
2114 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Optimal Content Placement for
a Large-Scale VoD System

David Applegate, Aaron Archer, Vijay Gopalakrishnan, Member, IEEE, Seungjoon Lee, and
K. K. Ramakrishnan, Fellow, IEEE

Abstract—IPTV service providers offering Video-on-Demand
currently use servers at each metropolitan office to store all the
videos in their library. With the rapid increase in library sizes, it
will soon become infeasible to replicate the entire library at each
office. We present an approach for intelligent content placement
that scales to large library sizes (e.g., 100 Ks of videos). We
formulate the problem as a mixed integer program (MIP) that
takes into account constraints such as disk space, link bandwidth,
and content popularity. To overcome the challenges of scale, we
employ a Lagrangian relaxation-based decomposition technique
combined with integer rounding. Our technique finds a near-op-
timal solution (e.g., within 1%–2%) with orders of magnitude
speedup relative to solving even the linear programming (LP)
relaxation via standard software. We also present simple strate-
gies to address practical issues such as popularity estimation,
content updates, short-term popularity fluctuation, and frequency
of placement updates. Using traces from an operational system,
we show that our approach significantly outperforms simpler
placement strategies. For instance, our MIP-based solution can
serve all requests using only half the link bandwidth used by
least recently used (LRU) or least frequently used (LFU) cache
replacement policies. We also investigate the tradeoff between
disk space and network bandwidth.
Index Terms—Content placement, integer programming, video

on demand.

I. INTRODUCTION

C ONTENT and network service providers are facing an
explosive growth in the demand for Video-on-Demand

(VoD) content. To counter this and to scale the distribution, they
are building out video hub offices (VHOs) in each metropolitan
area to serve subscribers in that area. Each of these offices has a
large number of servers to store and serve videos. These offices
are interconnected using a high-bandwidth backbone. To deal
with the high demand, providers currently replicate the entire
library in all the locations. This allows them to circumvent prob-
lems such as content popularity prediction and overload due to
flash crowds.
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Despite disk space being plentiful and affordable for today's
libraries, we believe that this approach is not only wasteful,
but also economically infeasible. The cost of a gigabyte of
storage is going down. However, the video libraries are also
growing [9]. The equation is one of growth—production of
content and making them available, versus the economic vi-
ability of adding more and more storage at each node over
time, as the amount of content grows—and which factor will
outpace the other. At the current moment, the rate of creation
of content, the ever-increasing demand for high-quality content
(e.g., high-definition, 3-D video), and the space needed to
store them appear to be outpacing the ability of providers to
economically add storage and replicate content. For example,
a 1-h 4 K video takes up about 20 GB of disk [2], and today's
VoD providers are estimated to have a library larger than 100 K
videos [1]. Assuming the average video length is 1 h, the total
disk size for a single copy of such high-quality video library
would be 2 PB (or even larger if the storage back-end system
uses replication internally [24]). With the advent of adaptive
bit rate (ABR) video where multiple (5–10 for certain VoD
providers) representations of the video are stored to deliver the
most appropriate quality of the video to match the bandwidth
currently available to the user, this problem is only exacerbated.
Replicating an entire library at each VHO is economically
nontrivial in this setup and even more challenging in case
of a larger-scale library (e.g., millions of videos). Our work
studies how to use intelligent content prepopulation and request
load-balancing to serve VoD requests when disk storage is
small relative to the entire library.
Multiple studies [10], [15] have observed “long tail” proper-

ties in the popularity of videos; this means that a large number
of videos are requested infrequently. Hence, storing copies of
these videos in all locations is overkill. Inspired by this, we con-
sider the problem of placing on-demand videos at the VHOs
of a large-scale IPTV system. Our goal is to treat these VHOs
as part of a large distributed store and distribute videos among
them such that we can serve all users' requests, and do so effi-
ciently. The problem of placing video content in large scale is
quite challenging. It requires predicting what content is going to
be popular, when it is going to be popular, and where it is going
to be requested most.
The traditional approach to address this problem is to take

advantage of the skew in request popularity and use caches, as
in applications such as DNS and Web [13], [19]. When using
caches, each video is replicated at a few locations. When a
requested video is locally unavailable (cache miss), the video
is fetched from a remote location that has a copy, and is then
cached locally. When the cache at a location is full, videos are
replaced using a replacement policy [18]. Thus, caches allow
the system to dynamically adjust the number of copies of videos
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according to their current popularity. Caching, however, is ex-
tremely dependent on the size and stability of the working set
(i.e., items being actively accessed at a given time). A cache
miss imposes significant burden on the system in the context of
VoD as this results in a high-bandwidth stream transferred for
an extended period of time. Furthermore, a video being viewed
needs to be retained in the cache for the length of the video,
thereby occupying the cache for a long period. As we show in
Section IV, the working set size can be quite large in typical VoD
deployments and changes dramatically over time. This means
that the caches have to be fairly large for them to be useful over
long periods.
Another approach to video content placement is to employ

optimization-based techniques [7], [9], [23]. However, most
existing schemes are based on unrealistic simplifying assump-
tions (e.g., same demand pattern from all locations), a particular
class of networks (e.g., tree topology), or heuristics to make
the problem tractable. Also, many of them do not consider link
capacity constraints, which is a crucial aspect in delivering
high-quality videos for an extended period of time. Without
link bandwidth constraints, the problem is a variety of facility
location [7]. Adding them introduces the aspect of multicom-
modity flow [14], which makes the models computationally
much more difficult. In this paper, we seek a general framework
that can scalably find a placement solution optimized for all
the videos in the library across all locations with an arbitrary
network topology and video demand pattern.
We propose to pre-position videos so as to minimize the

system resource usage while serving all requests and satisfying
all disk and link capacity constraints. Our approach also enables
us to explore the tradeoff between the disk capacity require-
ment at each VHO and bandwidth. When a requested video
is not available locally, we take advantage of the high-speed
backbone to satisfy the request from a remote VHO.
We use a mixed integer programming (MIP) formulation to

determine the placement of videos. The solution of theMIP tells
us how many copies of each video are needed and where each
copy should be placed so as to minimize the total network band-
width consumption. However, due to the scale of the problem,
we find that even the linear programming (LP) relaxation of
our MIP is too large for off-the-shelf software (e.g., CPLEX)
to find an optimal solution within a reasonable time. For in-
stance, it took CPLEX more than 10 days to optimally solve
an instance with 5 K videos and 55 VHOs. We overcome this
by employing a decomposition technique based on the expo-
nential potential functionmethod and Lagrangian relaxation [4].
We thus obtain a near-optimal LP solution orders of magnitude
faster (Section V-C), and then use a rounding heuristic to con-
vert it into a solution for our MIP.
Our algorithm is practical to run on realistic instances, even

though there is no subexponential bound on the worst-case run-
ning time of our rounding heuristic (Section V-D). In practice,
bulk of the running time is spent in solving the LP, not in the
rounding phase. When producing the LP solution, our algorithm
simultaneously proves a lower bound on the objective value of
the optimal solution, via Lagrangian relaxation. Therefore, by
comparing the objective value of our final integer solution with
this lower bound, we can bound the gap between our solution
and the optimal one. For the instances we have studied, arising
from real-world large-scale systems, we have observed that
the solutions are near-optimal (e.g., typically within 1%–2%).

