
Instant Foodie: Predicting Expert Ratings From Grassroots

Chenhao Tan∗
Cornell University

Ithaca, NY
chenhao@cs.cornell.edu

Ed H. Chi
Google Inc.

Mountain View, CA
edchi@google.com

David Huffaker
Google Inc.

Mountain View, CA
huffaker@google.com

Gueorgi Kossinets
Google Inc.

Mountain View, CA
gkossinets@google.com

Alexander J. Smola
Google Inc.

Mountain View, CA
alex@smola.org

ABSTRACT
Consumer review sites and recommender systems typically rely on
a large volume of user-contributed ratings, which makes rating ac-
quisition an essential component in the design of such systems.
User ratings are then summarized to provide an aggregate score
representing a popular evaluation of an item. An inherent problem
in such summarization is potential bias due to raters’ self-selection
and heterogeneity in terms of experiences, tastes and rating scale
interpretations. There are two major approaches to collecting rat-
ings, which have different advantages and disadvantages. One is
to allow a large number of volunteers to choose and rate items di-
rectly (a method employed by e.g. Yelp and Google Places). Al-
ternatively, a panel of raters may be maintained and invited to rate
a predefined set of items at regular intervals (such as in Zagat Sur-
vey). The latter approach arguably results in more consistent re-
views and reduced selection bias, however, at the expense of much
smaller coverage (fewer rated items).

In this paper, we examine the two different approaches to collect-
ing user ratings of restaurants and explore the question of whether
it is possible to reconcile them. Specifically, we study the prob-
lem of inferring the more calibrated Zagat Survey ratings (which
we dub “expert ratings”) from the user-contributed ratings (“grass-
roots”) in Google Places. To achieve this, we employ latent factor
models and provide a probabilistic treatment of the ordinal ratings.
We can predict Zagat Survey ratings accurately from ad hoc user-
generated ratings by employing joint optimization. Furthermore,
the resulting model show that users become more discerning as
they submit more ratings. We also describe an approach towards
cross-city recommendations, answering questions such as “What is
the equivalent of the Per Se1 restaurant in Chicago?”

∗This work was done while CT was an intern at Google.
1Per Se is a famous high-end restaurant in New York City.
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1. INTRODUCTION
The aggregate or average scores of user ratings carry signifi-

cant weight with consumers, which is confirmed by a considerable
body of work investigating the impact of online reviews on product
sales [5, 7, 6, 11, 23, 41, 24]. For instance, Luca [24] finds that a
one-star increase in Yelp rating leads to 5-9% increase in revenue;
Ye et al. [41] show positive correlation between average rating and
hotel online bookings. In a similar vein, Chevalier and Mayzlin [7]
demonstrate that the relative market share of a given book across
amazon.com and bn.com is related to the differences across the
two sites in the average star rating of the reviews.2

Due to the high visibility and salience of aggregate scores, ac-
quisition of a large number of reliable user ratings becomes a crit-
ical task in building a recommender service. An inherent problem
in user-contributed ratings (and the derived item-level aggregate
scores) is potential bias due to two sources. First, raters choose
items according to their personal interests (e.g. which restaurants
they visit) and they also decide which items they rate. As a re-
sult, many raters only have experience with a limited set of items,
and a particular item may be rated preferentially by a certain, non-
independent group of users. Second, users have different tastes
and different notions of what constitutes a good item or experi-
ence. They also differ in their understanding and familiarity with
the evaluation process (e.g. the meaning of “four stars” on the com-
monly used five-star rating scale can be different to different raters).
In this paper, we focus on restaurant ratings, examining two differ-
ent approaches to acquiring user ratings, and attempt to address the
problem of rater bias that is inherent to user-contributed data.

The first popular strategy we consider here is ad hoc data collec-
tion, where users voluntarily submit reviews of places they know,
which is employed by Yelp3 and Google Places4. An advantage of
this approach is that it allows a system to gather a large number of
ratings for many businesses relatively quickly. The problem with

2We use the terms reviews and ratings interchangeably in this pa-
per.
3www.yelp.com
4www.google.com/places

amazon.com
bn.com
www.yelp.com
www.google.com/places


this approach is twofold. First, such voluntarily contributed ratings
tend to exhibit a higher self-selection bias. Users are more likely
to rate places where they have had either a great or a terrible expe-
rience, which is known as the brag-and-moan phenomenon [16].
Ratings are typically submitted ad hoc, soon after users visit a
restaurant, which may amplify rating bias. Second, users have dif-
ferent motivations to submit ratings. Some users see reviews as part
of their online persona, which affects which places they rate pub-
licly [13]. In other words, some might choose to only rate high-end
restaurants, while others, for example, may prefer and review only
burger joints or bars. Compounding these problems is that some
businesses have been known to hire people to write fake positive
reviews which may further increase rating bias [27].

An alternative approach is to maintain a panel of raters that are
invited to review a predetermined set of restaurants at regular in-
tervals. Among review providers that employ this approach are
the Michelin Guide5 and Zagat Survey6. Focusing on a predeter-
mined set of restaurants mitigates the effects of user self-selection
bias; and maintaining a panel of raters makes the motivations to
rate more consistent and objective. Repeated surveys at regular
intervals decrease the variance in users’ evaluations. However, the
panel approach achieves the higher quality of ratings at the expense
of much smaller coverage. Usually, an inclusion of a restaurant in
Zagat Survey is already a sign of popularity or distinction.

