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ABSTRACT
Modern smartphones correct typing errors and learn user-
specific words (such as proper names). Both techniques are
useful, yet little has been published about their technical
specifics and concrete benefits.

One reason is that typing accuracy is difficult to measure em-
pirically on a large scale. We describe a closed-loop, smart
touch keyboard (STK) evaluation system that we have im-
plemented to solve this problem. It includes a principled
typing simulator for generating human-like noisy touch in-
put, a simple-yet-effective decoder for reconstructing typed
words from such spatial data, a large web-scale background
language model (LM), and a method for incorporating LM
personalization. Using the Enron email corpus as a person-
alization test set, we show for the first time at this scale that
a combined spatial/language model reduces word error rate
from a pre-model baseline of 38.4% down to 5.7%, and that
LM personalization can improve this further to 4.6%.
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INTRODUCTION
Text input methods have often been key features in shap-
ing the paradigm shifts in mobile computing in the last
decades. For example, handwriting with a modified charac-
ter set (Graffiti) was central to the Palm Pilot era of PDAs.
Miniature thumb keyboards dominated the design of Black-
Berry and similar devices. Smart touch keyboards (STK) en-
abled the current generation of full touchscreen mobile de-
vices.

STK products rely on language models, or least a dictionary,
to correct touch errors, autocomplete partial letter strings to
complete words, and predict what the user will type next. Sur-
prisingly (and for methodological reasons discussed later) the
∗This work was done while Andrew Fowler was an intern at Google
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quantitative effects of applying language modeling to touch-
based STKs have never been formally reported in the research
literature. In fact many recent studies of touch screen typing
do not involve LMs at all (e.g. [10]). Our concern is that
in many cases, evaluation without language-model based cor-
rection may lead to incorrect conclusions about the benefits of
a particular technique. For example, [34] found that improve-
ments in spatial error modeling had little effect in practice
since LM-based correction compensated for such spatial er-
rors. For this reason, quantitatively benchmarking the effects
of a standard LM to STK is one of the goals of this paper.

Conversely, traditional metrics of language models in isola-
tion may not accurately reflect how they perform in a de-
ployed decoder. A model-intrinsic measure like per-word per-
plexity, though commonly used to compare LMs, can corre-
late poorly with downstream metrics, as is the case with word
error rate in speech recognition [6]. Extrinsic evaluations like
typing accuracy, which more closely reflect the experience of
an actual user, can only be evaluated if the user’s role in the
decoding process is considered.

An especially relevant language modeling technique for mo-
bile text entry, and one that is also difficult to measure, is
LM personalization, in which a language model’s lexicon
and probabilities are made flexible and adaptive to the user.
A natural way to accomplish this is to utilize a user’s writ-
ten history, since it best reflects that person’s usage of lan-
guage. However, scientific understanding of text input LM
personalization is limited. The most detailed work dates from
2006, and studies previous-generation mobile devices with
physical keyboards [30]. Modern soft keyboards, with more
fuzzy input on touchscreens, may rely more heavily on LMs,
and therefore are more likely to benefit when personalization
works, or suffer when it does not.

In this paper, we contribute the first large-scale longitudi-
nal simulation study of the effects of language modeling,
with and without personalization, on finger-touch-based soft
keyboards. As a methodological contribution, we created a
novel integrated framework (dubbed Sketch Jr.) for testing
input accuracy, which differs from intrinsic measures such
as LM perplexity and keystroke savings, which are typically
computed in isolation of the input problem. Our method al-
lows for extrinsic evaluation of our models by incorporating
large-scale simulation of human-like inputs. We evaluate our
LMs in connection with sloppy user input based on empiri-
cal data, using a principled error correction and word com-
pletion model (decoder). We use the longitudinal real-world
text-writing history of a large group of individuals (the En-
ron Corpus). Through this human simulation, we show that
a background LM can reduce typing word error rate (WER)
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from 38.4% to 5.7%, and that personalized LMs further re-
duce this error to 4.6% (a 19.3% relative change compared
to the non-adapted model). We also examine personaliza-
tion methods based on the idea of an exponentially-decaying
cache, and find that a decay time in months is optimal, but
that the decay curve has little effect on the overall perfor-
mance result. This work is also, as far as we know, the first
to study and quantify the tradeoff between the overall error
rate and false corrections, a subclass of errors highly visible
to end-users.

