shards. However they only help with

processor bottlenecks, not memory or disk, and because they assume the full data set is available

they are largely irrelevant to the discussion of data center computing.

It should be mentioned that many statisticians rarely encounter problems where memory and

disk are serious limitations. A standard laptop with 8GB of memory can hold 1 billion double-

precision numbers. By any reasonable standard that is a lot of data, and most scientific questions

can be resolved with less. If granted access to a data set with billions of observations, most

statisticians would instinctively take a random sample of manageable size. However, there are

applications where the full data set is needed, so randomly sampling the data is the wrong approach.

At many large Internet firms, such as Google, Amazon, and Netflix, the fundamental problem

is to link individual users with specific content (e.g. a movie recommendation from Netflix, a

shopping recommendation from Amazon, or the right web site in response to a Google search

query). The number of users and the amount of content are incredibly large, and users’ needs are

both personal and evolving. Taking a sample in this setting to understand the preferences of “a

typical user” might be helpful for certain specific analyses, but massive data are needed to fit the

personalized user-level models required for effective service. While user-level modeling sounds like

an embarrassingly parallel undertaking, some form of shrinkage across users and across content is

needed to combat data sparsity, noting the obvious irony that even in big data problems, data about

how a particular individual reacts to a particular stimulus remains scarce. Bayesian methods are

motivated by the need for shrinkage, and because they provide uncertainty quantification which can

be useful in managing the “explore-exploit tradeoff” associated with the online learning problem

where models are repeatedly trained on data influenced by previously fit models (see, e.g. Scott,
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2010, 2015).

The remainder of this article is structured as follows. Section 2 describes the consensus Monte

Carlo algorithm in more detail, and reviews three existing methods for combining draws. Section 3

introduces a new combination method based on finite mixtures. Section 4 presents simulation

experiments illustrating how each method performs in different scenarios, with particular attention

paid to increasing problem dimensions and non-overlapping subposterior distributions. Section 5

gives a concluding discussion.

2 Consensus Monte Carlo

Equation (1) highlights the fact that the full posterior distribution is the product of S independent

subposterior distributions. This suggests that one can independently obtain a Monte Carlo sample

from each p(θ|ys), and then combine them to form the full posterior distribution. Imagine each

worker as a member of a team tasked with doing a large analysis job. Each worker does part of the

job based on partial information. When a worker’s job is complete the finished product is sent off

to the boss, who compiles the work done by all the employees into an organizational “consensus”

belief reflecting the analysis done by all the individual team members. The algorithm is similar

in spirit to meta-analysis, but with the constraint that the raw data from one worker cannot be

arbitrarily accessed by another.

The consensus approach raises two questions. The first is how one should should deal with the

prior distribution. Equation (1) suggests fractionating the prior and giving a piece to each worker.

This can be a good strategy in some cases, but it can also lead to trouble in others. For example,

when p(θ) is a weak-but-informative proper prior, p(θ)1/S could be improper, which could endanger

the propriety of p(θ|ys). We recognize this issue, but will not focus on it further. The second

issue, and our primary concern, is how to combine the draws from the worker-level subposterior

distributions. Three methods that have emerged in the literature are averaging, resampling, and

subposterior modeling. These are described below.
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2.1 Consensus through averaging (CMC)

Scott et al. (2016) showed that if all subposteriors are Gaussian, then averaging the draws produces

draws from the full posterior. To see this, imagine x1 ∼ p1 = N (µ1,Σ1) is a draw from worker 1

and x2 ∼ p2 = N (µ2,Σ2) is an independent draw from worker 2. Imagining p1 as the “prior” and

p2 as the “likelihood” leads to the familiar result that the full-data posterior is p1p2 ∝ N
(
µ̃, Σ̃

)
where

Σ̃−1 = Σ−11 + Σ−12 and µ̃ = Σ̃
(
Σ−11 µ1 + Σ−12 µ2

)
. (2)

Now consider the deviate z = Σ̃
(
Σ−11 x1 + Σ−12 x2

)
, which is a weighted average of x1 and x2.

Clearly z is normal with mean µ̃. Expanding the variance of the linear combination gives

V ar(z) = Σ̃
(
Σ−11 Σ1Σ

−1
1 + Σ−12 Σ2Σ

−1
2

)
Σ̃

= Σ̃(Σ−11 + Σ−12 )Σ̃

= Σ̃.