Goals and Contributions
In this paper, we examine two datasets representing two different
approaches to collecting user ratings of restaurants. We obtained
access to the user-contributed (“grassroots”) ratings from Google
Places (GP)7 and the aggregate “expert” scores from Zagat Survey,
which are published in the Zagat guides and on the web. We set out
to understand and reconcile these different approaches. An inter-
esting research question is whether the aggregate scores from the
two approaches correlate with each other and whether it is possible
to infer expert scores using “grassroots” data.

It somewhat complicates our task that GP ratings are
one-dimensional (reflecting overall quality) whereas Zagat ratings
for restaurants distinguish between three different aspects: food,
decor, and service. Therefore, a naive approach, consisting of rescal-
ing the average ratings in GP, is clearly insufficient. We need a
method for inferring different Zagat quality dimensions from over-
all GP ratings.

To solve this problem, we employ latent factor models from col-
laborative filtering. We are inspired by the matrix factorization ap-
proach, which is commonly used in state-of-art collaborative fil-
tering. Our strategy is to use the latent features for restaurants,
obtained from GP ratings, as feature vectors to regress on Zagat
scores. More specifically, we add a virtual Zagat food reviewer, a
decor reviewer and a service reviewer to the modeling process. To
improve accuracy we perform joint optimization over GP ratings
and Zagat ratings.

5www.michelintravel.com/michelin-guides/
6www.zagat.com. Zagat restaurant guides were named as
“a necessity second only to a valid credit card” by the New
York Times. (http://www.nytimes.com/1997/11/12/
dining/zagat-s-new-york-survey-entries-up-
contributors-off.html)
7In May 2012 Google Places was succeeded by a new prod-
uct called Google+ Local, see http://googleblog.
blogspot.com/2012/05/localnow-with-dash-of-
zagat-and.html. We performed our analysis using data
acquired prior to the launch of Google+ Local and hence we use
the former product name i.e. Google Places.

Since GP ratings are discrete, we use an exponential family model
to handle the discrete ordinal data. Furthermore, we explicitly al-
low for different users and different places to have varying degrees
of rating uncertainty (e.g. some restaurants might be mediocre but
consistently so). Finally, we control for the effects of location, cui-
sine, and price to infer Zagat ratings based on reviews posted on
GP.

To summarize, we investigate the problem of predicting three-
dimensional Zagat scores from one-dimensional user-contributed
ratings in Google Places. We conduct an extensive comparison of
different models and validate that joint optimization on expert Za-
gat ratings and “grassroots” GP ratings improves the performance
both in terms of RMSE (root-mean-square error) and correlation
measures. We show that the model is able to reconcile the two
different approaches reasonably well.

There are a number of other interesting findings from our re-
sults: (1) It turns out to be considerably easier to infer food and
service scores than decor scores from GP ratings. That suggests
that Google Places users tend to care more about food and service
than decor when they rate.

(2) The results on user bias suggest that more experienced users
tend to be more discerning.

(3) We also find that decor and service scores consistently im-
prove with price level, while the same only holds for food scores in
the more expensive price categories, thus pointing to decor and ser-
vice as the key differentiators between moderate and inexpensive
restaurants.

Outline
Section 2 summarizes related work. Section 3 provides a descrip-
tion of the data used in the experiments and formulates the main
problem. Section 4 introduces statistical models explored in this
paper and describes the associated inference algorithms. Section 5
describes experiment setup and evaluation measures. Finally, Sec-
tion 6 presents some empirical results; and we conclude with Sec-
tion 7.

2. RELATED WORK
In this paper, we investigate how to aggregate noisy

user-contributed GP ratings to predict Zagat expert ratings. In this
context, the two most relevant fields of research are crowdsourced
labeling and collaborative filtering.

2.1 Crowdsourced Labeling
Recently, massively distributed data collection techniques have

become quite popular thanks to the advances in online commerce
and growth of the Internet audience. Crowdsourcing services such
as Amazon’s Mechanical Turk allow researchers to perform various
labeling tasks. Researchers have studied the challenging problem
of how to obtain accurate labels from groups of volunteer or paid
workers [31, 10, 40]. A popular approach is to model the accu-
racy of individual labelers, their aptitude for a specific task, and the
difficulty of the task.

The problem is inherently related to the literature on standard-
ized tests, particularly Item Response Theory [30]. Dawid and
Skene [9] develop a method to handle polychtomous latent class
variables. Whitehill et al. [40] simultaneously estimate the true
label, item difficulty, and coder expertise. In our problem, the dif-
ficulty of rating a place can be interpreted as item difficulty in Item
Response Theory, even though the sources of variability might be
quite different, i.e. a restaurant might simply serve food of varying
quality as opposed to food that is difficult to assess.

www.michelintravel.com/michelin-guides/
www.zagat.com
http://www.nytimes.com/1997/11/12/dining/zagat-s-new-york-survey-entries-up-contributors-off.html
http://www.nytimes.com/1997/11/12/dining/zagat-s-new-york-survey-entries-up-contributors-off.html
http://www.nytimes.com/1997/11/12/dining/zagat-s-new-york-survey-entries-up-contributors-off.html
http://googleblog.blogspot.com/2012/05/localnow-with-dash-of-zagat-and.html
http://googleblog.blogspot.com/2012/05/localnow-with-dash-of-zagat-and.html
http://googleblog.blogspot.com/2012/05/localnow-with-dash-of-zagat-and.html


Active learning is also employed to study how to better make use
of labelers [45, 35]. Sheng et al. [35] use relabeling to obviate the
effects of noise and Vijayanarasimhan et al. [38] identify promising
crowdsourcing annotations given a limited budget. However, our
setting is somewhat different, since we have a large number of user-
contributed ratings from GP. Our main goal is to make better use of
the datasets we already have.