RELATED WORK

Language Models for Text Entry
In the broad sense, language models have long been used in
text input. The simplest LM is a lexicon, i.e. a list of permis-
sible words. A lexicon can already provide quite powerful
constraints in, for example, decoding ambiguous 12-button-
based dialpad input found on traditional phones, which dates
back to the early 1970’s [28]. Since entering logographic text
such as Chinese with a Roman alphabet is highly ambiguous,
applying some form of model that maps Roman letter-based
phonetic input to logographic characters has also been nec-
essary and common in East Asian countries for a long time
[30]. Innovations such as word-gesture typing, or shape writ-
ing [36, 37], also leverage language regularities in the form
of a lexicon that could further be adapted to the individual
user by extracting a vocabulary from the user’s past docu-
ments [22], or by moving passive words into an in-use active
vocabulary [23]. Goodman and colleagues [11] drew inspi-
ration from speech recognition for stylus keyboard tapping
and applied a character n-gram model to correct stylus taps1,
achieving a reduction in character-level error rate from 2.40%
to 1.39%. Klarlund and Riley [17] applied N-gram language
modeling to a cluster keyboard (i.e. a keyboard with reduced
number of keys), and showed large improvements over uni-
gram frequency models. Tanaka-Ishii [30] presented a very
comprehensive and systematic study of four types of LMs,
namely unigram, co-occurrence, MTF (move to front, which
gives higher priority to recent words), and PPM (prediction
by partial match), and studied their use in adaptation for text
input. These were applied in English with reduced keyboards,
in Japanese with kana, and in Thai also with ambiguity but not
errors. It was found that PPM outperformed other techniques
in ranking prediction candidates. The PPM model used was
an interpolation between a unigram model trained on a 30M
Wall Street Journal news corpus (for English) and a n-gram
model trained on a small user corpus. The average rank im-
provement with adaptation depended on the user corpus size.
For example when the size of the user corpus increased from
0 to 50,000 words, the PPM prediction average rank of the
intended word improved from 1.3 to 1.09.

Language Model Adaptation
The essential problem that LM adaptation seeks to solve is the
problem of domain mismatch. LMs can be trained on enor-
mous text corpora, but those corpora rarely match the domain
of the target text one wishes to model. In-domain text is usu-
ally small in quantity and not enough to build a robust model.
1Since Goodman et al. involved small-scale observations with a
stylus input using character-level evaluations/LM, it differs signif-
icantly from our work, in particular because their baseline tapping
error rate is one fifth of ours.

LM adaptation algorithms attempt to combine the benefits of
a large, out-of-domain model with a small in-domain model.
Personalization can be seen as the ultimate adaptation prob-
lem, since one is adapting to a single individual (for which
in-domain text is almost certainly limited). LM adaptation
has been studied extensively. An excellent review of various
algorithms can be found in [2] and [9].

Cache-based LM adaptation keeps a continuously-updated
cache of words, and use this cache to build the adapta-
tion/personalization model. In the context of model adapta-
tion, the model generated from the cache is the in-domain
model. A cache varies slightly from other adaptation tech-
niques in two ways: First, the adaptation model must be
updated on the fly because new words are typed continu-
ously (the technique is commonly called dynamic cache-
based adaptation to reflect this fact). Second, the user cache
may begin in a completely empty state, or be primed with a
small amount of in-domain text (in our case, we primed with
30 days of user emails). Cache-based LM adaptation was
used by [24] to improve the performance of a speech recog-
nition system.

Cache-based LMs are further explored in [8], which describes
a method in which the relative weights of words in the cache
are made to decay exponentially, with “older” words having
lower weights. This reflects the common-sense notion of re-
cency, which suggests that, in general, more recently-used
words in a text will re-occur with higher probability than
words used in the more distant past. The results of [8] in-
dicate that using an exponentially-decaying cache results in
improvements in perplexity, but as shown later, our extrinsic
evaluation of text entry appears to indicate that these gains
are negligible in our application.

RESEARCH METHODOLOGY
Two crucial questions in our experimental design were
whether to primarily rely on modeling and simulation or hu-
man subjects directly, and whether to collect text from users
or use an existing corpus. We decided to simulate using a
large real world text corpus (Enron) for all experiments, for
the following reasons:

• Practicality and Scale: Scale is important to language
modeling evaluation, particularly with personalization.
Variances and nuances in language use can only be re-
vealed with longitudinal data. Further, as we later con-
firmed, large user-to-user variance is possible and many
users are needed to give meaningful results. Collecting
this amount of data from individual users is possible, but
impractical. In addition, we required a large development
set in order to empirically optimize various system parame-
ters. Large-scale parameter optimization of this kind with-
out simulation is infeasible.

• Privacy and Reproducibility: Another problem with col-
lecting native text from individuals is that they would have
a reasonable expectation of privacy. The Enron Corpus
largely avoids this issue, and its widespread availability al-
lows for experiments that are vastly more reproducible.

• Availability of Foundational HCI Research: Recent HCI
research has measured crucial parameters of human motor
control for text entry tasks. It has been shown that tapping
on key targets may be modeled by a Gaussian distribution
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model whose parameters depend on hand posture (finger,
thumb, or two thumbs), the portion of the keyboard (left,
right, top, or bottom), and the individual user [10, 1, 3].

We do not wish to discount the advantages of human tests,
which would provide valuable information not available to
simulation, such as how users respond to personalized text
input and what strategies are used to correct errors. Human
tests would also validate our simulation approach. We reserve
these questions as important avenues for future work; for the
present work, however, we assert that combining human input
models established from users’ natural typing data and longi-
tudinal real world text writing records captures the essence
of smart touch keyboard evaluation and reveals the effects of
language modeling at a large scale.

