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Quantum chemistry is an important area of application for

quantum computation. In particular, quantum algorithms

applied to the electronic structure problem promise exact, effi-

cient methods for determination of the electronic energy of

atoms and molecules. The Bravyi–Kitaev transformation is a

method of mapping the occupation state of a fermionic sys-

tem onto qubits. This transformation maps the Hamiltonian of

n interacting fermions to an Oðlog nÞ-local Hamiltonian of n

qubits. This is an improvement in locality over the Jordan–

Wigner transformation, which results in an O(n)-local qubit

Hamiltonian. We present the Bravyi–Kitaev transformation in

detail, introducing the sets of qubits which must be acted on

to change occupancy and parity of states in the occupation

number basis. We give recursive definitions of these sets and

of the transformation and inverse transformation matrices,

which relate the occupation number basis and the Bravyi–

Kitaev basis. We then compare the use of the Jordan–Wigner

and Bravyi–Kitaev Hamiltonians for the quantum simulation of

methane using the STO-6G basis. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24969

Introduction

Quantum simulation was first proposed by Feynman[1] and

allows for an exponential speedup over classical simulation of

some quantum mechanical systems.[2–6] In the context of quan-

tum chemistry, efficient algorithms have been developed for

the calculation of energy spectra,[7] reaction rates,[8,9] and reac-

tion details.[10] Quantum computational schemes have been

extended into the study of relativistic quantum chemistry.[11]

Crucially for this project, the quantum-phase estimation algo-

rithm[12] allows for efficient calculation of molecular energies at

an accuracy equivalent to that of classical full configuration

interaction calculations. There are three basic approaches to the

quantum simulation of chemical systems.

One approach—the so called “first quantization”

approach—has been studied in the context of chemical reac-

tive scattering.[10] Here, physical position space is discretized.

The electronic wavefunction is then represented in the posi-

tion representation by the state of the qubits. The chemical

Hamiltonian is:

Ĥ5
X

i

p2
i

2Mi
1
X

i�j

qiqj

rij
(1)

where sums are over nuclei and electrons, pi is the momentum

of the ith particle, Mi is the mass of the ith particle, qi is the

charge of the ith particle, and rij is the distance between par-

ticles i and j in atomic units. We can simulate the effect of this

Hamiltonian by unitarily evolving the qubits through the prop-

agator corresponding to the molecular Hamiltonian, approxi-

mated using the quantum split operator method of Zalka[4] or

by quantum lattice gas methods.[5,6]

An alternative to grid-based first-quantized approaches is

the use of a second-quantized formalism. Here, the molecular

Hamiltonian is expressed in terms of creation and annihilation

operators acting on some basis of molecular orbitals. This

method is the main topic of this article and so discussed in
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greater detail below. While this technique scales less efficiently

than the prior method in the asymptotic limit, smaller scale

simulations require substantially fewer resources. The reason is

that a molecular orbital basis is more efficient for the repre-

sentation of localized chemical wavefunctions than a Cartesian

grid, and hence the first-quantized methods lead to wider, but

shallower circuits. Details of resource requirements for such

first-quantized simulations for chemistry are given in [10].

One of the differences between the first- and second-

quantized approaches lies in whether the antisymmetric

nature of the wavefunction is represented through properties

of the state (first quantized) or the operators (second quan-

tized). An alternative to grid-based methods in which the

dynamics preserves an initially antisymmetric wavefunction is

the use of a basis of Slater determinants. In this case, the chal-

lenge for quantum algorithms is the evolution under the CI

matrix representation of the Hamiltonian. Unlike the second-

quantized case, this matrix has no natural expression as a sum

of local terms, and no tensor product structure. However, the

CI matrix is sparse, and hence quantum simulation techniques

for sparse matrices may be applied to this problem. This yields

methods that both use an efficient molecular orbital represen-

tation of the wavefunction and have optimal asymptotic scal-

ing. This also enables the use of sparse methods, which scale

logarithmically with the error. The penalty is that the molecular

integrals must be computed on the fly during the quantum

computation.[13–15]

The calculation of the energies of molecular Hydrogen and

Helium-Hydride using minimal basis sets have been experi-

mentally achieved using linear optical quantum, NMR, and

Nitrogen vacancy in diamond quantum computers.[16–19] The

first digital fermionic quantum simulation was recently

achieved of a four-site Hubbard model in superconducting

hardware.[20] These proofs of principle demonstrations are

comparable to early quantum chemical calculations carried out

in the twentieth century.[21]

The development and optimization of quantum algorithms

for chemistry is ongoing. This work is driven by two goals.

First is the desire to determine the true optimal asymptotic

scaling of these algorithms for large quantum computers. The

second is to reduce the resource requirements of small exam-

ples to the point that they can be realized experimentally in

the near future. Recently, the possibility of using a small quan-

tum computer of around a hundred qubits for the purposes of

quantum chemistry has been investigated in detail. Initial

upper bounds on the cost indicated that large polynomial

scaling would be impractical for such problems.[22] Further

analysis developing circuit improvements, tighter upper

bounds, and numerical investigation of errors restricted to the

chemical ground state resulted in tight and efficiently comput-

able upper bounds on the resources required.[23–25] One may

also improve these algorithms by exploiting locality.[26]

The topic of this article is the Bravyi–Kitaev transformation,

an alternative to the use of the Jordan–Wigner transformation

to map fermions to spins.[27–29] This transformation was

defined in [28] in the context of using fermions to perform

quantum computations. Its use for the simulation of fermions

by quantum computers, and in particular, its use for the quan-

tum simulation of quantum chemistry, was introduced in [29].