Sample selection bias is an important problem in different dis-
ciplines, such as economics, sociology and machine learning. The
seminal paper by Heckman [14] analyzes a two stage approach.
In the first stage, the probability of selection is estimated and then
the probability is used as an explanatory variable in second stage.
However, it is difficult to estimate the probability of selection with-
out additional features and labels in our setting. We try to consider
closeby places in a variation of our model to mitigate the effects of
selection bias.

2.2 Collaborative Filtering
Collaborative filtering (CF) is a leading approach to building rec-

ommender systems [33]. Koren and Bell [20] give a comprehensive
overview on the state-of-art techniques. The data provided by GP
falls squarely into the category of recommendation problems.

One of the most successful techniques is latent factor modeling,
partially due to strong theoretical justifications for distributions on
strongly exchangeable random variables: The Aldous-Hoover the-
orem [3, 15] states that matrix-valued random variables that are
invariant under row and column permutations must follow a latent
variable model.

A popular strategy, which we adopt in this paper, is to character-
ize both items and users as vectors in a space automatically inferred
from observed ratings. In our problem, restaurants correspond to
“items” in collaborative filtering. Since Zagat ratings are in three
dimensions, different parts of the latent space for restaurants could
be related to food, decor and service respectively.

One of the most successful realizations of latent factor models
is based on matrix factorization [39, 19, 42, 32, 17, 2, 29, 34].
These methods have become popular in recent years because of
good scalability with predictive accuracy. It is worth noting that
SVD++ in [20] adds smoothing vectors to user vectors to mitigate
selection bias. Studies such as [21] explore the ordinal property
of user-contributed ratings. Koren [18] also considers collaborative
filtering with temporal dynamics.

A few recent studies [22, 28, 44] are concerned with transferring
information between several domains of observation. This is re-
lated to our goal of inferring Zagat ratings from the user-contributed
GP ratings. However, in our problem, the two datasets are col-
lected by different processes (ad hoc rating collection vs. planned
surveys) and employ different scales. Moreover, the Zagat rating
data effectively amounts to three highly different dimensions, with
ratings available as one set of summary scores per place, i.e. as a
triple like (food, decor, service). Hence the approach of Aizenberg
et al. [2] does not directly apply. In their music recommendation
system, they assume access to a very large number of playlists,
considerably in excess of the latent representation dimensionality.

Notably, the work of Umyarov and Tuzhilin [36] present a frame-
work for incorporating aggregate rating information for improving
individual recommendation, which addresses the opposite direction
of our problem. [2] also presents similar thoughts.

3. PROBLEM DESCRIPTION
After the above informal discussion of previous research and a

general introduction to integrating two disparate data streams, we

now provide a formal description and discuss properties of the data
in greater detail.

3.1 Data
We focus our study on two datasets of ratings of US restaurants

obtained respectively from Google Places and Zagat. The GP data
is a random sample of 2 million user-contributed reviews collected
between 2009 and 2011 in the range of {1, 2, 3, 4, 5}. Users vol-
untarily submit ratings for places that they visited. This is common
practice in online recommendation sites such as Yelp and IMDb.
In this approach the aggregate scores tend to have a larger bias, for
two reasons. First, raters self-select into providing the ratings, and
thus are more likely to "brag and moan," which leads to bimodal or
J-shaped rating distributions [16]. Submitting ratings shortly after
the dining experience amplifies the "brag-and-moan" effect and in-
creases variance. Second, there is considerable rater heterogeneity
with respect to their motivations to contribute ratings.

As mentioned in the introduction, Zagat takes a different ap-
proach by effectively employing a panel of raters and inviting them
to rate a predetermined set of restaurants at regular intervals8. Since
there is a pre-selected set of restaurants9 evaluated post factum
(i.e. not immediately after the dining experience), the bias of self-
selection and “brag-and-moan” is somewhat mitigated in the pro-
cess. Repeated surveys also decrease the variance in users’ expe-
rience. This allows for more calibrated and less bimodal scores
than user-contributed ratings. Finally, Zagat ratings are collected
separately for food, decor and service on a 4-point Likert scale
{0, 1, 2, 3}. For each restaurant, the average of all the ratings for
each dimension is computed after filtering out untrustworthy users.
This yields scalars in the interval [0, 3], which we try to predict
in our experiments. Zagat presents these dimensional scores by
multiplying them by 10, i.e. on the characteristic 30-point scale in
Zagat guides. Zagat data also contains a prevalence of relatively
high food ratings. This is a direct consequence of the fact that an
inclusion of a restaurant in Zagat survey is a sign of distinction or
popularity. We use the ratings of all restaurants in Zagat survey.

An important aspect of the review data is that the noise is highly
heteroscedastic [43]. That is, the variance of ratings is dependent
on the actual score and additional covariates. As we will show in
the experiments, it is helpful to model the variance of each restau-
rant explicitly. The variance vanishes for restaurants with low and
high aggregate ratings. This is not too surprising given that there
are upper and lower limits to the scores that can be assigned. For
instance, an excellent restaurant will have all reviewers agreeing
on the excellence: Since there is nothing better than 3 or 5 points
respectively in Zagat or GP that can be assigned, the variance will
vanish. Interestingly, after controlling for scale differences, Zagat
user ratings have a smaller standard deviation than the GP user rat-
ings, suggesting that Zagat contributors are indeed more consistent.