DATA

Background Language Model
Our background model was a Katz-smoothed [16] bigram
LM trained on 114 billion words scraped from the publicly-
accessible web in English. We pruned the model size using
entropy pruning [29], a technique for decreasing the size of
a backoff LM. The basic method involves selecting n-grams
for removal from the model by measuring the relative entropy
of models with and without that n-gram. A threshold is set
for excluding n-grams by this criterion. The choice of Katz
over the more popular Kneser-Ney [19] for smoothing was
dictated by the small memory footprint available for the LM
on a mobile device, and the reduced difference between the
two approaches after entropy pruning [5]. The final pruned
model contained about 8.5 million n-grams (8.4M bigrams
and 168K unigrams).

Enron Corpus as an Evaluation Set
The Enron Corpus [18] is a large set of emails that were
collected by the Federal Regulatory Commission when the
Enron Corporation was under investigation in late 2001.
This corpus was made public in 2003, and consists of over
600,000 individual email messages from multiple years (1998
to 2002). It is one of the largest collections of email publicly
available, and is a valuable and widely-used resource for nat-
ural language research.

In the field of text entry, Enron data has been used for the cre-
ation and comparison of phrase sets to be used in other text
entry experiments [20, 21, 31] . In [26], Enron data was com-
pared to data from Facebook and Twitter in an information-
theoretic manner, with the goal of judging how “representa-
tive” various phrases are. Enron has also been used for do-
main adaptation in tasks other than language modeling [7, 27,
35].

The Enron Corpus is well suited for text entry research for
three reasons: First, it consists of human communication,
making it a better match to text input applications. Second,
it consists of a relatively large body of real-world usage of
text communication (as opposed to news corpora [4] or fic-
tion writing [32]). Third, the corpus preserves a long history
of communication by user with minimal privacy concerns, al-
lowing for more in-depth research into personalization tech-
niques.

However we found the Enron corpus to be inadequate in its
raw form. Our preprocessing of the corpus was extensive, and

included deduplication, signature text removal, name canon-
icalization, and attached text removal. Because our goal was
LM personalization, the driving idea of these preprocessing
steps was a desire to have clean text for each user that was
strongly linked to that user, i.e. not generated automatically or
typed by somebody else. This is particularly important when
modeling for text entry, since URLs and attached messages
are very unlikely to have been typed by the person doing the
text entry. We found that extracting clean, human-generated
text from the Enron Corpus is surprisingly nontrivial, so we
have made the details of our preprocessing available as an
auxiliary document to this paper.

Development and Test Sets
The next step was to divide the Enron emails into test sets.
We selected 90 Enron users, each with more than 1500 to-
tal words in their collected sent emails. We defined a mini-
mum word count per user for two reasons: First, we wanted
a large enough volume of text to perform adaptation experi-
ments that involved learning user words and adapting a model
to them. Second, we wanted to avoid sparsity issues. We di-
vided these 90 users into development and test sets of 45 users
apiece, with a similar distribution of per-user word counts in
each set. The development set contained 38,114 messages
and 1,355,266 words, and the test set contained 31,740 mes-
sages and 1,214,403 words. Since our models are based on
caching, there is no Enron training set per se; user models
are trained dynamically as one proceeds through each user’s
portion of the test set.

SIMULATION
The basic workflow of our system is to generate simulated
keyboard taps for a given text, use a decoder to reconstruct
the text from those noisy taps in the presence of various LMs,
then evaluate the output.

Simulated Smart Touch Keyboard Typing
We have discussed the benefits of human simulation as a gen-
eral research method in LM personalization. Here we provide
critical details needed to making such simulation meaningful
to text input. We also point out aspects of typing not simu-
lated in the current work.

In order to study the impact of LM personalization in STK ap-
plications, we simulated each Enron user typing his or her test
set in chronological order using a simple STK decoder, to be
described shortly. We used the key layout from the specifica-
tions of the Nexus 5 QWERTY keyboard, which has a single-
key width of 6.16 mm and a key height of 9.42 mm. We
assumed that the user was perfect in intent; in other words,
the user’s target word is always the actual target word2. Ad-
ditionally, if the decoder fails to produce the target word, it is
simply counted towards the error rate but we do not simulate
any attempt on the part of the user to correct such errors with
backspace or other methods.

To evaluate the power of LMs and personalized LMs in er-
ror correction, we introduced human errors in the simulated
input process that reflected the main source of error in touch

2This does not exclude the possibility of spelling errors in the Enron
Corpus; in this case, we simply assume that the typo is the correct
target, and judge it accordingly.
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Figure 1. Our keyboard layout with 1000 randomly sampled taps on the
“F” key

screen keyboards. We incorporated spatial noise in the tap-
ping/typing signal by sampling randomly from a 2D Gaussian
distribution. The mean of the distribution for each tap was the
center of the intended key, and the standard deviations were
set to be 1.97 mm in the x direction and 1.88 mm in the y
direction, as illustrated in Figure 1. These values were based
on [1], which determined the 2D Gaussian distribution to be
representative of actual human tapping, and described typical
variances. Taps landing outside of the border of the intended
key and inside another key were given the identity of the new
key in the literal string output (a typing error). Taps outside
the border of every key were discarded and resampled. We
found that these settings result in a per-tap error rate of 12.8%,
which translates to 38.4% of words in the test set containing
at least one key error. In practice, the actual amount of spatial
errors follows a speed-accuracy trade off model. The faster
one types, the more errors one would make. See “FFitts law”
[3] for an in depth exploration of the speed-accuracy model
of touch screen target acquisition containing both relative and
absolute precision errors.