However, we have not proven a worst-case performance guar-
antee for our rounding heuristic; there may be instances that
exhibit worse optimality gaps.
For real-world applicability of the MIP-based strategy, we

present a number of simple strategies to address practical is-
sues (Section VI). Specifically, the MIP requires the demand for
each video as an input. We make use of request history to pre-
dict the demand for videos. This, however, only lets us predict
demand for videos already in the library.1 In this paper, we use
a simple strategy where we identify a similar video in the past
(e.g., same TV series show) and use its request history to predict
the demand for a new video. Our experimental results show that
our simple strategy is quite effective. To overcome errors in our
prediction, including unexpected flash crowds, we make use of
a small least recently used (LRU)-cache at each location.
We have performed extensive simulations using real trace

data from a nationally deployed VoD service and synthetic
trace data generated from YouTube crawls [10]. Our results
show that our approach outperforms existing caching schemes
(Section VII). For the same amount of disk space, our approach
only requires a little more than half the peak bandwidth as LRU
or least frequently used (LFU) schemes. The total number of
bytes transferred is also significantly lower. Our results confirm
that the approach scales well and can be used in practice to
place libraries with hundreds of thousands of videos.
We highlight the differences between this paper and our

previous conference paper [5]. First, we have made signifi-
cant improvements on our optimization strategy and rounding
scheme, which we describe in more detail. Second, we present
new experiment results from more diverse settings, including
different real-world network topologies, different deployments
scenarios, larger video library sizes, and varied disk sizes. Last,
we compare our work to more recent works published since
our conference paper.

II. RELATED WORK

Content replication has been a topic of extensive research.
There exists a large body of work related to file placement,
which typically focuses on a relatively small system connected
through a local area network. We refer readers to the survey by
Dowdy and Foster [12] and the references therein. Zhou and
Xu [26] consider the problem of minimizing the load imbal-
ance among servers subject to disk space and network band-
width constraints. However, they only consider egress link ca-
pacity from servers. Our focus is different in that we consider
the link constraints inside a backbone network.
There have also been several efforts to address the problem

of content placement. Valancius et al. [23] propose an LP-based
heuristic to calculate the number of video copies placed at cus-
tomer home gateways. Borst et al. [9] focus on minimizing
link bandwidth utilization assuming a tree structure with limited
depth. They formulate an LP and observe that assuming sym-
metric link bandwidth, demand, and cache size, they can design
a simple local greedy algorithm that finds a solution close to
optimal. Both proposals focus on a particular network structure
(e.g., tree) that is applicable for the distribution network to con-
sumers. In contrast, our work considers arbitrary networks with

1Predicting popularity of new videos is an active area of research [6], [17].
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diverse disk and link bandwidth constraints, where different lo-
cations show different video request patterns. We also consider
popularity change over both short and long term, which poses a
significant challenge in maintaining link bandwidth constraints.
Baev et al. [7] consider the data placement problem where

the objective is to minimize cost without taking bandwidth into
account. They prove their problem is NP-hard via a reduction
of the uncapacitated facility location problem, and present a
10-approximation algorithm for uniform-length videos. They
show that for the nonuniform case, even deciding feasibility is
NP-hard, so no approximation algorithm is possible unless

. Our problem is strictly more complex since we also con-
sider link constraints. Also, since the data placement problem
is a special case, our problem is also NP-hard and suffers from
the same inapproximability result. This motivates our decision
to design an algorithm with per-instance performance guaran-
tees, since proving an approximation guarantee that applies to
all instances would imply .
Content placement and traffic engineering in content distribu-

tion networks (CDNs) has been a focus of considerable recent
research. Recent work by Sharma et al. [20] investigates the in-
terplay between distribution strategies and traffic engineering,
using traffic from a large CDN and realistic ISP topologies.
While their conclusion is that optimization-based approaches
do not offer significant benefits compared to simple approaches
(e.g., LRU caching), we believe it is significantly dependent on
the size of the cache deployed. Their storage ratio is quite large
(of the order of 4 or more) for the deployed caches. Moreover,
the approximation approach used eliminates over 50% of the
videos for the primary solutions. We believe these significantly
influence the results, in that there is a long tail in the access pat-
terns as observed in our traces, and the bandwidth consumed
in the network is indeed influenced by these transfers. We do
observe in our work that as the amount of storage is increased
and gets close to the working set size, the differences in perfor-
mance across different methods do diminish. In addition, [20]
does show that if demand can be predicated, like we do in our
paper, optimization approaches do outperform simple caching.
Qiu et al. [19] consider the problem of positioning Web server
replicas to minimize the overall cost. Others have focused on
ways to direct user requests to replicated servers (also known
as request routing) [3], [8]. Most existing work, however, fo-
cuses on minimizing latency given constraints (e.g., server ca-
pacity), but do not consider replicating individual content while
taking into account backbone network bandwidth. Thouin and
Coates [22] consider the problem of server provisioning for VoD
service. They consider a predefined set of server models and
come up with a number of heuristics to find a low-cost de-
ployment for given aggregate video demands. Their work is
orthogonal to our work, in that our work focuses on placing
and routing VoD requests on already provisioned server and
networks.
Peer-to-peer (P2P) schemes that reduce the backbone band-

width usage have been proposed for VoD delivery [16]. Such
P2P systems, however, still need to use VoD servers when video
delivery from peers is not possible. Our work is complementary
to these proposals. Zhao et al. [25] focus on evaluating network
bandwidth requirements for a single file when they vary tree
construction and streaming delivery strategies in different net-
work settings. By contrast, we focus on accounting for the skew

Fig. 1. Typical architecture for IPTV service.

in content popularity and replicating videos to minimize back-
bone network bandwidth consumption.