3.2 Objective
Our goal is to predict Zagat expert ratings of restaurants based

on user-contributed ratings in GP. In the rest of this paper, we use
the formal variable definitions in Table 1.

For a given place p, our goal is to estimate the three aspects of a
Zagat rating spz based on the Zagat ratings of other places and the
available GP ratings spr for place p. Clearly this task would be
impossible if we had no access to Zagat ratings, since the latter are

8We had no control over how the Zagat scores were collected.
9In this paper, we refer to this set of restaurants as Zagat places,
and restaurants not in this set as non-Zagat places.



Table 1: Summarization of variable definitions.
{f, d, s} food, decor, service (subscripts)
z indicator for Zagat
p index variable for a place
r index variable for a rater

spz =
{
spzf , spzd, spzs

}
Zagat scores for place p

spr GP rating for place p by rater r

Pz Places with Zagat ratings
Pr Places rated by rater r
Cp Places close to p (including p)

up Factor for place p
ucity Factor for city
ucat Factor for category
u$ Factor for price

vr Factor for rater r
vp Smoothing factor for place p
vrated Factor if place is Zagat rated
Vz =

{
vzf , vzd, vzs

}
Zagat food, decor, service factors

br Bias for rater r
bp Bias for place p
bz =

{
bzf , bzd, bzs

}
Bias for Zagat food, decor, service

b Common bias for GP

τ Uniform precision
τr Precision for rater r
τp Precision for place p

needed for calibration purposes. Formally, we aim to estimate:

spz| {spr} ∪ {sp′r} ∪ {sp′z} where p 6∈ Pz and p′ ∈ Pz. (1)

Our method of choice is a latent factor model with bias. In a nut-
shell, such models use inner products and bias 〈u, v〉 + b to infer
the rating of a place. We assess the fidelity of the estimates both by
reporting the root-mean-square error (RMSE), i.e. the square root
of the average squared deviation between estimates and true rat-
ings. In the experiment on GP ratings only, we also compute the
data log-likelihood to see the effects of different variations of mod-
els. While the former amounts to a quantifiable prediction error,
the latter specifies how good our model is in representing the dis-
tribution of the scores, which can lead to a better representation of
place vectors.

4. MODEL
The statistical model for inferring ratings for both GP and Zagat

consists of three key components:

• A hierarchical inner product model with offsets to capture
the latent rating of a place by a user.
• A Gaussian or quadratic ordinal emissions model to recon-

cile observations with the latent variable.
• A Gaussian prior on the latent variables.

These components are combined to obtain an estimate of the like-
lihood of the data. We use a maximum-a-posteriori estimate for
inference. To address concerns of computational efficiency we use
joint stochastic gradient descent, as is common in collaborative fac-
torization methods [20]. In the following section, we give a descrip-
tion of the statistical components and how the model is applied to
GP and Zagat ratings.

4.1 Statistical Building Blocks
Inner Product. We assume that for each rating spz or spr there
exists a latent score ypz or ypr respectively that can be obtained by

means of an inner product model between attributes specific to a
rater and attributes specific to a place. That is, we assume

ypr = b̄pr + 〈ūp, v̄r〉 (2a)

where b̄pr = b+ bp + br (bias) (2b)
ūp = up + ucity + ucat + u$ (place factor) (2c)

v̄r = vr + |Pr|−
1
2

∑
p′∈Pr

vp′ (rater factor). (2d)

Here Eq. (2a) is a standard factorization model with bias. To model
the bias, Eq. (2b) follows from the assumption that the biases for
a given rating are additive between raters and places, and further-
more, we want to take a common rating bias into account. In other
words, we effectively perform row-wise and column-wise mean re-
moval on the rating matrix.

The place factor ūp decomposes hierarchically Eq. (2c) based on
the side information available at prediction time. That is, provided
that we know the location, category, and price level of a place, it
is reasonable to assume that these terms should affect the latent
attribute space of a place.

Finally, for the rater factor, Eq. (2d) takes selection bias between
raters into account by assuming that raters visiting similar places
should share common preferences. This is a direct application of
the model described by Bell and Koren [20], with an application of
hierarchical models from [1].
Emissions model. We now need to connect the latent score ypr to
the observed scores spr . If we ignore the fact that spr is actually
discrete (in the case of Zagat it is the average of a finite number of
curated ratings and thus continuous, while for GP it can only take
5 distinct values), we obtain spr ∼ N (ypr, τ

−1), i.e.

− log p(spr|ypr) =
τ

2
(spr − ypr)2 +

1

2
log 2π − 1

2
log τ. (3)

Note that for notational convenience we parametrize the Gaussian
model in terms of its precision τ rather than variance σ2 = τ−1.
The larger τ , the lower the noise that we assume in the estimation
process.

A more principled approach to modeling discrete data is to em-
ploy a properly normalized exponential family model. Denote by
Y = {1, . . . , 5} the ordinal range set of ratings. In this case we
may replace the normalization in (3) by:

− log p(spr|ypr) =
τ

2
(spr − ypr)2 − log

5∑
k=1

e−
τ
2
(k−ypr)2 . (4)

The advantage of the above model is that it is capable of modeling
rating distributions for both excellent and poor places, simply by
picking ypr > 5 and ypr < 1 respectively. These choices concen-
trate the distribution more towards the extreme ranges of ratings.
In the experiment we show that this choice does lead to a better
likelihood estimate.