We deliberately chose the 2D Gaussian for modeling spatial
touch, for multiple reasons: First, we desired a simple, prin-
cipled model (in the spirit of “Occam’s razor”) that still cap-
tured the spatial variance needed to test LM contribution to
decoding noisy touchscreen input. Second, 2D Gaussian is at
the core of spatial models used in commercial level keyboards
such as the Android Open Source Project (AOSP) keyboard.
Third, while more complex models of touch have been ex-
plored in the literature (Holz et al. [13], Azenkot & Zhai [1],
and others highlight additional phenomena involved with fin-
ger touches, in particular spatial offsets that depend on finger
position, visual cues, and hand posture), it is quite hard to put
these models in practice because of issues such as sensor re-
quirements. Fourth, Yin et al. [34] showed that if a more com-
plex hierarchical backoff model (with hand posture and key
location dependencies) is used, the gain is large when con-
sidering individual letters only but small (diminishes) when
connected with an LM. We believe further gains can still be
made in the future with improved spatial modeling, but a sim-
ple Gaussian model reflects the state of the art and is sufficient
in testing LM contribution.

We made three further simplifying assumptions about the test
data and the simulated user. First, since the simulated STK
contains only the symbols a–z, the typing simulation only
considers those letters. We stripped out other non-space sym-
bols before testing. Second, the simulated user always taps
the space bar correctly, i.e. always taps it when intended and

never taps it when not intended. Third, the input process is
case-insensitive.

We chose to focus on 2D spatial noise exclusively as a source
of error in the tapping signal. There are other potential er-
ror sources, many of which fall under the category of cog-
nitive error. An example of a cognitive error would be the
user misspelling a word because they do not know the correct
spelling. In such a scenario, an incorrect string is created,
but it is not due to an error of typing; the user intended the
string, whether or not it was correct. For instance, typing
forword instead of forward would constitute a cognitive
error, while forqard would likely be a spatial error. Other
cognitive errors include selecting the wrong word from the
suggestion list, or failing to tap the correct word when it ap-
pears in the selection list. Because modeling cognitive error is
subtle and because we wish to be able to interpret our results
more straightforwardly, we exclude it from our experiments.
Similarly, we exclude errors involving inserted and deleted
characters. Overall, our goal was to introduce a predominant
type of error in sufficient and representative quantity to test
the LM personalization effect in correcting that error type.
Other types of errors may follow the same pattern, but should
be further researched in the future.

A Simple Model Decoder
Once our simulator had generated a sequence of taps, we next
applied a simple model decoder to represent the core function
of a STK. The general idea of combining a spatial model of
touchscreen behavior with language modeling for text entry
has previously appeared in the literature. For example, Weir
et al. [33] applied user-customized spatial models and used
touch pressure as a signal to increase the spatial model weight
relative their LM weight. Our work differs from Weir et al. in
our use of longitudinal user data, the large scale of our simu-
lations, and the fact that we personalized our LMs rather than
our spatial model. For the purpose of systematically evaluat-
ing the impact of LM adaptation in mobile text input applica-
tions, our decoder was not designed to be optimal, complete,
or computationally efficient. Instead it was meant to be as
simple as possible but still able to take advantage of a lan-
guage model and effectively correct imprecise spatial input.

Suppose we have a tap sequence T = t1, t2, ..., tn, where the
ti values are the coordinates of each tap, and a potential word
w=l1, l2, ..., lm, where the li values are the letters that make
up that word. Note that any predicted word must have at least
n letters, so we require that m ≥ n. We define the spatial
score S(w|T ) as

S(w|T ) =
n∑
i=1

((tix − lix)2 + (tiy − liy)2), (1)

where tix and tiy are the x and y coordinates of the tap ti, and
lix and liy represent the x and y coordinates of the key center
of the letter li.

We further let LLM (w|c) be the negative logarithm of the
LM probability of the word w given context c. The combined
score B(w|c, T ) is equal to

B(w|c, T ) = LLM (w|c)− γS(w|T ), (2)
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where γ is the spatial model weight. The best-scoring word
wbest under the combined model is therefore

wbest = argmax
w

B(w|c, T ). (3)

We found through experiments on our development set that
the optimal spatial model weight γ for our task is 0.000223.