For regular models with large sample sizes, the Bernstein-von Mises theorem (the “Bayesian cen-

tral limit theorem”) assures approximately Gaussian posteriors. Note that Gaussian subposteriors

are a sufficient condition to justify averaging, but necessary conditions have yet to be established.

Scott et al. (2016) provided several examples of non-Gaussian subposteriors where averaging is able

to capture salient features of the posterior distribution, such as skewness, that would be missed by

a direct normal approximation (i.e. by approximating each subposterior by its moments, and then

combining the moments).

Averaging is a method with obvious flaws, but also powerful advantages. It is robust in the

sense that it does not depend on an algorithm that might fail. It is computationally inexpensive,

and it is invariant to dimension. The last point should not be taken lightly, because models that

require big data tend to involve very large numbers of parameters. The main disadvantage is that

there are situations where averaging does not make sense prima facie, such as when the posterior

distribution is discrete or multi-modal.
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2.2 Sequential Consensus Monte Carlo (SCMC)

Sequential Monte Carlo (SMC) is a seemingly natural way to combine draws from different workers

by viewing data on remote machines as information with which to sequentially update locally

produced MCMC draws.

2.2.1 Background on SMC

Sequential Monte Carlo methods (Doucet et al., 2001) operate by exploiting the relationship be-

tween implicitly and explicitly weighted Monte Carlo samples. An explicitly weighted Monte Carlo

sample describes a distribution p using a collection of points θj (often called “particles”) and a

corresponding set of weights wj , satisfying

∑
j f(θj)wj∑

j wj
→ Ep(f(θ)). (3)

An implicitly weighted sample weights each θj implicitly by its frequency, so the wj ’s in equation (3)

become uniform. An explicitly weighted sample can be turned into an implicitly weighted sample

at any time by sampling {θj} with replacement using {wj} as sampling weights. Resampling the

particles in this way produces multiple values of some θj , while others are omitted.

The canonical SMC algorithm (called “sampling with importance resampling”) represents a

posterior distribution p(θ|y1, . . . , yt) using an implicitly weighted set of particles {θ(t)j }. The dis-

tribution is updated to reflect a new observation yt+1 by attaching weight w
(t+1)
j = p(yt+1|θ(t)j ) to

θ
(t)
j . An unweighted sample {θ(t+1)

j } is then obtained by sampling {θ(t)j } with replacement using

sampling weights w
(t+1)
j . Notice that the resampling step can be delayed if desired. For example,

if yt+1 and yt+2 were observed simultaneously, one could incorporate them in a single update using

w
(t+2)
j = p(yt+2|θ(t)j )p(yt+1|θ(t)j ). The resampling step is typically thought of as good housekeeping

because it removes particles with inconsequential weights. However, there is a risk that a particle

which is dropped during resampling (because its current weight is small) might have been viewed

as important (and thus assigned a much larger weight) by future data. A related issue is that the

particle ensemble can collapse, meaning that almost all weight attaches to a small subset of parti-
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cles, or even a single particle. In some time series problems there are natural ways to perturb the

particles between resampling steps, which can help prevent ensemble collapse, but opportunities to

do this are very much problem dependent. The primary method of preventing ensemble collapse is

to start the algorithm with a very large number of particles.

2.2.2 SCMC for big data

SMC can be applied to the consensus Monte Carlo problem as follows. As before, worker s generates

J draws {θ(s)j } ∼ p(θ|ys), independently from other workers, using Markov chain Monte Carlo or

some other Monte Carlo method. Each draw is then weighted by

w
(s)
j =

∏
r 6=s

p(yr|θ(s)j ),

and resampled using these weights. Each worker in the SCMC algorithm produces J draws (not

all of which are unique) so the algorithm as a whole yields S × J deviates.

SCMC requires one additional communication relative to the algorithm in Section 2.1, in which

each worker broadcasts its particles to all the others. The extra communication is only a minor

burden. SCMC also requires more computation, because each worker will have J(S − 1) likelihood

calculations to perform in the weighting step. If necessary the extra work can be done in parallel, by

replicating workers and distributing likelihood computations among replicates. However likelihood

evaluation is typically much faster than simulation, so replicating workers will often be unnecessary.

SCMC is the most theoretically pure of the methods we consider. It requires no assumptions

about the shape of the distributions being combined. It can be applied to arbitrary parameter

spaces, so discrete parameter spaces can be handled gracefully, for example. It also allows the

full prior distribution to be used in the initial MCMC step, so adjustments to the prior which are

required by methods based on averaging can be avoided. The primary drawback is the potential for

ensemble collapse, which experiments in Section 4 show to occur at disappointingly low dimensions.