III. SYSTEM ENVIRONMENT

We assume a typical IPTV network with an associated VoD
service in which the provider has offices (i.e., VHOs) in mul-
tiple metropolitan areas that are connected via a high-bandwidth
backbone. Each office may cover one or more cities; we use the
term “metro area” to describe all the cities served by a single
office. Each office has a certain amount of storage; this may be
the same across all offices or may vary based on the size of the
metro area (we experimentally study the effect of this hetero-
geneity.) We consider a scenario where each office has storage
space to hold only a subset of the videos offered through the cat-
alog. A VHO receives and satisfies all the requests from users
in its metro area. In case a video is not available at the local
office, we assume that the system has the ability to deliver the
video from a remote office to satisfy the user's request transpar-
ently. In this case, we assume a predetermined path between the
VHOs (e.g., based on shortest path routing), which is more re-
alistic than arbitrary routing [14]. Fig. 1 shows a typical setup.
It is important to note that the links between offices need not

be dedicated for the VoD service and may be shared with other
services. Similarly, only a portion of storage space may be avail-
able for the VoD service. Hence, the goal of our work is to find
an optimal operating point that balances the tradeoff between
the amount of storage space used and the amount of network
bandwidth needed, while satisfying all requests. Also note that
while we have considered a typical IPTV environment in this
paper, our solution is applicable to a CDN setting where a user's
request can be dynamically directed to any CDN location.

IV. CHALLENGES
In this section, we use traces from a nationally deployed VoD

service to show why content placement is challenging and why
simple caching-based approaches alone will not suffice.

A. Large Working Set Sizes
In Fig. 2, we count the number of distinct videos requested

from each VHO (i.e., the “working set”) during the peak hour of
a Friday and a Saturday (the two busiest days of the week). We
observe that the working set size (disk space) for certain VHOs
is large compared to the entire library size. The maximum is
around 25% of the entire library, and about 10 of the VHOs
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Fig. 2. Working set size during peak hours.

Fig. 3. Similarity in videos requested during different time windows.

see requests for almost an eighth of the library size. Thus, a
proportionally large cache is necessary to store these videos.
We also show the impact of a simple LRU caching policy on
the miss ratio in Section VII.

B. Time-Varying Demand Pattern

We observe from VoD request traces that the demand pattern
for videos at each VHO significantly changes even over short
periods of time. To quantify this (relatively rapid) change in re-
quest pattern, we use the cosine similarity metric that is com-
monly used in Information Retrieval.2 For a given time window
size, we partition the entire time duration into multiple intervals
of the same size. Then, for each interval, we model the request
pattern at a VHO as a vector composed of the request count
for each video during the interval. In Fig. 3, for each VHO, we
compute the cosine similarity between the vector for the interval
containing the peak demand instant and the vector for the pre-
vious interval. We also vary the time window size to change the
aggregation time granularity. We observe that while the request
mix is similar across days, there are significant differences in the
request mix as the time window size decreases. This indicates
that caches employing simple replacement policies have to be
provisioned carefully as it can result in significant “cycling” of
the cache.

TABLE I
INPUT PARAMETERS AND DECISION VARIABLES USED IN THE MIP

V. MIP FORMULATION

In this section, we formulate the MIP we use to determine
the optimal content placement. Given a request pattern for each
video at each VHO over a time period, our goal is to find a video
placement that minimizes the total network consumption while
satisfying all user requests within the link bandwidth and disk
capacity constraints.

A. Input Parameters

Table I summarizes the symbols used and their meaning. The
top section lists the input parameters, which our MIP treats as
fixed. Let denote the set of VHO locations, the set of di-
rected links between these locations, and the set of videos in
our catalog. The set of time slices at which we enforce the link
bandwidth constraints is . Each VHO has disk capacity ,
and the size of video is . For each pair of VHOs ,
we assume that there is a fixed directed path from to .
For the purposes of the MIP, only the set of links used in the
path matters (not their order), so we take . Serving a
request locally requires no links, so . The capacity of
link is , while the bit rate of video is (both
in Mb/s). For each video , VHO receives re-
quests during the entire modeling period, but at any given time
slice , the number of concurrent streams is . This
includes not only the requests initiated at time , but also those
that start before and are still being streamed.
We denote the cost of serving one gigabyte of video from

to by . We focus on the scenario where the cost of remote
service is proportional to the number of hops between and .
Specifically, we use

(1)

where denotes the hopcount from VHO to VHO the
cost of transferring video over any link in , and a fixed cost
for serving a request locally at any VHO (e.g., lookup cost).
While we expect that the values of and would, in practice,
take into account the monetary cost of storing and transferring

2Given two vectors and , the cosine similarity is . The value is
between [0, 1], with 1 indicating that the two vectors are alike.
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the video, we show in Section V-B-1 that the actual values do
not affect which solution is optimal.

B. MIP Model
Our MIP model has just two types of decision variables. For

each VHO and each video is a binary
variable indicating whether we should store at (i.e., yes,
if ; no, if ). When a request for video arrives
at VHO , it is served locally if the video is stored at ; oth-
erwise, it must be fetched from some other VHO storing . If
there are multiple such VHOs, then chooses which one to use.
The variable tells what fraction of requests should be served
fromVHO . In the event that the are strictly fractional
for some , there are multiple approaches to im-
plement it in practice (e.g., weighted round-robin, interleaving,
etc.). In our experiments, for simplicity we select a server (that
has video ) at random with probability and fetch the entire
video from . implies that serves the requests itself
(because it has the video locally).
Our objective for the content placement problem is to mini-

mize the cost of the total byte transfer, subject to disk space and
link bandwidth limits. This can be formulated as the following
MIP:

(2)

s.t. (3)

(4)

(5)

(6)

(7)
(8)

The objective expressed by (2) is to minimize the overall
cost of serving all the requests, in terms of network consump-
tion, for the entire period. Constraint (3) ensures that the total
fraction of requests served locally and remotely is 1, for each

pair. Constraint (4) captures the fact that loca-
tion can serve video only when it has chosen to store a
copy locally. Constraint (5) reflects the limited disk space at
each VHO, while constraint (6) captures the bandwidth limit for
each link at each time slice. We include constraint (8) because
we always store either the entire video or none of it at a VHO.
If we wanted to break up videos into chunks and store their
pieces in separate locations (as typically considered in some
other studies), we could accomplish that by treating each chunk
as a distinct element of . Constraints (3) and (4) combine to
ensure that every video is stored in at least one VHO. (That is,
they imply .)
1) Cost Coefficients Matter Little: In (1), we introduce two

coefficients and for the cost of serving content. Since all
feasible solutions satisfy constraint (3), we can expand and re-
arrange the objective (2) as

(9)

(10)

The first term (9) scales uniformly with , while the second term
(10) is independent of the decision variables and . Thus,
we have the following proposition.
Proposition 5.1: The set of optimal solutions is independent

of the values and in (1), provided .
2) Transfer Cost due to Video Placement: The above objec-

tive function (2) only considers transfer cost due to video re-
quests. However, realizing a placement solution requires trans-
ferring videos to the location. Suppose we have a placement so-
lution where stores a copy of video . Let us assume there is
an origin for all videos and the transfer cost between and
is . We can easily account for this cost by including a second
term in our objective function

(11)

where is a parameter that allows a different weight given to
the additional transfer cost. For example, with , (11) re-
duces to (2), and with , we treat the transfer due to place-
ment the same as any transfer due to a user request. Note that
the initial placement of videos into the library is done before
being made available to users. This can be achieved in multiple
ways (e.g., using DVDs or using spare capacity, without regard
to real-time deadlines). However, incremental updates to imple-
ment a new solution can potentially incur considerable cost. We
use the (11) when we evaluate the impact in Section VII-H.