Algorithm 1 Procedure for generating possible words match-
ing a tap sequence

1: procedure GETPOTENTIALWORDS(T, d)
2: input: list T of n taps; distance threshold d
3: wordlist← []
4: for ti in T do
5: generate set Si of all letters on keyboard with centers

within distance d of ti
6: for wp in lexicon L with ≥n letters do
7: for letter li in wp, 1 ≤ i ≤ n do
8: if li ∈ Si then
9: continue

10: else
11: break (word contains too-distant letter)
12: append wp to wordlist
13: return wordlist

An important parameter in our spatial decoding technique is
a pruning criterion, used to decrease the size of the search
space by limiting potential keys for each tap. Any key with a
center within a specific radius from the tap may be a potential
letter. Given the geometry of our simulated keyboard, this
allows for between one and five potential keys for each tap.
The search algorithm then recursively traverses the tree of
possible words and word prefixes given these potential keys,
and filters out all prefixes that do not match a known word
in our LM lexicon. This is demonstrated in the procedure
GETPOTENTIALWORDS in Algorithm 1. We found using the
development set that the pruning radius of 7.99 mm resulted
in fast simulation without degrading model performance.

Figure 2 and Table 1 illustrate a simple example of the com-
bined decoder at work. The spatial decoder has no notion of
word probabilities in language therefore alone can only func-
tion as a naive keyboard. It favors the spatially-closest words.
The LM has no spatial data (other than what set of keys is
nearby each tap), so it simply gives the most probable words
possible given the pruning radius. The combined model syn-
thesizes these two sources of information to generate a better
word list. Note that all three models, even the spatial model,
are constrained by the lexicon; the word ‘bs’ is absent from
Table 1 because it is not in the lexicon, despite the fact that it
is the typed literal string. The top word in the spatial model,
‘ba,’ is the word in the lexicon (albeit rare) with the highest
spatial score. (As mentioned elsewhere, our decoding proce-
dure has a method for including the actually-typed sequence
in the suggested words list, but this is a separate process.)

3The small value of γ is a consequence of our spatial model out-
putting much larger absolute values than our LM, ultimately because
the spatial model uses pixel widths as a distance unit.

Algorithm 2 Procedures for typing simulation and evaluation
1: procedure CALCULATEACCURACY(w, n, c, d)
2: input: target word w of length n, previous context c
3: input: pruning threshold d, autocorrect threshold φ
4: T ← []
5: for letter li in w do
6: ti ← sample from 2D Gaussian centered at li
7: add ti to T
8: wordlist← GETPOTENTIALWORDS(T, d)
9: lit← string of actual keys tapped by taps in T

10: if wordlist is not empty then
11: for wp in wordlist do
12: calculate score B(wp|c, T ) given T and c
13: if highest score > φ then
14: wbest ← wp with highest model score
15: else (best word not good enough; use lit. string)
16: wbest ← lit
17: else (no suggestions; use literal string)
18: wbest ← lit
19: if wbest = w then
20: return success
21: else
22: return failure
23: procedure CALCULATEEFFICIENCY(w, n, c)
24: input: target word w of length n, previous context c
25: T ← []
26: for i in 0 ... n do (iterate over number of taps)
27: if i > 0 then
28: li ← ith letter of w
29: ti ← key center of li
30: add ti to T
31: wordlist← GETPOTENTIALWORDS(T, 0)
32: lit← string of actual keys tapped by taps in T
33: if wordlist is not empty then
34: for wp in wordlist do
35: calculate score B(wp|c, T ) given T and c
36: wbestset ← threewp with highest model score
37: else (no suggestions; use literal string)
38: wbestset ← lit
39: if lit /∈ wbestset then
40: ifwbestset contains less than three words then
41: append lit to end of wbestset
42: else
43: replace 3rd word in wbestset with lit
44: if w ∈ wbestset then
45: return i+ 1 (count of taps needed to type w)

Figure 2. Two example taps on the simulated keyboard.
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Decoding Method
Rank Spatial Model Language Model Combined

1 ba be be
2 ha he best
3 be had bad
4 he best he
5 bad bad had

Table 1. Top potential words given the taps in Figure 2, under the spatial
model only, language model only, and combined decoder.

EVALUATION METRICS
Language models are often evaluated using the per-word per-
plexity metric across a test set [15]. It is an information-
theoretic measure of how well a statistical model predicts
a sample. In theory, a language model better suited to the
test data will result in a lower perplexity value. Many LM
adaptation techniques are evaluated in this way, and report a
decrease in observed perplexity as evidence of an improved
model. In practice, however, even significant improvements
in perplexity do not necessarily correlate with commensurate
improvements in extrinsic objectives, particularly in speech
recognition research, where WER is the dominant evaluation
metric [6, 12]. Further, perplexity is often difficult to compare
across tests, because it is lexicon-dependent, i.e. the mod-
els involved must use the same word list. This is not easy
to accomplish in an adaptation/personalization setting, where
adding new words to a model is of central importance.

One response to the shortcomings of perplexity and other
LM-intrinsic metrics is to use LM-extrinsic evaluation, a re-
search philosophy outlined in [14]. In our case, the ex-
trinsic evaluation metrics are keystroke savings and WER.
Keystroke savings (see Equation 4) is the de-facto evaluation
standard for text entry efficiency measurement [25]. WER is
a standard way of measuring the accuracy of a word-based
decoding task, and is widely used in speech recognition.