Increasing the number of draws J is unlikely to help, because the original particles are the result

of a presumably expensive MCMC algorithm, which would make substantially longer initial runs
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infeasible.

2.3 Approximating the subposterior densities with kernels (KCMC)

The averaging method from Section 2.1 gives exact simulations from the desired distribution when

the subposteriors are Gaussian. Neiswanger et al. (2013) observed that the method could be

extended to non-Gaussian subposteriors by decomposing each subposterior into a mixture of Gaus-

sians. The specific mixture chosen by Neiswanger et al. (2013) was a kernel density estimate, which

is problematic for several reasons. The first is that it implies a very large number of mixture com-

ponents, with one component centered on every subposterior draw. Second, the variances of the

mixture components are chosen a priori without regard to the covariance structure of the data.

A practical consequence of these issues is that kernel density estimates become unreliable after

a relatively low number of dimensions. Scott and Sain (2005) suggest the limit is as low as six,

although they note that KDE’s might still be useful in higher dimensions for certain applications,

such as classification. To deal with the very large number of mixture components, Neiswanger et al.

(2013) employ a second MCMC algorithm when combining draws across multiple chains.

3 A consensus procedure based on mixtures (MxCMC)

Some of the issues that make kernel density estimates difficult to apply in high dimensions can

be more gracefully handled by finite mixture models. Finite mixtures use many fewer mixture

components than kernel density estimates, in part because the variance parameters in the mixture

components adapt to fit the data. Though slower to fit than kernel density estimates, special

purpose implementations of finite mixtures have been applied to problems of much larger dimension.

Examples include Tadesse et al. (2005) (d = 1000) and McLachlan et al. (2003) (d = 2000), both

of which involve problems where non-Gaussian structure is limited to a low dimensional subset or

projection of the data.

Consider two workers which have produced draws θ
(1)
1 , . . . , θ

(1)
N1
∼ p1 = p(θ|y1) and θ

(2)
1 , . . . , θ

(2)
N2
∼

p2 = p(θ|y2). Approximate p1 ≈ π1f1+· · ·+πKfK and p2 ≈ w1g1+· · ·+wMgM , where (π1, . . . , πK)

and (w1, . . . , wM ) are discrete probability distributions and f1, . . . , fK , g1, . . . , gM are multivariate
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normal distributions with parameters fk = N (µ1k,Σ1k), and gm = N (µ2m,Σ2m). Then the prod-

uct p1p2 is also an approximate mixture of normals,

p1p2 ≈
∑
k

∑
m

πkwmfkgm ∝
∑
k

∑
m

w̃kmf̃km. (4)

The mixture components from equation (4) are f̃km = N
(
µ̃km, Σ̃km

)
, where

Σ̃−1km = Σ−11k + Σ−12m and µ̃km = Σ̃km

(
Σ−11k µ1k + Σ−12mµ2m

)
. (5)

The mixing weight w̃km is not simply πkwm, but proportional to πkwm

∫
fk(θ)gm(θ) dθ. Let

Qsk(µ) = (µsk − µ)TΣ−1sk (µsk − µ). Then the mixing weights can be written

w̃km ∝ πkwm
|Σ−11k |

1
2 |Σ−12m|

1
2

|Σ−11k + Σ−12m|
1
2

exp

(
−1

2
[Q1k(µ̃km) +Q2m(µ̃km)]

)
. (6)

Equation (6) shows that equation (4) gives greater weight to pairs of components that are both

heavily weighted in their respective subposterior mixture approximations (so that both πk and wm

are large), have similar means (where both µ1k and µ2m are close to µ̃km), and similarly sized

information matrices (where both Σ−11k and Σ−12m are large relative to their sum).

3.1 Combining draws from pairs of workers using local averaging

Although the mixture approximation in equation (4) could be sampled directly, for reasons anal-

ogous to the discussion of averaging in Section 2.1 it is preferable to combine the original draws

rather than sample from an approximate model of their distribution. The mixture approximations

of p1 and p2 are presumably imperfect, so the hope is that minor deviations from normality that

would be lost by directly sampling from the approximation will be preserved through averaging.