C. Finding a Fractional Solution
As mentioned in Section II, finding an optimal solution to the

above MIP is NP-hard [7]. Instead, we first solve the LP ob-
tained by relaxing the integral constraint (8) to be just ,
allowing fractional values for . Then, based on the fractional
solution, we apply a rounding heuristic to obtain an integer so-
lution, as described in Section V-D.
Although LPs can be solved in polynomial time, our instances

are too large to solve efficiently evenwith a state-of-the-art com-
mercial LP solver. To overcome this challenge, we use an ap-
proach based on the potential function method, which we de-
scribe in more detail in the Appendix. This approach computes
a solution to an LP instance that provably achieves approximate
optimality and feasibility—it terminates with a solution that vi-
olates disk and link bandwidth constraints by at most 1% and its
objective value is within 1% of the optimal.
The basic idea is to decompose a given large LP instance into

mostly independent subproblems. In our case, we decompose
the overall MIP into a subproblem for each video, and each
subproblem then becomes a (fractional) uncapacitated facility
location problem, which is more tractable. Specifically, in the
LP formulation, we observe that constraints (3) and (4) are inde-
pendent for each video, while the disk space and link bandwidth
constraints (5) and (6) require aggregating resource usage across
all videos. We then replace the nonindependent constraints (5)
and (6) with a penalty function that is exponential in their nor-
malized violations. In this way, we convert a large linear op-
timization problem into a convex optimization problem over a
large collection of independent subproblems. We then use gra-
dient descent to minimize the potential function contributed by
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an individual subproblem (i.e., individual video) and go through
an entire set of subproblems to complete one pass. We then re-
peat multiple passes of the gradient descent process, until all the
constraint violations are within the desired 1% threshold. Note
that this process provably converges [4].
We also use Lagrangian relaxation, where we relax the disk

space and link bandwidth constraints and use the exponential
coefficients as Lagrangian multipliers. After finishing a gradient
descent pass, we calculate a lower bound using the current La-
grangian multipliers, which allows us to check how close to op-
timal our current solution is. Our scheme terminates if the cur-
rent objective is within 1% of a lower bound and if violates disk
space and link bandwidth constraints by less than 1%.
In addition to this basic idea, our decomposition-based ap-

proach employs various optimizations (e.g., faster heuristics,
parallelism) to achieve orders of magnitude improvement in
running time and scalability over CPLEX (see Section VII).

D. Rounding
Based on the fractional solution, we round fractional to

integer values by sequentially solving a MIP for each video .
If all of the for video are already integer, the and
are unchanged. Otherwise, we solve a subproblem for video
based on the current potential function. Since we want to be
an integer in this case, the problem becomes an integer facility
location problem, which is NP-hard. As solving this problem
can be computationally expensive, we use an approximation
algorithm by Charikar and Guha [11], which finds a provably
good solution in polynomial time.When this final rounding pass
is complete, the resulting solution will have integer values for
all variables; we use this for placement.
Rounding Performance: We briefly report the performance

of the rounding step. In terms of computation time, the rounding
pass is comparable to a single gradient descent pass. Another
aspect is the quality of final integer solution.While the rounding
step can cause the objective and constraint violation to increase
beyond the 1% threshold that we guarantee with a fractional
solution, in our experiments (detailed setup is described in
Section VII-A), we find that the increase due to the rounding
step is marginal. Specifically, with libraries of 5 K videos, the
optimality gap on average is 4.1% (or 3.1% increase beyond
our target 1%), and the constraint violation is less than 4.4%.
However, with 200 K video libraries, the optimality gap is 1.0%
and the constraint violation is less than 0.8% (smaller than the
target 1%), which suggests that our rounding step performs
better with larger libraries.

VI. PRACTICAL CONSIDERATIONS
We address a number of practical considerations for the algo-

rithm design and parameter selection in real-world deployments
in this section.

A. Demand Estimation
Our MIP formulation needs the demand for videos to com-

pute placement. This, however, is not known a priori. Our ap-
proach is to use the recent history (e.g., the past 7 days) as a
guide to future demand for the videos. We use this history as an
input to our formulation.
While history is available for existing videos, new videos are

added to the library continually. Furthermore, from our analysis,

Fig. 4. Daily request count for different episodes of a series show.

we find that many such newly added videos receive a significant
number of requests. Hence, we also need to address the problem
of placement of new content into the system.While demand esti-
mation for such new videos is an active area of research [6], [17]
and beyond the scope of this paper, we use a simple estima-
tion strategy. It is based on the observation that a significant
number of the newly added videos belong to TV series, and
that videos from a TV series exhibit similar demand patterns.
Fig. 4 presents the daily request count for different episodes
of a particular series show during one month. Although there
is some variation, we observe considerable similarity in the re-
quest volume for each episode of the series. For instance, on the
day of release, episode 2 was requested around 7000 times, and
episode 3 around 8700 times. In our system, we base our de-
mand estimate for a new episode of a TV series on the requests
for the previous week's episode of the same series (e.g., request
pattern of episode 2 is used as demand estimate for episode 3).
We show the effectiveness of our approach in Section VII-H.
We use another simple estimation strategy for blockbuster

movies. From exogenous information [6], we assume that we
are informed of a list of blockbuster movies (e.g., 1–3 movies
each week). Then, we take the demand history of the most pop-
ular movie in the previous week and use it as the predicted de-
mand for the blockbuster movies that are released this week.
Complementary Caching: While TV shows and blockbuster

movies account for the majority of requests for new videos—se-
ries episodes account for more than half of the requests for
new releases—we still do not have a demand estimate for the
remaining new videos (music videos, unpopular movies, etc.).
Our current system uses a small LRU cache to handle load due
to new releases for which we do not have estimates. This cache
also handles unpredictable popularity surges to some videos
(which is often why LRU caches are used).

B. Time-Varying Demand
We observe that the request pattern changes quite signifi-

cantly over time, both in aggregate intensity and its distribution
over the individual items in the library. For instance, users
typically make significantly more requests on Fridays and
Saturdays, while the traffic mix during the peak intervals on
those two weekend days are quite different. The bandwidth
required to serve these requests will correspondingly vary when
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they are served from remote VHOs. The placement should be
able to handle such change and still satisfy the link constraints
throughout the entire time period that the placement would
remain before it is reevaluated.
While accounting for link utilization at all times (e.g., each

second during a 7-day interval) might guarantee that we never
exceed the link constraint, it makes the problem computation-
ally infeasible as the number of link bandwidth constraints (6)
is proportional to the number of time slices in . Therefore,
we identify a very small number of peak demand periods (typi-
cally, we use ) over which to enforce the link constraints.
By satisfying the link bandwidth constraints for these peak de-
mand periods, we found that the demand during nonpeak pe-
riods did not overload any links in our instance. In the general
case, we would iteratively identify these additional time periods
that overload some links and add them to the set of peak demand
periods, such that a solution to the new problem instance would
satisfy the link constraints during these additional time periods.
Picking the size of time window to compute load is also crit-

ical. If we pick a small time window, we may not capture the
representative load and hence will not place videos appropri-
ately. If we use a large window, we may considerably over-pro-
vision capacity for our MIP to become feasible. We examine
this consideration by experimenting with several window sizes
in Section VII-G.