We describe the transformation in detail, and derive some new

properties of the transformation that are relevant to the spe-

cific case of second-quantized Hamiltonians defined in a basis

of spin–orbitals. We give a new recursive definition for the

inverse Bravyi–Kitaev transformation matrix, as well as recur-

sive relationships for the update, parity, and flip sets (defined

below) which facilitate the computation of these sets. We ana-

lyze the efficiency of the Bravyi–Kitaev method for the simula-

tion of the methane molecule. We find that the Bravyi–Kitaev

mapping leads to a small improvement, particularly in the

number of nonlocal gates required for accurate simulation.

The Second-Quantized Hamiltonian

As in classical quantum chemistry, we invoke the Born-

Oppenheimer approximation, fixing the nuclear coordinates,

and calculating the electronic energy at a given geometry. In

the second-quantized formalism previously mentioned, the

electronic Hamiltonian is given by:

Ĥ5
X

i;j
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†
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†
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where hij and hijkl are integrals, which can be efficiently classi-

cally precomputed.

The a
†

and a operators in the Hamiltonian are creation and

annihilation operators on a basis set of molecular orbitals, as

discussed below. Note that here, the two-operator terms effec-

tively correspond to single-electron terms, and the four-

operator terms effectively correspond to electron–electron

interaction terms.

Because electrons are fermions, we require antisymmetry on

exchange of particle index. This is enforced through the use of

anticommutator restrictions on the creation and annihilation

operators:

aj; ak

� �
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†
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†

k

n o
50

aj; a
†

k

n o
5djk I (3)

Our task, therefore, is effectively to find the lowest eigen-

value of this Hamiltonian. As the dimension of the Fock space

grows exponentially with the number of basis orbitals, this is

classically intractable for systems of any reasonable size. How-

ever, a quantum computer could remove this problem using

quantum-phase estimation.[7]

To achieve this, three steps must be taken. First, a mapping

between the physical electronic states and qubit states in a

quantum computer must be established. Second, a well-

defined evolution operator equivalent to that of the molecular

Hamiltonian must be determined for the qubit basis. This

necessitates the derivation of qubit representations of the

electronic creation and annihilation operators. Finally, the

phase estimation algorithm requires the preparation of a guid-

ing state. A guiding state is an input state to the algorithm,
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which has an overlap with the true ground state, which decays

at worst as an inverse polynomial in the system size.

In the worst case, Hamiltonians are known for which the

problem of finding the ground state is QMA-complete (the

quantum equivalent of NP-complete).[30,31] Quantum computers

are not believed to be capable of efficiently solving QMA-

complete problems in the worst case, just as classical computers

are not believed to be capable of efficiently solving NP-complete

problems in the worst case. Assuming this is true, there exist

Hamiltonians for which no efficiently preparable guiding state is

likely to be available, and for which, the phase estimation algo-

rithm is, therefore, incapable of finding the ground state.

However, these worst case Hamiltonians rely on clock con-

structions so that their ground states are superpositions of quan-

tum states corresponding to time slices of an arbitrary quantum

circuit of depth polynomial in the number of qubits.[30] Even

constructions that show the QMA-completeness of specific phys-

ical models rely on geometrically complex interactions.[32] It is,

therefore, a widely believed conjecture that typical physical Ham-

iltonians do not correspond to worst case instances, and there-

fore, have efficiently preparable ground states. Specific

algorithms for state preparation are considered in [7,33–36].

One may also ask whether the requirement to prepare guiding

states may rely on features of physical Hamiltonians, which can

also be exploited for the development of classical algorithms.

The requirement on a guiding state for a quantum computation

of an energy eigenvalue is only that its overlap with the true

ground state is bounded by an inverse polynomial in the system

size. Recent consideration of Quantum Monte Carlo methods

(which simulate quantum systems using conventional computers)

showed that a much stronger guiding state was required to

make these methods efficient, even in the case of so-called sto-

quastic Hamiltonians where there is no fermion sign problem.[37]

Qubit creation and annihilation operators

In this section, we describe three mappings of fermionic states

and operators to qubit states and operators. In each case, we

map the occupation number basis to the qubit basis. The occu-

pation number configuration basis states are given by specify-

ing the occupation fi 2 f0; 1g of every orbital. The fermionic

creation and annihilation operators, when acting on a system of

n orbitals with occupation state vector, jfn21fn22:::f1f0i yield:

a
†

j jfn21:::fj110fj21:::f1f0i5ð21Þ

Pj21

s50

fs

jfn21:::fj111fj21:::f1f0i (4)

a
†

j jfn21:::fj111fj21:::f1f0i50 (5)

ajjfn21:::fj111fj21:::f1f0i5ð21Þ

Pj21

s50

fs

jfn21:::fj110fj21:::f1f0i (6)

ajjfn21:::fj110fj21:::f1f0i50 (7)

We note that one is free to choose the ordering of the orbi-

tals here. We have chosen an ordering in which the orbitals fs

with s< j determine the parity, but the choice s> j is equally

valid from the point of view of realizing the anticommutation

relations, and is more common in the chemical literature.