If we were to simulate directly from equation (4), an obvious method would be to first simulate

a draw (k,m) from the discrete distribution with probabilities {w̃km}, then simulate a deviate from

f̃km. The proposed local averaging procedure replaces the f̃km draw with a weighted average of a

random draw from component k of worker 1 and component m from worker 2. To identify these
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draws, let P1 and P2 be the matrices of posterior allocation probabilities for the samples from

workers 1 and 2, respectively. That is, P1 is a matrix with K columns and N1 rows, with elements

pik ∝ πkfk(θ
(1)
i ), with P2 defined similarly for worker 2. Sample an index i with sampling weights

proportional to column k of P1, and a random index j with weights proportional to column m of

P2. The consensus draw is obtained by averaging θ
(1)
i and θ

(2)
j with weights proportional to Σ−11k

and Σ−12m as in Section 2.1.

3.2 Choosing a mixture decomposition

There are several potentially important details regarding the finite mixture decomposition that

are beyond the scope of the current investigation. A finite mixture approximation of p(θ|ys) is

typically non-unique, and it is not clear how one would want to resolve a tie between two mixtures

that approximate p(θ|ys) roughly equally well. Mixtures with smaller numbers of components

should probably be preferred, as should mixtures with components that are well populated. It

would also be helpful if this stage of model fitting required little human supervision. Dirichlet

process mixtures are appealing because they do not require the number of mixture components to

be specified. Oversaturated finite mixtures (Rousseau and Mengersen, 2011) can also be used to

handle uncertainty about the number of mixture components.

The parameters of the mixture approximation can be obtained either using MCMC or as point

estimates through maximum likelihood or maximum a posteriori estimation (e.g. McLachlan and

Peel, 2000), or by variational methods (e.g. Blei et al., 2006; McGrory and Titterington, 2007).

The advantage of point estimates is that there is only a single mixture decomposition to consider,

which speeds up computing in the local averaging procedure. A single multinomial draw of size N

can replace N individual draws from {w̃km}, the matrices P1 and P2 need only be formed once,

and subsamples from {θ(1)i } and {θ(2)j } can be taken in batch. To the extent that some mixture

decompositions work better than others, and we don’t know a priori which ones they will be, it is

more conservative to fit the mixture approximation using MCMC methods that can average over

multiple decompositions. MCMC is potentially much slower because the procedure from Section 3.1

must be done one draw at a time, with different parameters for each draw.
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The time required to fit a finite mixture distribution can be considerable in high dimensions, with

a major piece of the computational cost arising from determinants and quadratic forms involving

the component variances Σk. Suchard et al. (2010) have demonstrated that GPU-based algorithms

can reduce the computing time in low dimensional mixtures, and their method can likely be used

in much higher dimensions, although some form of parametric modeling for Σk will become be

necessary as the problem dimension grows.

3.3 Combining draws from many workers

If there are only a few workers, then equation (4) can be extended in obvious ways to accommodate

a product of more subposterior densities. However the number of mixture components in the

approximating density is the product of the number of components in each subposterior mixture,

which rapidly becomes untenable as the number of workers grows. An alternative is to apply the

pairwise combination procedure from Section 3.1 multiple times. Doing so requires log2 S rounds

of combination, with a finite mixture approximation being fit to the draws produced at the end of

each round of combination, other than the last.

4 Examples

We now turn to a series of experiments comparing the various methods of forming consensus

described above. We study three scenarios. In each, the subposteriors are chosen so that their

product will have a known closed form which can be easily and exactly sampled, so that the

consensus results can be compared with ground truth.

All examples assume eight synthetic “workers.” Computations for KCMC used the implemen-

tation provided by Miroshnikov and Conlon (2014). Three rounds of pairwise combinations were

used for the mixture-based consensus algorithm MxCMC. Mixtures were fit with a Dirichlet pro-

cess mixture of multivariate normal distributions using the collapsed Gibbs sampler, described as

“Algorithm 3” in Section 3 of Neal (2000). The Gibbs sampler was hand coded in C++, but none

of the other optimizations mentioned in Section 3.2 were attempted.
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4.1 Multivariate normal posteriors

The first example focuses on multivariate normal posteriors of increasing dimension. In this setting

averaging gives perfect simulations, so the point is to study how SMC, kernel, and mixture based

methods perform in regular “well behaved” problems. Simulations from each subposterior distri-

bution are drawn from identical N (µ,Σ) distributions, where µ = (1, . . . , d), for different values

of d, and Σ is a “random effects” matrix with off-diagonal elements all set to .9 and diagonal ele-

ments set to 1.0. Each worker begins by simulating 10,000 independent draws from its subposterior

distribution.