Importantly, an LM’s extrinsic power in error correction (i.e.
word-level accuracy) can only be measured in the presence
of noise and a complete closed-loop system that includes a
decoder and erroneous input. The development of such a sys-
tem, and the ability it affords to measure error correction, are
key contributions of our research. In ASR it was only when
a reference recognizer was applied that language modeling
studies could move from intrinsic measures such as perplexity
to extrinsic measures such as WER [6]. Since “fat” finger im-
precision is the main source of noise in finger-operated touch
keyboard [1], the simple model decoder as described earlier
together with the spatial noise model and the real world per-
sonal history data set of Enron emails enabled us to measure
the extrinsic power of the LM and its adaptation.

Simulating Word Correction
When simulating word correction, we proceed one word at a
time. The simulator samples one tap (with spatial noise) for
every letter in the target word, then returns the single most
probable word from the decoder. If this word has a probabil-
ity above a certain autocorrect threshold, the word is typed,
followed by a space. If not, the uncorrected literal string is
typed (the literal string is the sequence of visual keys tapped;
in the case of Figure 2, the literal string is ‘bs’). A thresh-
old value 0.7 was used for all of our accuracy experiments,

for reasons explained in the Results section below. This is
demonstrated in the procedure CALCULATEACCURACY in
Algorithm 2. The evaluation metric for word correction is
word error rate. WER is calculated by dividing the number of
incorrectly-decoded words by the total number of words.

Simulating Word Prediction
When simulating word prediction, we also proceed one word
at a time, but there are two important differences. First, we
provide the simulated user with a list of three word sugges-
tions after each tap, potentially saving keystrokes. Second, in
order to isolate the prediction effect, we exclude spatial noise.

The following is demonstrated in the procedure CALCULA-
TEEFFICIENCY in Algorithm 2. For each word, we incremen-
tally simulate perfect input for each letter, starting with zero
taps. At each point, the LM (no spatial model or decoding)
generates the three most probable words given the letters so
far (including the case where there are not yet letters typed).
If the literal string is not among these three, the third-most-
probable word is removed and replaced with the literal string.
Otherwise, the list remains unchanged. We assume that the
simulated user will notice immediately if the target word is
among these top three. If so, we count one keystroke for se-
lecting the word. If not, we make another simulated tap and
generate a new suggestion list. (Note that, in word-initial po-
sition, no taps have occurred, and all words in the LM are
possible.) In the case where all n taps are needed to type an
n-letter word, the simulated user makes one last check for the
target word in the top-three word prediction list. If the target
is there, it is selected. If not, a space key is typed. When the
space key is tapped, the single most probable word in the pre-
diction list is entered. This is the reason the literal string is
always included in the list. Without the literal string the user
has no way of entering words that are not in the LM lexicon.

The evaluation metric for word prediction is keystroke sav-
ings, as defined in Equation 4. Because we assume no spatial
noise when measuring word prediction, accuracy is always
100%.

ks = 1− total taps required

total characters in test set
(4)

Note that, when simulating either correction or prediction,
each word requires a minimum of one keystroke, since ei-
ther space or select-suggestion must be tapped to move to the
next word.

Since our LM is a bigram model, its probabilities are condi-
tioned on the previous word in each context. At the begin-
ning of each line (every line in the test set is a sentence), the
model is primed with the start-sentence symbol <S>. After
each word is entered, that word becomes the previous word,
even if the typed word is incorrect and does not match the true
string. The latter scenario matches real-world use, since the
typed word is all any typing system has access to, even if it is
not correct. In the case of words not in the LM lexicon, the
previous word is set to the unknown symbol <UNK>.

LANGUAGE MODEL PERSONALIZATION
We implemented two basic types of cache-based language
models: Uniform and exponentially-decaying. The uniform
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cache considered a sliding window of words stretching back
as far as available in the user’s test data, and consisted of an
unsmoothed unigram LM from the words in that window. It
was continuously updated with each individual user’s writing
history as simulation progressed. We used linear interpola-
tion to combine the background model with this in-domain
cache model4. Linear interpolation is a simple technique for
LM adaptation. Equation 5 (adapted from [2]) illustrates the
basic interpolation method, where P (w|c) is the conditional
probability of word w given context c, PA is the adaptation
model, PB is the background model, and λ represents the rel-
ative weight of the background model.

P (w|c) = (1− λ)PA(w|c) + λPB(w|c) (5)

We found through experiments on held-out data that the opti-
mal window size is infinite, i.e. all words in the user’s history
should be kept in the cache. Further, we found the optimal λ
value to be 0.8.

The exponentially-decaying cache was derived from [8],
which first described the technique. It used an unsmoothed
unigram model like the uniform cache, but instead of count-
ing words directly we modified the weights according to how
far back they were in the cache. This captured the recency
effect. Equation 6 (adapted from [8]) illustrates the basic
method, where Pcache is the conditional probability of word
wi given the cache w1 through wi−1, and I is a binary func-
tion such that I(A) = 1 if A is true, and 0 otherwise. The
decay rate α describes how quickly word weights decay in
the cache, and β is a normalizing constant:

Pcache(wi|w1, w2, ..., wi−1) = β
i−1∑
j=1

I(wi = wj)e
−α(i−j)

(6)
We used a grid search on held-out data to find that the opti-
mal decay rate α is 0.0003, which is a slow rate of decay but
consistent with the values determined in [8]. An α value of
0.0003 means that it takes roughly 2300 words of history be-
fore the adjusted weight decreases to half of its initial value.
Since most users in the test set generate between 1000 and
2000 words per month, this decay rate can be said to take
months to take effect. Note, however, that this formulation
is based on word positions rather than elapsed time. A word
located at position i− 100 may have been typed at any point
in the past, depending on the user. As with the uniform cache
method, we combined the cache model with the background
model using linear interpolation, as in Equation 5. We again
found the optimal λ value to be 0.8.