As can be seen in Eqs. (4) through (7), these operators

depend on both the occupation of orbital j as well as its parity

pj5
Pj21

s50 fs, as the phase shift in Eqs. (4) and (6) can be written

in terms of the parity as ð21Þpj . If the parity is odd, the state

is multiplied by a factor of 21, and if it is even, there is no

phase shift. Since the fermionic creation and annihilation oper-

ators change both occupation and parity, their qubit ana-

logues also need to do so. Therefore, both the occupation and

parity of each orbital must be stored when mapping from the

occupation basis state onto a qubit basis state.

We consider three mappings where sums of fermionic occu-

pations are stored in the qubit state. These are the Jordan–

Wigner basis, the parity basis and the Bravyi–Kitaev basis. In all

cases, it is helpful to define several subsets of the qubits,

which contain the information needed to apply fermionic

operators to the state. These sets are defined below, and we

use �f i to indicate Boolean negation �051; �150.

1. The update set, U(i). This is the set of qubits, apart from i

that must be updated, when the occupancy fi changes.

2. The parity set P(i). This is the set of qubits that deter-

mines the parity pi5
P

j<i fj. Note that the occupancy fi is

not included in this sum.

3. The flip set F(i). This is the set of qubits that determines

whether the qubit value is equal to the occupancy fi or

its negation �f i

4. The remainder set R(i). The flip set is a subset of the par-

ity set, and so it is convenient to define the complement

of the flip set in the parity set—RðiÞ5PðiÞnFðiÞ.

Note that all of the sets U(i), P(i), F(i) and R(i) are defined

such that the reference qubit i is never a member of them.

Our task is then to represent the electronic creation and

annihilation operators as operators on the qubit space. Qubit

creation and annihilation operators can be defined in terms of

Pauli operators as follows:

Q̂
1

5 j1ih0j 5
1

2
X2iYð Þ

Q̂
2

5 j0ih1j 5
1

2
X1iYð Þ (8)

These operators contain only Pauli operators acting on the qubit

being created or annihilated. They, therefore, commute for different

qubits, and so clearly do not fulfil the anticommutation relations

required. We must combine these operators with actions on the

sets defined above to obtain qubit creation and annihilation opera-

tors that satisfy the canonical fermionic commutation relations.

The Jordan–Wigner transformation

In the Jordan–Wigner transformation, we use the state of a qubit

to denote whether or not a particular basis orbital is occupied—

clearly, as electrons are fermionic, occupation numbers which are

not zero or one are impossible. The qubits directly store the
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occupation basis.[38] In this case, the update set is empty (recall

that qubit i is not a member of the update set).

Parity information needed to correctly apply the creation

and annihilation operators for orbital i is contained in all

qubits j< i. Hence the parity set is defined by PðiÞ5fjjj < ig.
This is the Jordan–Wigner transformation.[27] We consequen-

tially have the qubit operators:

a
†

i 5
1

2
Xi2iYið Þ �

j<i
Zi5Q1

i � ZPðiÞ

ai5
1

2
Xi1iYið Þ �

j<i
Zi5Q2

i � ZPðiÞ (9)

where ZPðiÞ means a Pauli Z operator acting on all qubits in

the set P(i). The fact that these operators obey the fermionic

anticommutation relations follows from the fact that fZ;Q6g5
0 and fQ1;Q2g5I.

Parity basis

The Jordan–Wigner transformation stored occupancy locally,

and parity is nonlocal. The parity basis stores the parity

locally,[28] and the occupancy is nonlocal. The parity informa-

tion of each orbital j is stored in the corresponding qubit j,

qj5pj1fj5
Xj

s50

fs: (10)

Evidently, PðjÞ5fj21g in the parity basis. Whether qubit j

stores fj or �f j is determined by qubit j 2 1 in the parity basis.

Hence, the flip set in this basis is equal to the parity set:

FðjÞ5PðjÞ, and so the remainder set RðjÞ51. The update set

U(j) is the set of qubits that must be updated when occupancy

fj changes. Now fj appears in every qi such that i> j, and

so when fj changes every qubit i> j must be updated. Hence,

UðjÞ5 fiji > jg for the parity basis. Given the definitions of

these sets, we can now write the qubit creation and annihila-

tion operators.

a
†

j 5ð�
i>j

XiÞ � ðP0
FðjÞ � Q2

j 1P1
FðjÞ � Q1

j Þ � ZPðjÞ

aj5ð�
i>j

XiÞ � ðP0
FðjÞ � Q1

j 1P1
FðjÞ � Q2

j Þ � ZPðjÞ

(11)

where Pb5jbihbj. Now, because PðjÞ5FðjÞ and because Px Z5

ð21ÞxPx we can write:

a
†

j 5ð�
i>j

XiÞ � ðP0
FðjÞ � Q2

j 2P1
FðjÞ � Q1

j Þ5
1

2
ð�

i>j
XiÞðZj � Zj212iYjÞ

aj5ð�
i>j

XiÞ � ðP0
FðjÞ � Q1

j 2P1
FðjÞ � Q2

j Þ5
1

2
ð�

i>j
XiÞðZj � Zj211iYjÞ

(12)

The number of nontrivial Pauli factors in these operators

scales as O(n), just as for Jordan–Wigner. In this case, it is the

update set whose size scales linearly with the number of qubits.