Figure 1 shows kernel density estimates for the first element of the consensus posterior draws

produced by the different consensus methods. The remaining d−1 elements are qualitatively similar,

albeit with different means. There are 10,000 consensus draws for the mean-based and mixture

based CMC algorithms, but 80,000 draws (10,000 from each worker) for the SCMC algorithm.

When d = 5 all three algorithms perform acceptably well. As the dimension grows to 10 and 20 the

discreteness from SCMC becomes unacceptably large. In another context one might argue that the

discreteness could be smoothed out by increasing the number of initial particles, but keep in mind

that this is a proxy for a hypothetical subposterior distribution for which simulating 10,000 draws

might represent a considerable amount of work. The KCMC method performs well when d = 5, but

it gets the location, scale, and shape wrong in higher dimensions. The MxCMC algorithm works

well in all cases, as the underlying mixture model correctly detects that only a single mixture

component is needed. This experiment suggests that both SCMC and KCMC should be used with

caution in ten or more dimensions.

In regards to time, both CMC and SCMC took less than 1 second to run, whereas MxCMC

needed several minutes (25 in the d = 20 case) to fit the necessary mixtures. The time required

to fit the mixtures for MxCMC might be reduced by a more efficient fitting algorithm, but it is a

potentially serious issue with the method, which otherwise performs quite well in this scenario.
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Figure 1: Monte Carlo density estimates for the first element of a d-dimensional multivariate normal
deviate. (a) d = 5, (b) d = 10, (c) d = 20. The means and MxCMC results overplot one another.
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Figure 2: Subposterior and consensus draws for the beta distribution example in Section 4.2. (a) Subposte-
rior draws from workers with very different data. (b) Consensus Monte Carlo approximations to the exact
posterior density. The means and kernel based methods are nearly identical. SCMC is bimodal and far from
the center. MxCMC is centered in the right place but the variance is much too wide.

4.2 Non-overlapping beta posteriors

The second example considers subposterior distributions represented by non overlapping draws. The

example is in one dimension, but it illustrates a phenomenon that one expects in higher dimensions

because of the curse of dimensionality. This scenario challenges all four consensus methods.

Consider two subposterior distributions based on binomial data. The first has y1 = 900 successes

out of n1 = 1000 trials. The second has y2 = 100 successes out of n2 = 1000 trials. Each

subposterior is assigned a Be(.5, .5) prior, corresponding to a Be(1, 1) prior for the overall system,

though in this case the sample sizes are large enough that the prior has little effect. Figure 2(a)

shows histograms of draws from the subposteriors being combined. Figure 2(b) compares the four

consensus methods with the distribution of exact draws. The means and kernel density methods

both capture the mean and essential shape of the correct distribution, but fail to describe the

variance correctly. The failure occurs because the variance of the beta distribution is a function of

the mean, and the estimated variances at the subposterior level are computed near zero and one,

where the variance is smaller.
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All the mass of the full posterior distribution is in a region that is far into the tails of both

subposteriors. This causes problems for both the SCMC and MxCMC methods. SCMC winds

up choosing the smallest draws from worker 1 and the largest draws from worker 2, with neither

set of draws in a relevant region for the full posterior. The result is a bimodal approximation

when the truth is unimodal. MxCMC produces draws centered on the correct region, but with

unreasonably large variance. To understand why MxCMC struggles, examine Figure 3, which

describes the mixture decomposition of the subposterior draws from worker 1, the right-hand mode

in Figure 2(a). Figure 3(a) shows the histogram of the draws being fit by the mixture, while

superimposing pointwise marginal density estimates of the density curve implied by the mixture

model, verifying that the mixture is fitting the distribution well. Panel (b) plots the posterior

distribution of the number of mixture components in the Dirichlet process, showing that the mixture

is using 2, 3, or 4 components. Panels (c) and (d) plot the marginal distributions of the mean and

variance parameters describing the mixture components in the 2-component case. Plots for 3

and 4 components are not shown, but are similar. Collectively, Figure 3 shows that the mixture

approximation captures the slight left skew of the beta distribution by adding normal components

with smaller mean and larger variance than the primary component. As a mirror image to worker

1, the mixture decomposition of worker 2 has primary component describing data near 0.1, with

extra components capturing the skewness in the upper tail.