C. Placement Update Frequency
Another consideration is the frequency of implementing a

new placement using our algorithm. While updating our place-
ment more frequently allows the system to adapt to changing
demands and correct for estimation errors more gracefully, each
update incurs overhead, both in computing the new MIP solu-
tion andmigrating the content.We evaluate the tradeoff between
more and less frequent updates in Section VII-H.

VII. EXPERIMENTAL RESULTS
We evaluate the performance of our scheme and study various

“what-if” scenarios through detailed simulation experiments.
We compare our scheme against existing alternatives of using an
LRU or an LFU cache replacement strategy.With respect to user
request traces for our evaluation, we have two choices: either
project library sizes to the future and “completely invent” the
user request traces, or use the data we have of real user request
traces and reduce disk sizes to something that yields an inter-
esting point on the disk space/link bandwidth tradeoff curve. In
our study, we have used the latter approach because we believe
that using real data at smaller scale is more useful than making
up data to illustrate the exact same point at a larger scale. As
a result, we use relatively small disk size when evaluating the
performance benefit of our proposed scheme, while we employ
additional synthetic input traces to study the scalability of our
MIP solution scheme.

A. Experiment Setup
We perform our experiments using a custom built simulator.

By default, we use a 55-node network modeled from a back-
bone network of a deployed IPTV service. The network has
70+ bidirectional links connecting these locations. We assume
that all these links have equal capacity. However, we vary the
actual value to understand the tradeoff between disk capacity

and link bandwidth. Similarly, we focus on the scenario where
all VHOs have equal disk space, but also present results where
VHOs have heterogeneous disk capacities. To simulate user re-
quests, we use one month's worth of VoD request traces from
a nationally deployed VoD service. This trace contains requests
to various types of videos, including music videos and trailers,
TV shows, and full-length movies. For simplicity, we map these
videos to four different video lengths: 5 min, 30 min, 1 h, and
2 h, and assume that we need 100MB, 500MB, 1 GB, and 2 GB,
respectively, for storing them on disk. We assume that all videos
are of standard definition and stream at 2 Mb/s. We start with a
baseline scenario of a backbone network with each link being 1
Gb/s and the aggregate disk capacity across all VHOs being 2
times the entire library size. We then vary many of the param-
eters to understand the various tradeoffs and sensitivity of the
system.
In our experiments, we use our MIP formulation to place the

videos in the VHOs. Unless stated otherwise, we update our
MIP-based placement every week using the video requests in
the previous 7 days as history. We assume time windows of 1 h
each across two time slices to capture the link constraints. For
comparison, we simulate three alternative approaches:
• : For each video, we place one copy at
a randomly chosen VHO. The rest of disk space in each
VHO is used for LRU cache.

• : This is similar to , but
uses LFU instead of LRU.

• : We replicate top K videos at every VHO.
The remaining videos are assigned randomly to one loca-
tion. The remaining disk space at each location is used for
LRU cache. This is a highly simplified version of [23].

Due to the local cache replacement in all the alternative ap-
proaches, if a VHO does not have a local copy of a requested
video, it needs to identify the best peer VHO to fetch the video
from. In our experiments, we assume the existence of anOracle
that informs us of the nearest location with a copy of the video.
This gives the best case for these alternates in terms of mini-
mizing the total bandwidth needed for the transfer.
We also conducted experiments with publicly available net-

work topologies: Tiscali, Sprint, and Ebone, taken from Rock-
etfuel [21]. To understand how our approach performs with dif-
ferent library sizes, we generated synthetic video request traces
for video libraries of different sizes (ranging from 5 K videos to
1M videos) for those networks based on theYouTube popularity
distribution published by Cha et al. [10]. We designed our trace
generation process, such that it mimics the salient real-world
properties (e.g., city-level population, popularity distribution of
the videos). More details about the network topologies and syn-
thetic trace generation are available at http://www2.research.att.
com/~vodopt/.

B. Performance of Our MIP Scheme

In the first experiment, we solve an MIP instance and place
the videos according to that solution. Then, we play out the re-
quest log based on the solution. For each week, we construct a
new parameter set based on previous week's demand history and
recompute a newMIP instance. We use a link capacity of 1 Gb/s
for MIP constraints. The aggregate disk space is around 2 times
the entire library size. Of this, around 5% of the disk space at
each VHO is used as an LRU cache. We compare our scheme to
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the three alternatives using the same disk space. For the top-K,
we experimented with both , and . We present
the results only for , as was highly similar to

. We use the first nine days' requests to warm
up the caches and run the tests using the remaining 3 weeks of
requests.
Maximum Link Bandwidth: We identify the maximum link

usage across all links at each time instant and show how it varies
over the 3-week period in Fig. 5. We observe that, for the same
amount of disk space, our proposed scheme can satisfy all re-
quests using significantly lower peak bandwidth. Specifically,
the maximum bandwidth needed for our case is 1364 Mb/s,
while the maximum value for is 2400 Mb/s,
2366 Mb/s for , and 2938 Mb/s for -

. Note that the maximum value for our scheme is slightly
larger than 1 Gb/s, which is the link capacity provided for the
MIP instance. This is because each week introduces new videos,
some of which we do not have a good estimate. While the small
LRU cache helps absorb some of the errors in estimation, we be-
lieve amore sophisticated estimation strategywill help even fur-
ther. We confirmed this through experiments assuming perfect
knowledge of traffic pattern: the maximum bandwidth in that
case always stayed within the constraint of 1 Gb/s (see Table V).
Total Bytes Transferred: We calculate the total amount of net-

work transfer where each video transfer is weighted by the video
size and hop count. A good placement scheme will result in a
small value because most of the requests would be satisfied lo-
cally or by nearby neighbors. We present the results in Fig. 6.
We calculate the aggregate transfers across all links and calcu-
late the average over 5-min intervals. We see similar trends to
what was observed for the peak bandwidth. Our scheme consis-
tently transfers fewer bytes compared to the other caching-based
schemes. LRU and LFU perform almost identically. Surpris-
ingly, - results in a higher peak utilization and
total bytes transferred. We attribute this to the fact that video
popularity does not have a very high skew; even the less popular
videos incur significant load. With the Top-100 videos occu-
pying significant storage, there is less space for the LRU cache,
and hence the performance becomes worse.
To analyze this further, we present the breakup of disk