Bravyi–Kitaev transformation

The Bravyi–Kitaev transformation stores both occupation and par-

ity nonlocally, rather than storing the occupation state locally and

parity nonlocally or vice versa, as is the case for the Jordan–Wigner

and parity bases. In the Bravyi–Kitaev basis, for any index j, if j is

even, qubit j holds only the occupation state of orbital j, and if j is

odd, qubit j holds a partial sum of the occupation state of a set of

orbitals of index less than j. The Bravyi–Kitaev transformation that

maps the fermionic occupation state vector to the qubit state,

denoted bn for n orbitals such that bn
~fn 5~bn , is given by:

where 1! indicates a row of ones in the bottom row.

For example, for eight qubits, the fermion occupation state

vector is mapped to the qubit basis state as shown in Eq. (14)

(all sums in mod(2)):

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

f0

f1

f2

f3

f4

f5

f6

f7

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

5

f0

f11f0

f2

f31f21f11f0

f4

f51f4

f6

f71f61f51f41f31f21f11f0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

(14)

From this definition, we proceed to obtain the update, par-

ity, flip, and remainder sets.

The update set, U(j), is the set of qubits that must be

updated when the occupation of some orbital j is changed.

This is the set of qubits that hold partial sums that depend on

the occupation of orbital j. Because the transformation matrix

bn is lower diagonal, only qubits with i> j will be contained in

U(j). We abuse notation to write U(j)> j to indicate this. Since

qubits of even j hold only the occupation state of orbital j, the

update set will only contain odd qubit indices, as only qubits

with odd j hold partial sums. From the Bravyi–Kitaev transfor-

mation matrix, given that any column j contains the vector

that acts on occupation state vector entry j, the update set for

changing the occupation of orbital j is simply the set of qubits

with index greater than j and equal to the indices of the non-

zero entries in column j.[29] The update sets for each orbital

for systems of 1–8 orbitals are given in Table 1.

The parity set, P(j), is the set of qubits needed to determine

the parity of the set of orbitals with index <j. The parities are

determined from the occupation number vector by the action

of a matrix p, which is defined by

½pn�ij5
1 if i < j

0 otherwise

(
(15)

Note this is not the transformation matrix, which gives the

parity basis, as pn has a zero diagonal, given that, it computes

the parity of all orbitals strictly less than i. For four orbitals,

this matrix is given by:
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p45

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

0
BBBBB@

1
CCCCCA (16)

and addition is taken modulo two in the matrix multiplication.

This method stores the parity of orbital j in partial sums held

in several qubits of index less than or equal to j, where the

number of these qubits scales as Oðlog ðjÞÞ � Oðlog ðnÞÞ.[28,29]

Since the fermionic occupation state vector ~fn is transformed

into the Bravyi–Kitaev basis, ~bn by bn
~fn 5~bn , this transformation

can be reversed to get back to the fermionic occupation basis

by b21
n
~bn 5~fn . We find that the parity transformation for the

Bravyi–Kitaev basis is pnb
21
n . For eight orbitals:

~p8 5p8
~f8 5p8b

21
8
~b8

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 1 0 1 1 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

b0

b1

b2

b3

b4

b5

b6

b7

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

5

0

b0

b1

b21b1

b3

b41b3

b51b3

b61b51b3

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

(17)

Therefore, the parity set, P(j), is the set of qubits with index

equal to the nonzero entries of pnb
21
n in row j as these are the

qubits whose sum gives the parity of orbital j.[29] The product

pnb
21
n is lower triangular because it is the product of two

lower triangular matrices. Hence, the parity set P(j) only con-

tains indices i< j, so P(j)< j. This also implies that the intersec-

tion of parity and update sets is always empty. The parity sets

for each orbital for systems of 1 through 8 orbitals are given

in Table 2.

Lastly, the flip set, F(j), is the set of qubits that determine

whether qubit j and orbital j are equal or opposite. The flip set

is the set of qubits that hold the parity of the occupation of

the orbitals with index <j included in the partial sum held in

qubit j. Note that this definition implies that the flip set is a

subset of the parity set, and because the qubits hold partial

sums, it is usually a proper subset of the parity set. As for

even j, qubit j holds the occupation of orbital j, the flip set is

empty for all even j. However, for odd j, we need to find which

occupation states are included in each partial sum to trans-

form back to the fermionic occupation state. To do this, we

can look at the inverse transformation. For eight qubits,

b21
8 5

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 1 1 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

(18)

As b21
n
~bn 5~fn , the set of qubits whose states sum to the

occupation state of orbital j are those with indices equal to

the indices of nonzero entries in row j of b21
n . Therefore, the

flip set of orbital j is the set of these qubits with indices <j, as

this is the set of qubits that hold the sum of all occupation

Table 1. Indices of qubits in the update set, U(j), which is the set of all qubits whose state must be updated when the occupation state of an orbital j is

changed, for systems of 1–8 orbitals.

# Qubits # Orbitals U(0) U(1) U(2) U(3) U(4) U(5) U(6) U(7)

2 1 {1} – – – – – – –

2 2 {1} 1 – – – – – –

4 3 {1, 3} {3} {3} – – – – –

4 4 {1, 3} {3} {3} 1 – – – –

8 5 {1, 3, 7} {3, 7} {3, 7} {7} {5, 7} – – –

8 6 {1, 3,7} {3, 7} {3, 7} {7} {5, 7} {7} – –

8 7 {1, 3,7} {3, 7} {3, 7} {7} {5, 7} {7} {7} –

8 8 {1, 3,7} {3, 7} {3, 7} {7} {5, 7} {7} {7} 1
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states of orbitals with index <j held in qubit j. The flip sets for

each orbital of systems of 1–8 orbitals are listed in Table 3.