Note that, unlike in (3), the expectation of the renormalized Gaus-
sian distribution does not satisfy E[spr|ypr] = ypr . Instead, we
compute the expectation via:

E[spr|ypr] =

∑5
k=1 ke

− τ
2
(k−ypr)2∑5

k=1 e
− τ

2
(k−ypr)2

. (5)

This is also what we use to verify the accuracy of the estimates in
an RMSE sense. Note that (4) has a unique minimum and can be
reparameterized convexly.
Priors. To complete the model specification, the final piece re-
quired is to discuss the priors on the latent variables u, v, the biases
b, and the precisions τ . We impose a Gaussian prior on the first two



latent variables, br and bp, a flat (improper) prior on the bias b, and
a Gamma prior on the precisions. These choices are in the spirit of
SVD++ [20].

More specifically, we assume that:

br, bp, up, ucity, ucat, u$, vr, vp, vrated,

vzf , vzd, vzs ∼ N (0, λ−11). (6)

In other words, we assume that all the parameters are drawn from
a Normal distribution with precision λ. For simplicity, we use the
same precision λ to avoid a large number of parameters.

Furthermore, we model the common bias as a scalar, normally
distributed according to b ∼ N (0, λ′

−1
). Here λ′ denotes the pre-

cision of the biases. For an improper prior on the latter set λ′ → 0,
the same as in [20]. With this improper prior, b can be computed
by averaging across all the ratings.

Finally, the precisions τ are drawn from a Gamma distribution.
Note that one design choice is to model the precision of each place
individually. We have:

− log p(τp|α, β) = βτp − (α− 1) log τp − α log β + log Γ(α).

Note that the hyperparameters α and β are fixed. Thus, for in-
ference purposes we are only concerned with the contribution of
βτp − (α− 1) log τp to the log-likelihood.

4.2 Google Places
To predict the rating for a user, we can treat the problem simi-

lar to a classical collaborative filtering problem. We address it by
combining the components regarding spr|ypr (Gaussian or renor-
malized Gaussian), the priors on u, v, b, the priors on the precisions
τ , and the choice of whether we model rating uncertainty as being
specific to a user or to a place. Such a multitude of choices leads to
six different models that we can explore experimentally:

SVD++ or SVD. We assume that spr|ypr is Gaussian and that all
precisions are identical (all equal to 1). This is analogous to
Koren’s work in [17], except that in the latter precision is not
modeled explicitly. We are optimizing the total square error
in this case.

SVD++ Rater or SVDRat. The change is that we now assume that
each rater has its own level of precision τr with associated
Gamma prior.

SVD++ Place or SVDPla. Same as above, only now we use τp
rather than τr , so each place has its own level of precision.

SVD++ Renormalized or SVDRen. This is the same as SVD++,
only that we use the renormalized Gaussian model to take the
discrete nature of the ratings into account.

SVD++ Renormalized Rater or SVDRenRat. As with
SVD++ Rater we now model the precision of raters τr in the
renormalized model.

SVD++ Renormalized Place or SVDRenPla. As above, but with
precision τp per place in the renormalized Gaussian.

To simplify representation, we refer to these six models as SVD,
SVDRat, SVDPla, SVDRen, SVDRenRat, SVDRenPla respec-
tively in the experiments, as denoted above.

For illustration purposes we summarize the objective function
for the last model. We use R to denote the set of reviews. Up to
additive constants and perusing the inner product model of (2) the

negative log-likelihood L is given by

L =
∑

(p,r)∈R

[
τp

2
(ypr − spr)2 − log

5∑
k=1

e−
τp
2

(k−spr)2
]
+ (7a)

λ

2

∑
p

‖up‖2 +
∑
city

∥∥ucity∥∥2 +
∑
cat

‖ucat‖2 +
∑
$

‖u$‖2
+

(7b)

λ

2

∑
r

‖vr‖2 +
∑
p

‖vp‖2 +
∑
r

b2r +
∑
p

b2p

+
λ′

2
b2+ (7c)

∑
p

[βτp − (α− 1) log τp] . (7d)

As a review of our different components, τp in (7) corresponds to
place precision. Alternatively, we can use τr to consider user preci-
sion. The first part in (7a) corresponds to the simplified assumption
in Eq. (3) (without additive constants), while the second part in (7a)
is for the renormalization. (7b), (7c), (7d) correspond to the priors
for different variables in the model.

Inference is performed by joint stochastic gradient descent in all
parameters of L as we traverse the set of reviews and ratings R.
This is known to yield accurate results [17].

4.3 Zagat
We now proceed to integrating Zagat ratings with those obtained

from GP. In this way, the latent attributes for places can be used to
model not only GP but also aspects that are important for Zagat,
such as food, decor and service. We achieve this goal by adding
three virtual raters with associated factors vzf , vzd and vzs. For
instance, the equation

〈ūp, vzf 〉+ bf

amounts to an estimate of the Zagat food rating.
In learning how these attributes correlate with the observed Zagat

ratings we are able to obtain an “instant foodie”: A mechanism for
translating the idiosyncratic, crowdsourced ratings from GP into
the more consistent, better-calibrated ratings10 of Zagat.