For both cache methods, we primed the cache with the first 30
days of email from each of the 45 individuals in the test set.
Messages sent during this period were used only to fill the
personalization cache, and not simulated for evaluation pur-
poses. The choice of 30 days was based on an empirical study
on the development set, which showed that 30 days generally
provides a reasonable initial cache size. The mean size of this
priming cache in the test set was 1429 words. Both cache
models were updated from the 31st day onward till the end of
each individual’s text available in Enron.
4Note that since a LM requires large quantities of text, using the
cache model alone would not be effective; even users with large text
histories do not have enough text to build a useful LM without spar-
sity issues.

Model WER % OOV %
No Language Model 38.4 n/a
Background LM Only 5.7 1.6
Uniform Cache Adaptation 4.6 0.9
Decaying Cache Adaptation 4.6 0.9

Table 2. Word error rates for various model setups, averaged across all
simulated Enron users.

We define the model lexicon at any given time to be all words
in either the background model unigram list or the cache.
When a word was absent from one of these two models, it
received a probability of zero in that model before the inter-
polation defined by Equation 5 took place. Though the back-
ground model did contain an <UNK> symbol, we normalized
it out when calculating word probabilities5. We also make no
attempt to estimate probabilities of words not in either model,
i.e. entirely absent from the model lexicon (though we do pre-
serve the literal string, which can sometimes be absent from
both models).

RESULTS
By replicating and simulating users’ natural finger touch in-
put behavior, multi-user and longitudinal writing records,
and the primary functions keyboard decoding, we are able
to reveal what simple human subjects lab experiments could
not do—quantitatively benchmarking the effects of language
modeling with and without personalization at scale.

Word Correction
Table 2 shows WER results for the accuracy experiments.
The first row represents the value of a naive keyboard without
any language modeling and takes the literal string only, which
is equivalent to decoding touch input according to its closest
key centers. The word error rate of such a naive keyboard is
38.4%.

With a background LM combined with the simple decoder,
both as described earlier, the error rate is drastically reduced
to 5.7%. This is at the 0.7 autocorrect threshold operating
point, as explained below. LM personalization further im-
proves the error rate to 4.6%, a relative decrease of 19.3%.
The exponentially-decaying cache method did not outperform
the uniform cache method.

The OOV rate is calculated on a per-word basis as the hu-
man simulation progresses through the test set. In the case of
cache-based models, a given word is considered OOV if it did
not exist in the background model or the cache (though since
all OOVs are added to the cache immediately, no word can
be an OOV twice for the same user). The cache is emptied
before moving to a new user in the test set.

False Corrections and the Autocorrect Threshold
In our word correction experiments, we considered one type
of failure to be worse than the others. If the literal string is
correct, but the autocorrect mechanism changes it to a word
that is incorrect, we call this a false correction. The rationale
for setting apart these failures is this: Suppose a user carefully
types a word such that all taps in that word fall inside their re-
spective target key boundaries. The user likely has a strong
5We still use <UNK> for n-gram contexts; see earlier paragraph on
LM conditioning.
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Figure 3. Tradeoff between overall word accuracy and false correction
rate, managed by varying the autocorrect threshold from 0.0 (upper
right) to 0.95 (lower left). The rightmost dot is optimal from an overall
word accuracy standpoint, but we chose the white dot as an operating
point to bring the false correction rate below 1%.

expectation that the STK will output the literal string, and au-
tocorrecting to another string is particularly undesirable. We
therefore may wish to decrease the rate of false corrections,
even at the cost of a slight increase in overall word error rate.

We found that this tradeoff can be managed by introducing
an autocorrect threshold parameter to our model. It operates
as follows: If the top-scoring word is not equal to the literal
string, and its probability6 is below the autocorrect thresh-
old, we prevent the decoder from performing a correction and
simply use the literal string.

Figure 3 illustrates the tradeoff, calculated on a subset of the
development set. It turns out that allowing the decoder to al-
ways perform correction, i.e. an autocorrect threshold of 0.0,
results in a high rate of false corrections, more than 3.5%.
This amounts to nearly half of all failures for this test. The
optimal autocorrect threshold value for maximizing overall
accuracy is roughly 0.6, which corresponds to the typical ac-
curacy of any given literal string7. We selected 0.7 as the
operating point for the autocorrect threshold in all of our ac-
curacy experiments. This choice caused a slight decrease in
overall accuracy, but it brought the false correction rate below
1%. On the test data, the false correction rate was 0.70% for
the baseline model and 0.39% for the uniform cache mixture
model, representing an even larger relative WER improve-
ment than we observed for overall failures.