One final property of these sets is worth remarking upon.

The Jordan–Wigner transformation finds application in con-

densed matter physics to map one-dimensional spin systems

to noninteracting spinless fermions, hence, enabling exact

diagonalization of several systems of interest.[39] Here, we are

using the Bravyi–Kitaev transformation to map fermions with

spin to spin one-half systems. The fact that we are mapping

spin-orbitals to qubits manifests itself in the pairing of spin-

orbitals that correspond to the same spatial orbital, and in

extra structure present in our second-quantized Hamiltonian.

We assume that even-numbered spin-orbitals correspond to

one spin function and odd to the other, such that adjacent

spin-orbitals correspond to the same spatial function. The fact

that Bravyi–Kiatev treats even and odd orbitals differently is

convenient in this case. In particular, the fact that U(j)> j and

P(j)< j gives rise to the intersections among even and odd par-

ity and update sets shown in Table 4.

Bravyi–Kitaev operators

Having defined the update, parity, and flip sets for the Bravyi–

Kitaev transformation, we can define qubit creation and anni-

hilation operators. For even indexed qubits, this is relatively

simple. Even indexed qubits only store their corresponding

occupation, performing operations requires only the actual

creation or annihilation operation (Q̂
6

), updating the update

set with a bit flip, and introducing a negative sign depending

on the parity of the parity set. Hence, the creation and annihi-

lation operator equivalents for even indexed qubits are:

a
†

j 5XUðjÞ � Q̂
1

j � ZPðjÞ5
1

2
XUðjÞ � Xj � ZPðjÞ2iXUðjÞ � Yj � ZPðjÞ
� �

(19)

aj5XUðjÞ � Q̂
2

j � ZPðjÞ5
1

2
XUðjÞ � Xj � ZPðjÞ1iXUðjÞ � Yj � ZPðjÞ
� �

(20)

where we know that U(j)> j and P(j)< j, so these operators act

on disjoint sets of qubits.

The qubit operators for qubits with odd index are more

complicated. First, we note that where the flip set has nonzero

parity, the occupation of the qubit in question is flipped from

that of the electronic state. Consequentially, in this case, the

creation operator must be applied to the qubit where the

annihilation operator is applied to the electronic state, and

vice versa. Therefore, defining projectors onto the even and

odd states of a set, S, of qubits:

Ê S5
1

2
I1ZSð Þ

ÔS5
1

2
I2ZSð Þ

(21)

We then have new creation and annihilation operators to

express this behavior:

P̂
6

j 5Q̂
6

j � Ê FðjÞ2Q̂
7

j � ÔFðjÞ5
1

2
Xj � ZFðjÞ7iYj

� �
(22)

Here, we have already implicitly accounted for the phase of

the qubits in F(j). Thus, in determining whether a sign change

must be implemented, we must only additionally determine

the phase of the qubits in the parity set which are not in the

Table 2. Indices of qubits in the parity set, P(j), which is the set of qubits whose occupation is needed to determine the parity of the orbital j, for each

orbital in systems of 1–8 orbitals.

# Qubits # Orbitals P(0) P(1) P(2) P(3) P(4) P(5) P(6) P(7)

2 1 1 – – – – – – –

2 2 1 {0} – – – – – –

4 3 1 {0} {1} – – – – –

4 4 1 {0} {1} {1, 2} – – – –

8 5 1 {0} {1} {1, 2} {3} – – –

8 6 1 {0} {1} {1, 2} {3} {3, 4} – –

8 7 1 {0} {1} {1, 2} {3} {3, 4} {3, 5} –

8 8 1 {0} {1} {1, 2} {3} {3, 4} {3, 5} {3, 5, 6}

Table 3. Indices of qubits in the flip set, F(j), which is the set of qubits that determine whether orbital j and qubit j have the same or flipped parity, for

systems of 1–8 orbitals.

# Qubits # Orbitals F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7)

2 1 1 – – – – – – –

2 2 1 {0} – – – – – –

4 3 1 {0} 1 – – – – –

4 4 1 {0} 1 {1, 2} – – – –

8 5 1 {0} 1 {1, 2} 1 – – –

8 6 1 {0} 1 {1, 2} 1 {4} – –

8 7 1 {0} 1 {1, 2} 1 {4} 1 –

8 8 1 {0} 1 {1, 2} 1 {4} 1 {3, 5, 6}
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flip set. To do this, we make use of the remainder set, defined

above. This gives us the qubit representation of the electronic

creation and annihilation operators for odd indexed orbitals:

a
†

j 5XUðjÞ � P̂
1

j � ZRðjÞ5
1

2
XUðjÞ � Xj � ZPðjÞ2iXUðjÞ � Yj � ZRðjÞ
� �

(23)

aj5XUðjÞ � P̂
2

j � ZPðjÞ5
1

2
XUðjÞ � Xj � ZPðjÞ1iXUðjÞ � Yj � ZRðjÞ
� �

(24)

The only difference between these operators and those of

the even indexed qubits, is the application of Z to the remain-

der set, rather than the parity set, in the second term. Thus,

by defining a final set:

qðjÞ5
PðjÞ; j even

RðjÞ; j odd

(
(25)