utilization in each VHO based on one solution to our MIP
formulation in Fig. 7. We characterize the top 100 videos as
highly popular, the next 20% of videos as medium popular,
and the remaining as unpopular. The highly popular videos
occupy a relatively small portion of the total disk space, while
the medium popular videos occupy a significant proportion
of the total disk space in the system (e.g., more than 30%).
We also present the number of copies for each of the top
2000 videos in one of our MIP solutions (Fig. 8). We observe
that our solution intelligently places more copies for popular
videos. This is to avoid remotely fetching frequently requested
videos, which not only increases the overall cost (i.e., byte
transfer), but also leads to link capacity violations. However,
in our solution, even highly popular videos are not replicated
everywhere (e.g., less than 30 VHOs have a copy of the 10th
most popular video). On the other hand, we observe that more
than 1500 videos have multiple copies in the entire system.
These two figures indicate that medium popular videos result
in significant load and have to be dealt with intelligently. A
given movie needs only a few copies—anywhere from 2 to 10

Fig. 5. Peak link bandwidth utilized, measured every 5 min.

Fig. 6. Aggregate bandwidth across all links, averaged over 5 min.

Fig. 7. Disk usage based on video popularity.

copies—but together these videos consume significant space.
As a result, our solution carefully distributes copies of these
videos across the VHOs. Unfortunately, caching schemes will
have difficulty dealing with medium popular videos, unless the
cache size is sufficiently large.
Comparative LRU Cache Performance: We performed a

simple experiment to understand the performance of a dynamic
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Fig. 8. Number of copies of each video, ranked by demand.

Fig. 9. Performance of LRU caches.

LRU cache replacement strategy. The aggregate disk space
across all locations is around twice the entire library size while
each location has the same disk space (and equal to the disk
used in the MIP experiments). More than half of the space in
each VHO was reserved for the LRU cache. We present the
results in Fig. 9. As is clear from the figure, not only does the
cache cycle, but a large number of videos are not cachable
because all the space in the cache is currently being used.
Almost 20% of the requests could not be cached locally due to
this. All this results in around 60% of requests being served by
remote offices.
Comparison to Origin Server and LRU-Cache: To compare

our approach to recent proposals [20], we ran experiments that
assume the use of simple LRU caching in conjunction with
origin servers. Since identifying the optimal location of an
origin server is not trivial, we partitioned our network into four
regions, each served by a separate origin server that is con-
nected to one of the VHOs in that region. Thus, the underlying
connectivity does not change, and traffic from an origin server
to VHOs likely traverses inter-VHO links in the underlying
network. We then allocate the same amount of disk space to
caches as we use in our approach (e.g., ). The origin
servers have additional capacity to store the entire library.

Fig. 10. Maximum link bandwidth used by MIP versus LRU caching with
origin servers.

TABLE II
COMPARISON OF MIP VERSUS LRU CACHING WITH ORIGIN SERVERS

Thus, we give benefit to the caching solutions to have an extra
storage. In fact, we did not account for this extra storage in

the origin servers, to emphasize this benefit for the competing
approach. We once again ran the experiments over the 2-week
period. With caching, we use the first week as the warm-up
phase, while with our approach, we run the MIP before the first
and second weeks. We compare performance during the second
week in Fig. 10 and Table II.
Our results show that our approach outperforms simple

caching with origin servers for both and disks sizes. The
maximum link bandwidth at any time during the second week
is lower by in both cases. In fact, our results show that
the maximum link utilization with our approach is lower even
when our approach uses disk space while caching uses
disk space. We also computed the sum bandwidth across all the
links at various points in time and note the peak of these values
in Table II. We see that our approach transfers more data than
caching when disk space is limited , but performs better
when there is more disk . Finally, we also note that the
cache hit rate is consistently better with our approach than with
caching.

C. Tradeoff Between Storage and Bandwidth
To understand the tradeoff between storage and bandwidth,

we identify how much disk space is needed to find a feasible
solution to the MIP, given the link capacity. In Fig. 11, we
show the feasibility region (where we can serve all the requests
without violating disk and link constraints) when we vary the
link capacity. Note that the minimum aggregate disk space in
the system must be as large as the entire library size, to store at
least one copy of each movie (the bottom line in Fig. 11). When
each link has a capacity of 0.5 Gb/s, and all VHOs have the same
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Fig. 11. Feasibility region.

amount of disk (denoted by “Uniform Disk”), we need at least
5 times more disk than what is needed to store one copy of each
movie. We also observe that if we increase link capacity, then
we can satisfy all the requests with much smaller disk.
We also consider the case where there are three different types

of VHOs. Based on the number of subscribers at individual
VHOs, we identify 12 large VHOs, 19 medium VHOs, and 24
small VHOs. In our experiments, a large VHO has twice the
disk of a medium VHO, which in turn has twice the disk of a
small VHO. The middle line in Fig. 11 corresponds to the case
of nonuniform VHOs.We observe that compared to the uniform
VHO case, we need significantly smaller aggregate disk space
to satisfy all the requests. Specifically, with 0.5-Gb/s links, the
total disk we need is less than 3 times the entire library size
(versus 5 for the uniform VHO case). This is because the ma-
jority of requests originate from those large VHOs and some of
the medium VHOs. With a larger disk, these VHOs can serve
more videos locally. Not surprisingly, as we increase the link
capacity, the gap between uniform and nonuniform cases de-
creases and converges to the library size.

D. Complementary Caching
In this experiment, we examine the effect of complementary

caching on the performance of the MIP solution. We vary the
amount of cache as a percentage of the disk space at each VHO
and add that space to each VHO. We run the experiment for
one week's worth of requests and measure the peak link utiliza-
tion and the average aggregate bytes transferred. The results are
shown in Fig. 12. As expected, both the peak and the aggregate
decrease with increasing cache size. The reduction is significant
as we go from no cache to 5% cache. The reduction, however,
is not as significant as we increase the amount of cache further.
This result shows that while a cache is important to handle er-
rors in estimation or sudden changes in popularity, it is more
important to get the placement correct.

E. Scalability
In the next set of experiments, we experiment with growth in

the VoD library, growing from 5 K videos to 1M videos. We use
the synthetically generated traces as described in Section VII-A.
Given the library size, we consider six different experiment sce-
narios: two different disk sizes (small, large) and three different
networks (Tiscali, Sprint, Ebone). For the small disk size, the

Fig. 12. Importance of complementary caches.