When the MxCMC algorithm combines the subposterior draws, equation (6) overwhelmingly

favors the high variance components with means closer to 0.5. The uncertainty in the variance

parameters, which are the weights used in the computation, translates into the wide distribution

seen in Figure 2(b). The mixture approximation is obviously doing a good job of describing the

data in regions of high density, but it does a poor job of modeling the distant tails where the

full posterior has virtually all of its mass. I also tried replacing the MCMC ensemble by a single

mixture model parameters set to MAP estimates. This resulted in consensus estimates that had

lower variance than MxCMC in Figure 2(b), but with substantial bias.

This experiment suggests that sophisticated methods of combining draws can fail when the

subposterior draws do not have sufficient overlap, which is likely to occur for at least some low
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Figure 3: Mixture approximation to the worker level data from Figure 2. (a) The marginal distribution of
the density curve superimposed on the histogram of subposterior draws . (b) Distribution of the number of
mixture components. (c) Distribution of mean parameters, and (d) variances parameters conditional on 2
mixture components.
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dimensional projections of parameters in high dimensional problems.

4.3 Inverse Wishart

The third simulation experiment assumes inverse Wishart subposterior distributions of dimension

d× d, denoted IWd(ν, S), where ν can be interpreted as a sample size and S as a sum of squares

matrix. The inverse Wishart distribution is a multivariate distribution with a Gaussian limit, but

it is decidedly non-Gaussian for moderate values of ν. For the results presented here, subposterior

i has ν = (d + 1) + 20 and S = S0 + Si, where S0 is the random effects variance matrix used in

Section 4.1, and Si is the matrix sum of squares from 20 N (0, S0) deviates.

Two test problems were considered, one with d = 3 and one with d = 5. Deviates from the

inverse Wishart distribution are symmetric positive definite matrices, which were vectorized so that

only unique elements were considered. Thus the 3×3 case is a 6-dimensional problem and the 5×5

case is 15 dimensional. Increasing d much beyond this proved to be a challenge for the Dirichlet

process implementation used for this exercise.

Figure 4 plots marginal density estimates for the first four unique elements in the 3×3 example,

while Figure 5 plots the first four elements of the 5 × 5 example. As with previous experiments,

the SCMC estimates begin to fall apart in relatively low dimensions. The kernel based estimate

exhibits a consistent bias in both examples. Interestingly, the kernel density estimate gets the shape

of the consensus density about right in Figure 4. While the kernel method gets the shape wrong

in Figure 5 it at least matches the shape produced by MxCMC.

The CMC and MxCMC posterior estimates are very close in Figure 4, but they begin to diverge

in Figure 5, where MxCMC does a better job describing the shape of the marginal distributions,

but mean-based CMC does a better job of capturing the distribution’s center. The location shift

in the MxCMC algorithm is much smaller than KCMC, but it is still evident in Figure 5, and the

direction of the bias is the same for the two methods.
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Figure 4: First four elements in Inverse Wishart draws for a 3× 3 random variable.
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Figure 5: First four elements in Inverse Wishart draws for a 5×5 random variable.
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5 Conclusion

The simulations in Section 4 were all performed under scenarios where averaging had a reasonable

shot of doing well. The subposteriors were unimodal, and the parameters varied smoothly over

subsets of Rd. In these settings averaging is hard to beat, primarily because it can be applied to

problems of arbitrary dimension. It is rare to encounter a problem with only 5 or 6 parameters

that is sufficiently complex to require a big data solution, yet this seems to be the threshold where

SMC and kernel methods break down.

Averaging has obvious limitations, and it is not hard to come up with examples where it does

not perform very well. Several such examples can be found in Srivastava et al. (2015), Wang et al.

(2015), and Neiswanger et al. (2013), among others. Thus there is clearly a need for alternative

consensus methods to averaging. However all the methods we have considered seem to fail for one

reason or another as the dimension grows. Particle based resampling methods are well known to be

challenged by dimension, and there nothing obvious about the structure of large distributed data

sets that lends itself to particle regeneration. Likewise, kernel based methods also fail in relatively

low dimensions, so approximating equation (1) with a product of kernel density estimates leads to

the poor results we have seen for KCMC.

The mixture based MxCMC method introduced here is theoretically interesting, but the me-

chanics of fitting mixtures to high dimensional distributions is a serious practical challenge. Yet of

the general methods considered, its challenges are the most likely to be overcome.
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