We have a final expression for Bravyi–Kitaev representations

of electronic creation and annihilation operators:

a
†

j 5
1

2
XUðjÞ � Xj � ZPðjÞ2iXUðjÞ � Yj � ZqðjÞ
� �

(26)

aj5
1

2
XUðjÞ � Xj � ZPðjÞ1iXUðjÞ � Yj � ZqðjÞ
� �

(27)

These two expressions allow for general products—such as

those observed in the molecular Hamiltonian—to be built up

through simple multiplication.[29]

Inverse Bravyi–Kitaev Transformation Matrix

We have constructive definitions for the Bravyi–Kitaev transfor-

mation matrix for any number of qubits that is a power of

two, and for the parity transformation matrix in the occupation

state basis. We do not have a constructive definition for the

inverse Bravyi–Kitaev transformation matrix. The parity, update,

and flip set are determined by these three matrices, so a con-

structive definition for b21
n would greatly simplify the process

of computing these sets. By inspection, we can see that the

inverse matrix (again, in mod 2) can be defined recursively as

follows:

where the top left and bottom right quadrants of b21
n are

given by b21
n
2

, the top right quadrant is entirely zeroes, and the

bottom left quadrant is all zero except the bottom, right-most

entry.

We can verify this form for b21 directly. The equation for

the inverse Bravyi–Kitaev transformation matrix satisfies the

condition that bnb
21
n 5I. From Eqs. (13) and (28), we obtain:

because bn
2
b21

n
2

5I, the condition that bnb
21
n 5I is:

bn
2

0

 0 1

 !
1

0

 1!

 !
b21

n
2

50 (29)

By the definition of the Bravyi–Kitaev transformation, the

upper triangle of any bn is entirely zeroes. Therefore, bj;050

for all j> 0, and so:

bn
2

0

 0 1

 !
5

0

 0 1

 !
: (30)

Now consider the second term in Eq. (29). For the multi-

plication of any two matrices, of the left-hand matrix, only

the bottom row affects the bottom row of the product

matrix. For example, if A is matrix of all ones and B is a

matrix with ones in the bottom row and zeroes every-

where else, for any third matrix C, the bottom row of AC is

equivalent to the bottom row of BC as the bottom rows of

A and B are equal. By the definition of the Bravyi–Kitaev

transformation, the bottom row of bn is all ones for all n.

Therefore, the bottom row of bnb
21
n is equivalent to the

bottom row of the matrix product from Eq. (31). As we

know that bnb
21
n 5I, the bottom row of this product is

ð0; 0; 0; ::::; 0; 1Þ.

0

 1!

 !
b21

n
2

5
0

 0 1

 !
: (31)

Combining Eqs. (30) and (31), Eq. (29) becomes:

bn
2

0

 0 1

 !
1

0

 1!

 !
b21

n
2

5
: ::: 0

0::: 2mod 2

 !
50 (32)

as we are adding in modulo 2. Our definition for the inverse

Bravyi–Kitaev transformation matrix in Eq. (28) is, therefore,

correct for all n, as it trivially holds for n 5 1. Now that we

have a recursive definition for both the Bravyi–Kitaev transfor-

mation matrix and its inverse, in the next section, we use

these definitions to obtain recursive expressions for the

update, parity, and flip sets.

Table 4. Intersections between parity and update sets appearing in the

Bravyi–Kitaev transformation for adjacent odd and even orbital indices.

U(2i) Uð2i11Þ P(2i) Pð2i11Þ

U(2i) U(2i) � Uð2i11Þ 1 1
Uð2i11Þ � Uð2i11Þ Uð2i11Þ 1 1
P(2i) 1 1 P(2i) � Pð2i11Þ
Pð2i11Þ 1 1 � Pð2iÞ Pð2i11Þ
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Update, Parity, and Flip Set Formulae

The method of finding the parity, update, and flip sets needed

for the Bravyi–Kitaev transformation described above in Bravyi–

Kitaev Transformation section and in [29], while effective, is some-

what clumsy. Ideally, we want a formula that directly computes

which qubits are in each of these sets. Given the recursive defini-

tion of the Bravyi–Kitaev transformation matrix and its inverse,

we can define the update, parity, and flip sets recursively.

Update set

As described above, the update set is given by the row-index

of the nonzero entries of index greater than j in column j of

the Bravyi–Kitaev transformation matrix.

The upper triangle of bn
2

determines the update set for

qubits j < n
2 for a system of n qubits, and also determines

the update sets for a system of n
2 qubits. Since bn

2
is in the

top left corner for this half of the matrix, all entries in bn
2

maintain the same indices within bn. Therefore, all elements

in the update sets Un
2
ðjÞ are also elements in the update sets

for UnðiÞ for i < n
2. For bn, however, a row of 1s are added

across the left half of the bottom row (row index n 2 1) of

the matrix, and as these are nonzero entries in a row of

index greater than j for all qubits of index j < n
2, n 2 1 is in

the update set for all qubits of index j < n
2 for a system of n

qubits in addition to the elements in the update sets for n
2

qubits.

If we inspect bn, defined in Eq. (13), we see that the lower tri-

angle of the matrix bn
2

determines the update set for the n

qubit system when changing the occupation of orbital
n
2 � j < n. This is also the part of bn

2
that determines the update

sets for all qubits in a system of n
2 qubits. When the matrix bn

2
is

placed in the lower right quadrant of bn, the row and column

indices of all entries in that matrix are increased by n
2
.