TABLE III
RUNNING TIME AND MEMORY USAGE. EACH ROW AGGREGATES

SIX SCENARIOS (I.E., 3 NETWORKS AND 2 DISK TYPES)

aggregate disk is twice the library size; for the large disk size, an
average VHO can store 20% of the entire video library. For each
scenario, we experimented with 100 different runs using dif-
ferent random seeds and obtained the arithmetic means of each
metric. Then, we use the geometric mean of the six arithmetic
means for a given library size. One of the metrics considered is
the running time. To obtain this, we ran all these experiments on
a single machine (with two 6-core 2.67 GHz Intel Xeon X5650
CPUs and 48 GB of memory).
In Table III, we first report the running time and memory

usage of our proposed approach and compare it to CPLEX. We
observe that the running time and memory footprint of our pro-
posed scheme both scale almost linearly as a function of library
size. The memory usage of CPLEX also scales linearly, but its
running time scales superlinearly. In absolute terms, CPLEX
needs more than 1.5 h and 37 GB of memory to solve the in-
stance of a 20 K video library. Because of its large memory foot-
print, CPLEX cannot handle larger instances due to the memory
limitation. In comparison, our proposed scheme takes less than
3 s (or faster) and uses only 0.3 GB of memory (or
smaller footprint). Furthermore, our proposed scheme can scale
to much larger instances. For examples, it takes about 1.5 min
and 15 GB of memory to solve a 1-M video library instance.
We next report how the link capacity requirement changes

as we increase the number of videos in the library. Note that
in our synthetic traces, the number of requests is proportional
to the number of videos. In Fig. 13, we show the link capacity
needed for each scenario, normalized by the number of videos in
the library. We use the small disk scenarios, with the aggregate
disk space being the same for all the three networks ( library
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Fig. 13. Link capacity versus library size growth.

TABLE IV
TOPOLOGY VERSUS LINK CAPACITY

TABLE V
PEAK WINDOW SIZE VERSUS BANDWIDTH

size). We first observe that the required link capacity stays sim-
ilar whenwe vary the number of videos.We also observe that the
link capacity for Tiscali is the highest. Since Tiscali has more lo-
cations (49) than the other networks (see Table IV), each Tiscali
location on average has smaller disk space, which results more
remote transfers over the network. While Ebone has fewer loca-
tions than Sprint (23 versus 33), Ebone also has fewer network
links than Sprint (38 versus 69), which results in a similar link
capacity requirement for Ebone and Sprint.3

F. Topology
We investigate how different topologies affect the capacity

required to meet all requests. In addition to the backbone net-
work used in the previous sections, we consider two hypothet-
ical networks: tree and full mesh (where each pair of nodes
has a direct link). We also report experimental results using the
three network topologies from RocketFuel. For this set of ex-
periments, we use the same video library and real VoD service
traces for ease of comparison. Since the number of VHOs in the

3The results in Fig. 13 and Table IV are slightly different because the request
count in Fig. 13 is proportional to the population of each location, while we use
the locations with largest request volumes in Table IV.

VoD backbone is larger than the number of nodes in any of the
RocketFuel networks, we sort the VHOs starting with the largest
request count and use the top VHOs, where is the number
of nodes in each network (e.g., 33 top VHOs for Sprint). In all
these experiments, we use the same amount of aggregate disk
( the library size) across all VHOs.
In Table IV, we present our experimental results. As ex-

pected, given a set of nodes (i.e., the VoD backbone), we
observe that with more links, we can serve all requests with
lower link capacities. For instance, 1 Gb/s capacity for each link
is more than sufficient in the case of original set of links, while
we need more than 2 Gb/s for the tree topology. This result
also clearly illustrates that the different network topologies
require different link capacities for video delivery. Specifically,
the link capacity requirement for Tiscali is much larger than
that for Sprint. Note that another factor that influences these
result is that we chose VHOs with larger request counts for
the RocketFuel experiments, which would result in larger
capacity requirements. A thorough understanding of the impact
of topology and demand pattern on resource requirements is an
interesting topic of future work.

G. Time-Varying Request Pattern
As discussed in Section VI-B, we use only a small number

of time windows over which we evaluate the peak demand
of videos requested and examine if the placement ensures we
remain within the link capacity constraints throughout the
week. We performed experiments to understand the tradeoffs
on choosing the time window by varying it from 1 s to 1 day.
Results are shown in Table III. Using the peak request demand
for 1-s time windows, we find that a feasible solution exists
for the MIP when each link is 0.5 Gb/s. We also observe
that the maximum link utilization during the corresponding
time window is 0.5 Gb/s. However, outside the peak window,
some of the links are loaded up to 0.85 Gb/s. This is because
the MIP solution considers the link constraints only during
the 1-s window, and due to highly varying request mix, the
request pattern during the window is not representative. As
a result, the placement solution is not able to satisfy the link
constraint outside of the window. Similar conclusions apply
for 1-min windows. On the other hand, with 1-day time win-
dows, a feasible solution requires 2-Gb/s links. However, we
observe that all links always carry less than 1 Gb/s of traffic
during the entire 7-day period. Thus, 1-day windows lead to
a significant over-estimation of the required link bandwidth.
With 1-h windows, the feasible solution requires 1-Gb/s links.
Correspondingly, the maximum link bandwidth over the entire
7-day period is also less than 1 Gb/s. Thus, 1-h windows seem
to give the best tradeoff between accurate estimation of the
peak window and actual link utilization.

H. Frequency of Placement Update and Estimation Accuracy
Running the placement often allows us to handle demand

changes or estimation errors gracefully. However, each iteration
incurs computational and transfer overheads. We experimented
with different placement frequencies to see how they affect per-
formance. In Table VI, we show the maximum link bandwidth
usage, total data transfer, and the fraction of requests served
locally for the last 2 weeks. We consider both video size and
number of hops to calculate total data transfer, as in (2). We do
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TABLE VI
IMPACT OF UPDATE FREQUENCY ON THE PLACEMENT PERFORMANCE

not use the complementary LRU-cache here. We observe that if
we update the placement once in 2 weeks, then the maximum
bandwidth grows significantly. This is because with less fre-
quent updates, the error in demand estimation accumulates over
time, as the current placement does not adapt to changes in the
demand pattern. We observe that compared to weekly updates,
daily updates only modestly improves the maximum bandwidth
usage or miss ratio. However, by utilizing the most recent re-
quest history information, we can achieve around 10% improve-
ment in terms of total data transfer. Using a 14-day history with
weekly placement updates, we did not find any meaningful dif-
ferences compared to a 7-day history.
In Table VI, we quantify the error in our estimation of de-

mand for new videos by presenting the performance when we
have perfect knowledge. When we have perfect knowledge, our
MIP-based solution always maintains the link utilization below
capacity ( Gb/s), serves all the requests while using less total
network bandwidth, and serves a majority of requests locally.
On the other hand, without any estimation for new videos, we
observe that the maximum bandwidth grows to over times
the link capacity, and the resulting placement results in lots of
remote transfers. Our simple estimation strategy, while not per-
fect, allows for performance comparable to when we have per-
fect knowledge.
Cost of Placement Updates:One aspect to consider when de-

termining the frequency of updates is the network transfer cost
due to video migration for a new placement. We can slightly
modify (11), such that we consider the cost of migration based
on the previous mapping (refer Section V-B-2). In our exper-
iments with this modified objective term, we find that around
2.5 K videos need to be transferred between two placements.
We argue that this is a small cost compared to the number of re-
quests (e.g., 100 K’s per day) and hence is quite manageable. In
practice, we can even lower the update costs by piggybacking
on requests. That is, when a new placement requires a partic-
ular VHO to store video can wait until a user requests ,
fetch it and store a copy in the pinned portion of disk. We plan
to investigate this aspect further in the future.