That said, before embarking on a full model of Zagat ratings we
need to address the fact that Zagat ratings are not awarded at ran-
dom. The mere fact of a restaurant being “Zagat rated” promises
a modicum of quality. In other words, there is an inherent selec-
tion bias, skewing toward good restaurants. Hence we may decom-
pose the distribution into first modeling whether a score is observed
(observedp, p ∈ Pz) and only then capture the actual value of the
observation. It is similar to Heckman’s correction [14]. We add a
softmax term to our objective function. Note that, we only perform
this correction for Zagat ratings.11

Using an exponential family model yields:

− log p(observedp| {zp}) =− zp + log
∑
p′∈Cp

ezp′ (8a)

where zp := 〈ūp, vrated〉 . (8b)

Here Cp denotes a set of closeby places in the local neighborhood
of p (we choose 5 places within a 2 mile radius). This is to ensure

10Recall that the Zagat publishes ratings on a [0, 30] scale and we
rescale the loss correspondingly.

11We could add this to the GP ratings as well. But adding this to
all the GP places can induce more noise. Compared to the differ-
ences between non-Zagat places and Zagat places, randomly se-
lected closeby places for GP ratings (p, r) is not clearly distin-
guished from places that users chose to visit.



that we only compare locally-equivalent places regarding their in-
clusion in Zagat. vrated is an additional vector to evaluate whether
a place is rated in Zagat ratings.

This yields two options when including Zagat ratings: a plain
version that regresses on the ratings as if they were additional users
and a location calibrated version that uses Eq. (8) for debiasing.

For conciseness we use a factorial notation to describe the exper-
iments. In (factorial) combination with the models of the previous
section this yields the following grammar:
{’’,Clo} × SVD × {’’,Ren} × {’’,Rat,Pla}.
For instance CloSVDRenPla amounts to a model considering

(1) closeby places to Zagat places, (2) rating debiasing using SVD
approaches, (3) the renormalized Gaussian model for GP ratings,
and (4) a place-dependent precision latent variable.

4.4 Inference
Maximizing the log-posterior is relatively straightforward by em-

ploying a stochastic gradient descent procedure. Due to the non-
convexity of the objective (it is convex in factors but not jointly so)
we use a rather conservative learning rate adjustment [26] via

ηt = (a+mt)−
1
2 with m = 0.01. (9)

Here t is a counter of how many observations have already been
seen. We investigate different values for a in the experiment. More-
over, for the Gamma prior we set α = β = 2 to adjust shape and
rate respectively. All precision variables (τ ) are initialized to 1, all
latent factors (u, v) are initialized to random values, and all the bi-
ases (bp, br) are initialized to 0. We traverse all ratings (p, r) and
a set of Zagat ratings (if applicable) to perform stochastic gradi-
ent descent updates. To ensure good convergence we traverse the
space of observations 20 times (fewer would suffice but this is to
ensure that we have accurate results for all settings). This leads to
algorithm 1 below.

Algorithm 1 Stochastic gradient descent
Input All the Google ratings and some Zagat ratings.
Output Latent factors for places.

Initialize counter t← 0
for d in 1:N do

Shuffle training data;
for r in training data do
ηt ← (a+mt)−

1
2

Increment t← t+ 1
Update variables affected by slice Lt via

(b, u, v, τ)← (b, u, v, τ)− ηt∂(b,u,v,τ)Lt

end for
end for

Note that the slices Lt in the algorithm are essentially just parts
of the negative log-likelihood L that are specific to a particular rat-
ing instance (p, r, spr) on GP or a corresponding triplet of Zagat
rating.

5. EXPERIMENTS
We give a description of the experimental setup and evaluation

measures. Then we show that our models outperform the baseline.
Furthermore, we show that a joint model of Zagat ratings and GP
ratings improves overall performance. Moreover, we find that place
precision and exponential renormalization via a proper generative
model helps in the context of predicting Zagat expert ratings. We

conclude with a number of analyses and findings from the resulting
model.

5.1 Experimental Setup
In the experiments below, we use 100-dimensional latent vectors

throughout the experiments.

5.1.1 Estimating GP ratings
First, we want to conduct experiments on GP ratings to see how

different versions of collaborative filtering algorithms perform and
whether adding different components improves the performance.
Also, to assess recommendation performance we need to address
the fact that in the absence of additional features it is impossible
to learn meaningful place vectors and predict accurately for places
with very few ratings. Therefore, we test only on the latest ratings
for restaurants with at least 3 reviews.
Baseline. For experiments on GP ratings, our main objective is to
see how different models compare with each other. Thus SVD12 is
effectively our baseline.
Cross-validation. For experiments on GP ratings, in order to avoid
bias by systematically removing a large number of recent ratings
for validation purposes, we perform 5-fold cross-validation in the
following way. We randomly partition the latest ratings for restau-
rants with at least 3 reviews into five partitions, one of which is
used for testing, one for validation and three for training. Results
are then averaged over the partitions. While there are considerably
more advanced model selection tools from statistical learning the-
ory available [37], the above is consistent and considerably easier
to implement.
Parameters. The parameter range investigated for the GP Gaus-
sian Priors (λ in Eq. (6)) was {0.001, 0.005, 0.01, 0.05,
0.1, 0.5, 1},while the range for the initial learning rate (a in Eq. (9))
was {5000, 10000, 50000, 100000}.