Precision and Recall
Another way to think about the performance of the word com-
pletion model is as a tradeoff between precision and recall.
In our case, precision is defined as the proportion of autocor-
rected words that were changed to the true word. Recall is de-
fined as the proportion of words needing correction (i.e. with
incorrect literal strings) that were autocorrected to the true
word. Figure 4 shows the precision vs. recall curve. Note
that, under the conditions of our model, 100% recall is not
possible. This is due to the fact that sometimes a literal string
6We converted the log-space model scores to probabilities and nor-
malized to make this calculation.
7This is just the accuracy of a word in the no-model scenario, or
1.0− 0.384.
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Figure 4. Precision vs. recall in word correction, generated by varying
autocorrect threshold from 0.0 (lower right) to 0.95 (upper left). Oper-
ating point is white dot, equivalent to Figure 3.

Model Keystroke Savings %
Background LM Only 42.1
Uniform Cache Adaptation 45.7
Exponential Cache Adaptation 45.8

Table 3. Keystroke savings for various model setups, averaged across
all simulated Enron users. See Equation 4 for definition of keystroke
savings.

(with an error) is the only word in the predicted word list.
This can happen when the decoder fails to generate any can-
didates because the tap sequence is too far from any known
word. In this situation, correction cannot occur in our model
(not even a false correction), because no candidates exist.

Word Prediction
Table 3 shows keystroke savings results for our efficiency ex-
periments. Without any language modeling (not even a lex-
icon), keystroke savings would not be possible. The back-
ground LM increased (potential) keystroke savings from 0%
to 42.1%. When using a cache model for LM personalization,
this number was further increased to 45.7%, a relative gain of
8.6%. As before, the uniform cache method performed com-
parably to the exponentially-decaying cache method.

Results by User
The results in Tables 2 and 3 represent averages over all users
in the test set, but LM personalization had different effects
on different users. Of the 45 users in the test set, 42 exhib-
ited improved typing accuracy under the uniform cache adap-
tation method. This relative improvement in WER ranged
widely, from 2.9% to 30.9%. Of the three users whose ac-
curacy got worse, one had accuracy decrease from 91.4%
to 89.3%, one decreased from 91.5% to 91.1%, and one de-
creased from 92.9% to 92.7%. All three with decreased per-
formance had fewer than 1500 words in their priming emails,
which suggests that it may be prudent to delay the applica-
tion of cache-based adaptation until a sufficient amount of
user text has been collected.

CONCLUSION AND DISCUSSION
Through research methodology innovation and evaluation
system development, we have investigated the effects of lan-
guage models, with and without personalization, for im-
proved accuracy and efficiency of contemporary touch screen
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keyboards operated with sloppy finger touches. In our bench-
mark tests, we demonstrated that it was possible to decrease
word error rate due to imprecise finger touch tapping from
38.4% to 5.7% using a simple decoder and a background lan-
guage model. LM personalization further improved this result
to 4.6%. Language modeling also improved prediction effi-
ciency to 42.1% (without personalization) and 45.7% (with
personalization). The OOV rate of the test set improved from
1.6% to 0.9% using a personalized model. We also showed
how raising the autocorrect threshold could lower the false
correction rate from 3.5% to 0.7% without significantly af-
fecting overall model performance.

These results were only observable and tuneable because of
our novel evaluation methodology. First, we leveraged web-
scale data training and entropy pruning to produce a state-
of-the-art background LM. Second, the adoption of the En-
ron Corpus with long-term individual history enabled us to
study personalization effects with real-world language use fi-
delity. Third, we developed a simple yet effective model de-
coder, which enabled us to measure extrinsic power in an inte-
grated closed loop evaluation system. Fourth, we introduced
human-like noisy spatial input in the evaluation based on em-
pirical findings previously reported in the literature. Taken
together, these methodological innovations allowed us to ef-
ficiently conduct computational experiments over two mil-
lion words of text, which otherwise would have taken months
or years of calendar time to perform. Crucially, this com-
bined closed-loop system also allowed us to report accuracy
on a large scale (whereas efficiency has been a typical met-
ric in text entry research). We additionally found, somewhat
counter-intuitively (but consistent with [30]), that the expo-
nential decay cache model did not outperform the simple uni-
form cache.

All of these methodological innovations have limitations, as
is true of any research methodology. Although we based both
the spatial input and the language content on human gener-
ated data from [1] and Enron respectively, they were nonethe-
less simplified to a degree that efficient experiments could be
run. Future work needs to replicate and expand these results.

Another opportunity for future work is to study how cogni-
tive errors, particularly spelling errors, affect decoding per-
formance. This would clarify whether the gains we have ob-
served via LM personalization with spatial noise can be ob-
served in a more general error framework. Along this same
lines, although we found that adding OOV words to the cache
is always desirable in our system, cognitive error would likely
introduce the problem of learning misspellings, which may
require separate techniques to manage. Other ideas, such as
varying the amount of spatial noise, expanding to input meth-
ods other than QWERTY, and applying our techniques to ges-
ture typing, are all interesting avenues for future work.
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