VIII. CONCLUSION
To meet the growing need for on-demand content, we con-

sidered the problem of placing video content across distributed
offices of a VoD provider connected via a high-bandwidth back-
bone. Our mixed integer program formulation considers the
constraints of disk space and link bandwidth to scalably find a
near-optimal placement solution optimized for all the videos in
the library, across all locations in an arbitrary network topology,
and video demand pattern. For real-world applicability, we
presented a number of simple strategies to address practical
issues. For instance, we made use of the request history over a

1-week period to place content at the VHOs to serve requests
over the next week.
We performed extensive experiments using trace data from an

operational nationwide VoD service. Our proposed scheme sig-
nificantly outperforms existing schemes, including LRU- and
LFU-based caching schemes. We also investigated the perfor-
mance tradeoffs and sensitivity when we vary disk space, link
bandwidth, request volume, and library size. Our replication
strategy scales with the growth of VoD service and the orders
of magnitude speedup due to our solution approach makes it
eminently suitable for practical deployment.

APPENDIX
EXPONENTIAL POTENTIAL FUNCTION (EPF) METHOD AND

ITS APPLICATION

While our previous work provides a more detailed de-
scription [4], we briefly describe the general principles of the
EPF framework and highlight how we apply it to our VoD
application.

A. General Description

The EPF framework is a Dantzig–Wolfe decomposition
method that uses exponential penalty functions to define: 1) a
potential function that encodes relaxed feasibility problems,
and 2) Lagrange multipliers for computing lower bounds.
Consider the following LP:

s.t. (12)

where each is a polytope, is an matrix,
and . Let OPT denote its optimum.4 Solution

is -feasible if (i.e., it violates each constraint
by at most ), and it is -optimal if .
Given constant , we aim for an -feasible, -optimal solution.
Equivalently, we will guess a value for OPT and consider the
problem , wherein we replace the objective in (12)
with the constraint . Note that a solution is -feasible for

iff it is -feasible, -optimal for (12).
Dantzig–Wolfe decomposition takes advantage of fast al-

gorithms for optimizing linear objective functions over each
. We consider scenarios where the constraints constitute a

packing problem, i.e., and . Let the set index
the rows of , let denote row of , let index 0 refer
to the objective, and define . Given a row vector
of Lagrange multipliers with and ,
define . Whenever a
superscript denotes the portion of an object corresponding to
block , e.g., , or . Define

(13)

and where the notation
means to restrict vector to its components (i.e.,
exclude ). Standard duality arguments show that

. All of our lower bounds derive from this fact.

4The variables in this Appendix are consistent with the EPF literature and our
accompanying paper and not to be confused with those used in Section V.
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Define , where
and is a scale factor that evolves over the
course of the algorithm. Let
be the relative infeasibility of constraint , and define aliases

and so that . Define
as the max relative infeasibility over

the coupling constraints, and .
Let define the potential due to
constraint , and define the overall
potential function we aim to minimize (for fixed ). If is
feasible for (12), then each so
whereas if even one constraint has , then

. Thus, minimizing
either finds a -feasible , or proves that none exists.

The plan is to minimize via gradient descent. Let
for , and .

The gradient of the potential function is

(14)

which is a positive scalar times . By gradient descent,
we mean to move along some segment so as to decrease

at maximum initial rate. More precisely, defining
, we choose to minimize the

directional derivative
. This is equivalent to solving the

optimization problem (13) with , once for each block
. Thus, solving the Lagrangian relaxation of (12) with

this choice of multipliers serves twin purposes: giving not only
a lower bound on OPT, but also a primal search direction. That
is, we can optimize just a single block and step in that block
to reduce without changing other blocks.

B. Application to Video Placement
We now describe how our VoD placement problem maps

to (12). Decision variables 's are mapped to where to repli-
cate videos and how to fetch videos from remote locations,
and coefficients of 's are determined by video size, popularity,
and transfer cost between VHOs as described in (2). As men-
tioned in Section V-C, constraints (3), (4), (7), and (8)5 are in-
dependent between different videos and define a polytope for
each individual video (i.e., for video ). In contrast, disk
and bandwidth constraints (5) and (6) require usage aggrega-
tion across all videos and are mapped to the main constraints of
(12). Specifically, is determined by video size (for disk) and
the streaming rate and number of concurrent flows (for band-
width), and by the capacity values.
Given a set of current values for decision variables 's, we

can determine howmuch disk (or network bandwidth) is being
used relative to the capacity, and thus obtain . Along with
similarly obtained , they determine all the parameters (e.g.,

) for individual block optimizations.
Algorithm 1 presents a high-level pseudocode. Our full

algorithm is extremely intricate, and we refer readers to our
accompanying paper [4] for more detail. Here, we highlight
some of the key improvements that our algorithm makes over
existing work. As mentioned in Section V, fast block heuristics
(e.g., [11]) dramatically speed up the algorithm (steps 7 and 15),
and we can partially parallelize the chunk iteration (steps 6–10),

5Our focus here is on the LP relaxation case where .

Algorithm 1 EPF-based Algorithm Pseudocode

1: Parameters: approximation tolerance , exponent
factor , smoothing parameter , chunk
size

2: Initialize: solution valid lower bound on
OPT, , objective target , smoothed
duals , scale parameter number
of chunks

3: for do
4: Select a permutation of the blocks uniformly at

random, and partition into chunks
each of size , according to .

5: for chunk do
6: for each block do
7: optimize block:
8: compute step size:

9: take step in this block:
10: Save for possible use in shortcutting step 15

later.
11: shrink scale if appropriate:
12: if (i.e., is -feasible) and

then
13: if then return
14:
15: lower bound pass:

16: if then return

both with minimal impact on the number of iterations. The
simple idea of shuffling the round-robin order for each pass
(step 4) has a surprisingly dramatic impact on convergence.
Specifically, compared to processing all video blocks in any
fixed order, processing them in a different random order for
each pass results in fewer iteration passes by a factor of .
We also improve the algorithm running time and convergence
by employing new update mechanisms (steps 11, 14, and 15)
for , and , which are different from the theory and
previous experimental work.
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