5.1.2 Estimating Zagat ratings
Baseline. For the Zagat ratings, we use two baselines:

Average transformation. This algorithm simply takes the aver-
age of GP ratings and then performs a linear transformation
from [1, 5] to [0, 3]. This is an extremely naive baseline for
many reasons. For instance, GP ratings are one-dimensional
whereas Zagat ratings are differentiated into three dimen-
sions.

Linear regression transformation. This is a strong baseline that
uses the latent attributes inferred on GP using SVD. It then
estimates a linear regression for Zagat food, decor and ser-
vice based on places in the training set.

Cross-validation. For Zagat estimation, we use a classical 5-fold
cross-validation since no validation set is needed for parameter se-
lection. We directly use the best parameter in the corresponding
GP experiments. The best parameter is mostly consistent between
different folds in our experiments on GP. Whenever the best param-
eters are different for different folds, we simply take the majority
choice, i.e., the parameter setting that provides the most best per-
formances in 5 folds.

5.2 Evaluation Measures
We consider three evaluation measures in the experiment. For

experiments on GP ratings, we try to predict user ratings for places.
We use RMSE as a straightforward metric to measure the loss be-
tween predicted scores and actual scores. We also include the log-

12SVD refers to SVD++ in our paper.



likelihood as our evaluation metric to see how good the model rep-
resents the distribution of user ratings. For experiments on Zagat
ratings, we try to predict ratings for each place aggregately. We use
RMSE in this case, too. Since we have two lists of place scores, it
also makes sense to see how good they correlate with each other,
thus we also include Pearson Correlation as a second metric.

In the descriptions below, we use s to denote the true rating and,
with some slight abuse of notation (in the context of renormalized
Gaussians) we use y for the predicted rating.

RMSE. The Root Mean Square Error describes the average differ-
ence between the true rating and the predicted rating. The
smaller the RMSE, the better the performance.

RMSE =

√
n−1

∑
p,r

(spr − ypr)2.

Note that in many cases it is impossible to achieve RMSE =
0 due to the inherent variance in spr .

Log-likelihood. This measures more directly the statistical fidelity
of the estimate. More specifically, a large log-likelihood is
good. It is defined as

LL =
∑
p,r

log p(spr|ypr).

Note that by construction LL can never exceed the negative
entropy of the distribution, as follows from information the-
ory [8]. Our reason for choosing LL is that it directly mea-
sures the fidelity of our data generation model instead of min-
imizing the RMSE.

Pearson Correlation. This measures the degree of linear depen-
dence between the predicted and observed result. The larger
the correlation, the better the performance. It is given by

PCorr =

∑
i(si − s̄)(yi − ȳ)√∑

i(si − s̄)2
√∑

i(yi − ȳ)2
.

6. RESULTS

6.1 Estimating Google Places Ratings
We first assess the performance of the estimates on GP ratings,

to see whether modeling user precision or place precision improves
on SVD (SVD++) and whether discretizing the ratings improves
performance.

As we can see from Table 2, SVD provides the best performance
in terms of RMSE, while SVDRenRat, i.e. SVD++ with expo-
nential renormalization and user precision provides the best log-
likelihood estimates. Employing exponential renormalization im-
proves the log-likelihood but leads to worse performance in RMSE
since what we are optimizing in this context is not the total loss
but a renormalized likelihood. As expected, the choice of models
depends on the choice of objective function.

It seems that considering user precision always works better than
place precision. This suggests that variability for a given user is
more helpful than variability for a given place in predicting user
ratings for places.

6.2 Estimating Zagat Ratings
We now describe estimation of Zagat ratings which constitutes

the main task of this paper. Table 4 shows the performance of dif-
ferent models and the two baseline approaches.

6.2.1 Baseline performance
Average baseline. As expected, the average score translation from
GP ratings provides the worst performance (with RMSE being high
at 0.539). The correlation between average score and Zagat decor
score is quite low (correlation=0.075). This suggests that when
submitting the overall, single-dimensional rating, users tend to care
more about food (correlation=0.375) and service (correlation=0.258)
than restaurant decoration. And even for the food dimension, which
has the highest correlation with the overall GP ratings, the value is
low. This indicates that there are indeed substantive differences
between the two sets of users and the two methodologies for col-
lecting user evaluations.
Linear regression baseline. The linear regression baseline per-
forms quite well in predicting food and service scores. Note that an
RMSE loss of 0.259 in the 3.0-scale is just 2.59 in the usual Zagat
30-point rating. We see a clear drop in accuracy on decor compared
with food and service. This confirms that we can mainly learn about
food and service related features from GP ratings alone. And the
similar performance on food and service actually shows that normal
users have the ability to distinguish food quality as well as service
quality.

6.2.2 Joint Modeling Performance
Jointly modeling Zagat ratings and GP ratings can further im-

prove the performance compared to the linear regression baseline.
All of the models that jointly optimize the loss on Zagat ratings
and GP ratings improve both RMSE and correlation measures com-
pared to the linear baseline.13 This is a very encouraging result,
suggesting our general approach improves Zagat rating prediction
and it is possible to reconcile the two approaches to collecting user
ratings.

However, the effects of considering user precision, place pre-
cision, exponential renormalization and closeby places are quite
complicated:

• First, it seems that considering closeby places to Zagat places
hurts the performance in terms of RMSE. This is reasonable
since considering closeby places changes the objective func-
tion to optimize. However, we note that two of the three best
correlation numbers (food with CloSVDRenRat and decor
with CloSVDPla) are observed when considering closeby
places.