The recursive function for the elements in the update set of

an n qubits system when changing the occupation of orbital j is:

UnðjÞ5
fUn

2
ðjÞ; ðn21Þg for j <

n

2n
Un

2

�
j2

n

2

�
1

n

2

o
for j � n

2
:

8><
>: (33)

This recursive definition clearly shows the logarithmic

growth in locality of the operators in the Bravyi–Kitaev

transformation, as the set is either the same size as the set

for half the number of qubits, or increases by one. Having

determined this recursive relation for the update set, we

obtain a similar expression for the parity set in the following

section.

Parity set

The parity set for a given orbital j is given by the nonzero

entries in row j of the parity transformation matrix pn5pnb
21
n

where pn is the parity transformation matrix in the occupation

state basis, given by an upper triangular matrix with zeroes

along the diagonal. From the definitions for pn and b21
n , we

obtain:

where we have defined

½An=2�ij51 8i; j; ½Tn=2�ij5di;n=221dj;n=221 (34)

which gives us:

Now, pn=2Tn=250, because the last row and column of p is

zero, and only this row and column contributes to the prod-

uct. To evaluate An=2b
21
n=2, we first prove the following fact

about b21
n=2: every column of b21

n=2 has two nonzero entries

except the last column, which has one. We can proceed by

induction. It is true that b21
2 has two nonzero entries in each

column except the last, which has one. Following the recursive

construction, if it is true of b21
n=2, it will be true of b21

n by

inspection, as the addition of the single additional nonzero

entry adds one more nonzero entry to the last column of b21
n=2.

Given this fact, it follows immediately that:

An=2b
21
n=25Sn=2 (36)

where we define:

½Sn=2�ij5dj;n=2 (37)

The parity transformation matrix in the Bravyi–Kitaev basis

can, therefore, be defined as:

We can now define a recursive formula for the parity set as

we did for the update set. For orbitals j < n
2, the parity is deter-

mined by the submatrix pn
2

matrix. For j � n
2, the parity set con-

tains the set PðjÞn=2 as the bottom quadrant is simply pn
2
.

However, the column index of each element is increased by n
2
, as

it is shifted to the right side of the matrix. For rows n
2 through

ðn21Þ, qubit n
2 21 is added to the parity set for qubits n

2 through

n 2 1. We find that the parity set can be recursively expressed as:

PnðjÞ5
Pn

2
ðjÞ for j <

n

2n
Pn

2

�
j2

n

2

�
1

n

2
;
� n

2
21
�o

for j � n

2

8><
>: (39)

Again, this recursive definition results in logarithmic growth

in locality, as the set is again either the same size as the set
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for half the number of qubits, or increases by one. We now

have a recursive expression for both the update and parity

sets, and in the next section, we will find a recursive relation

for the flip set.

Flip set

The elements of the flip set for a given orbital j are defined by

the indices of the nonzero entries in row j with indices <j of

the matrix b21
n , as discussed above. By inspection, we see that

the elements that determine the flip sets for a system of n
2

qubits also determine the flip sets of qubits with indices j < n

=2 for a system of n qubits. For the flip sets of orbitals of
n
2 � j < n21, however, the row and column indices of the ele-

ments of the b21
n
2

are all increased by n
2 as they are in the

lower right quadrant. The one nonzero entry in the lower right

quadrant adds the qubit n
2 21 to the flip set of qubit n 2 1.

The recursive expression for the flip set of an orbital j in a sys-

tem of n qubits is given in Eq. (40):

FnðjÞ5

Fn
2
ðjÞ for j <

n

2n
Fn

2

�
j2

n

2

�
1

n

2

o
for

n

2
� j < ðn21Þn

Fn
2

�
j2

n

2

�
1

n

2
;

n

2
21
o

for j5n21

8>>>>>><
>>>>>>:

(40)

Just as in the cases of parity and update sets, this exhibits

the logarithmic growth in locality of the operators.

We now have a recursive expression for the update, parity,

and flip sets given in Eqs. (33), (40), and (39). These allow each

set to be computed directly, rather than through various steps

of matrix manipulation, greatly simplifying the process of com-

puting each set. This also connects the matrix definition of the

Bravyi–Kitaev transformation given in [29] with the original defi-

nition given by Bravyi and Kitaev.[28]

A Numerical Example: Methane in STO6G

While Trotterization and phase estimation for the quantum

simulation of chemistry have been extensively studied and

simulated, the sole example for Bravyi–Kitaev is given in [29]. In

that work, the minimal basis representation of H2 was studied.

This is an example of considerable interest from the point of

view of early experimental implementation of these algo-

rithms, but is too small to exhibit all the properties of the

Bravyi–Kitaev transformation. To examine characteristics of the

mapping in a larger system than previously studied, we exam-

ined the performance of this technique for the determination

of the ground-state energy of methane. The Hartree–Fock

basis was used as our molecular orbital basis, and was deter-

mined through a Hartree–Fock calculation using GAMESS,[40,41]

with a geometric Td symmetry, a CH bond length of 1.107902,

and a STO-6G atomic orbital basis. Spatial molecular orbital

integrals were also obtained from this calculation, and trans-

formed into a spin-orbit basis in physicists’ notation.

Python code was then used to generate Jordan–Wigner and

Bravyi–Kitaev qubit Hamiltonians in terms of a symbolic

sequence of strings of Pauli operations. This code automati-

cally combines duplicate strings. Each Pauli string is repre-

sented by a sequence of N numbers, where N is the number

of qubits (i.e., spin orbitals). Each number corresponds to the

operation acting on its respective qubit—0 for the identity, 1

for Pauli X, 2 for Pauli Y, and 3 for Pauli Z. The numbers are

ordered in reverse sequential order—the qubit with highest

index is operated on by the leftmost operator, and the 0

indexed qubit is operated on by the right-most operator. Con-

sequentially, each term is represented by a base-4 number.

The terms are then ordered lexiographically—in ascending

order of these base-4 numbers.

Having a symbolic expression of the Jordan–Wigner and

Bravyi–Kitaev Hamiltonians, our code constructs CSC sparse

matrix representations of these using SciPy’s sparse matrix

methods. It proceeds to diagonalize these Hamiltonians, pro-

viding both an exact ground-state eigenvalue (to compare

against our Trotterized eigenvalue estimate) and a ground-

state eigenvector, which is needed for the following stage of

our calculation. Note that in an experimental realization on a

quantum computer the ground-state eigenvector would be

prepared by adiabatic-state preparation, or other methods.[7,33]

Using the eigenvector obtained as an input, our python code

simulates the effect of applying a Trotterized unitary with speci-

fied Hamiltonian (as a sequence of strings of Pauli operations),

Trotter-Suzuki approximation order, number of Trotter steps,

and overall simulation time. Note that to reduce computational

cost substantially, the whole unitary evolution matrix is not

determined. Each Pauli string term in the Hamiltonian is instead

exponentiated symbolically. Every Pauli operation in each expo-

nentiated term is then directly implemented on the target state.

With key functions compiled using Cython, this cuts computa-

tional resource requirements dramatically. Finally, our code uses

the original ground-state vector and the post-Trotter vector to

assess the phase gained through phase estimation, and thus, an

eigenvalue estimate as a function of our parameters. The details

of how a unitary given by the exponential of an arbitrary string

of Pauli matrices is give in [29].

Our code also counts the gates associated with each Trotte-

rization setting. We use the commonly used gate set consist-

ing of controlled not gates and arbitrary single qubit gates.

We note that this gate set is appropriate for small-scale experi-

mental implementation without error correction. For fault tol-

erant implementations, a different gate set would be required,

and these circuits could be obtained from those we developed

with some overhead. Details of fault-tolerant implementations

of these kinds of simulation algorithms are given in [42].

These gate counts do not include any cancellation within

the gate structure, that is, between sequential CNOT strings.

These results are shown in Figures 1 and 2, and demonstrate a

small improvement associated with the Bravyi–Kitaev mapping.

The number of CNOT gates to realize a single Trotter step, for

either a first- or second-order Trotter scheme, is always less for

the Bravyi–Kitaev mapping. This reflects the increased locality

of the mapping. The number of single qubit gates for the

Bravyi–Kitaev mapping is higher for a single Trotter step due

to the changes of basis required by the more sophisticated
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form of the creation and annihilation operators. However, the

accuracy of the Bravyi–Kitaev method for a given number of

gates is better than for the Jordan–Wigner method, as shown

in Figures 1 and 2.

These results compare gate sequences derived from both

Bravyi–Kitaev and Jordan–Wigner transformations that are

based on a lexicographic ordering of terms in the Hamiltonian.

There is no reason to believe that this is optimal in either

case, but it is reassuring that the simplest comparison of the

two methods gives results which are slightly better for the

Bravyi–Kitaev transformation. Naturally, the true costs of

the two methods are only given by optimal Trotterizations. In

the case of the Jordan–Wigner transformation such optimiza-

tion has been performed recently.[23,24] However, such optimi-

zation of the Bravyi–Kitaev transformation is the subject of

current research. In this case, simple circuit optimizations are

made more complex by the more complex strings of Pauli

operators that occur, but are also simpler due to the reduced

locality of the transformation. The ordering of terms in the

Trotterization also has a significant impact on the Trotter error,

and new work on understanding the chemical basis of these

Trotter errors should also act as a guide to future optimiza-

tions of the Trotter ordering for Bravyi–Kitaev.[25] Finally, the

impact of the reduced locality of the operators will depend in

detail on the architecture used.

Conclusion

In exploring the Bravyi–Kitaev transformation, we found new,

recursive equations for the update, flip, and parity set given in

Eqs. (33), (40), and (39), allowing these sets to be computed

directly rather than through various matrix operations. The

recursive nature of these definitions underlies the logarithmic

growth in locality of operators in the transformation. Such

recursive approaches to algorithm development often provide

such improvements, as in the examples of the Fast Fourier

Transform and quicksort algorithms.

We presented a numerical example of the Bravyi–Kitaev

mapping applied to the methane molecule, observing a small

improvement over the traditional Jordan–Wigner mapping.

The Bravyi–Kitaev mapping appears to result in a small

decrease in the total amount of gates necessary to achieve an

arbitrary precision approximation. However, a far more sub-

stantial drop is present for the amount of CNOT gates

required. This emphasizes the increase in locality of the spin

Hamiltonian realized under the Bravyi–Kitaev mapping.

The work presented here shows that the Bravyi–Kitaev

method of quantum simulation of interacting fermionic sys-

tems can be systematically improved in ways that both clarify

the method theoretically and bring experimental realization of

these simulations closer.
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