• Second, exponential renormalization seems to help. This
is especially clear in RMSE for cases where we consider
closeby places. All the models with exponential renormaliza-
tion (with prefix CloSVDRen) give better or same average
RMSE compared to the corresponding model without Ren.
The reason might be that though exponential renormalization
does not lead to better RMSE results in experiments on GP
ratings, it helps better learn the latent features for each place
and leads to slightly better performance on Zagat ratings.

• Finally, we also notice that considering place precision helps
more than considering rater precision. For instance, the model
with the best average RMSE is SVDRenPla that considers
place precision. The best numbers in service and decor are
also attained when considering place precision. This is dif-
ferent from what we observe in the experiment on GP ratings.
The reason might be that we are trying to infer the ratings at

13There is one exception on Food RMSE in CloSVDRat, i.e. in the
model considering closeby places to Zagat places and rater preci-
sion.



Table 2: Google Places accuracy. Algo-
rithm labels as described in Section 4.2.
Note that SVD refers to SVD++ in our pa-
per.

RMSE log-likelihood
SVD 1.144 −5.64 · 104

SVDRat 1.159 −5.36 · 104

SVDPla 1.166 −5.48 · 104

SVDRen 1.147 −5.55 · 104

SVDRenRat 1.157 −5.21 · 104

SVDRenPla 1.166 −5.28 · 104

Table 3: Zagat RMSE loss, stratified based
on price levels.

price food decor service mean
all 0.274 0.397 0.276 0.321
$ 0.241 0.350 0.236 0.281
$$ 0.245 0.335 0.225 0.273
$$$ 0.227 0.286 0.214 0.244
$$$$ 0.208 0.288 0.221 0.242

Table 4: Zagat accuracy. The labels correspond to the 12 models described in Sec-
tion 4.3. The baselines are as described in Section 5.1. Note that the smaller the
RMSE, the better the performance, while the larger the correlation, the better the
performance.

RMSE Correlation
model food decor service average food decor service
average 0.416 0.683 0.482 0.539 0.375 0.075 0.258
regression baseline 0.259 0.383 0.258 0.306 0.427 0.386 0.445
SVD 0.249 0.347 0.240 0.283 0.507 0.561 0.567
SVDRat 0.252 0.346 0.239 0.283 0.485 0.560 0.569
SVDPla 0.250 0.348 0.237 0.283 0.510 0.561 0.582
SVDRen 0.250 0.346 0.240 0.283 0.510 0.562 0.567
SVDRenRat 0.249 0.347 0.240 0.283 0.513 0.555 0.566
SVDRenPla 0.250 0.345 0.240 0.282 0.504 0.558 0.567
CloSVD 0.256 0.353 0.248 0.290 0.502 0.561 0.566
CloSVDRat 0.264 0.358 0.247 0.294 0.481 0.558 0.569
CloSVDPla 0.255 0.353 0.243 0.288 0.503 0.563 0.580
CloSVDRen 0.253 0.349 0.244 0.286 0.511 0.560 0.564
CloSVDRenRat 0.253 0.356 0.249 0.290 0.519 0.557 0.568
CloSVDRenPla 0.253 0.354 0.243 0.288 0.510 0.558 0.570

place level for Zagat ratings here while we are trying to infer
each user rating in the experiment on GP ratings.

As a result of the above observations, the model that provides
the best average RMSE is SVDRenPla, i.e. factorization using a
renormalized distribution and using place-specific precision. It im-
proves by 0.024 in terms of average RMSE compared to the linear
regression baseline, and by 0.257 against the naive average scores
from GP ratings. As a reference of scale, in [17], SVD++ improves
RMSE by 0.01 compared to SVD in 5 star ratings.14

In terms of correlation, the improvements are also significant,
especially in decor. But the best correlation in different dimensions
is approached by different models. This suggests that we cannot
make any conclusive arguments about the power of different mod-
els. Note that the improvements relative to the baseline occur in all
three aspects, which suggests that it is important to do joint opti-
mization on two datasets.

When jointly modeling Zagat and GP ratings we see a larger
improvement in decor compared to food and service. This suggests
that GP ratings alone convey more information regarding food and
service rather than decor, which is consistent with the observation
in the simple average baseline.
RMSE By Price Levels. We further check the RMSE performance
of estimating the Zagat ratings stratified on price levels for the
model SVDRenPla, since it provides the best performance. As
we can see from Table 3, there is a clear reduction in error for $$$
and $$$$ places compared to $ and $$ places: we see a drop in
RMSE in all the three dimensions and the drop in decor is more
significant. For example, comparing the RMSE in $$$ places to $$
places, the RMSE in decor is decreased by 0.049, while the RMSE
in food is decreased by 0.018. This indicates that our model does
learn that price level is a better signal for decor than for food. On
the other hand, since the scores are restricted from above, the es-
timation problem actually becomes easier (at least on average) for
pricier restaurants — they are likely to provide better food, service
and decor due to efficiency of the markets.

14[1, 5] opposed to [0, 3] in our case.

6.3 Analysis
To investigate implications, we shall focus on the best perform-

ing statistical model, SVDRenPla. We investigate place effects
such as which cuisines may be, a priori, highly and poorly rated.15

We also investigate issues such as whether rater bias is a function
of rater’s experience; and whether the latent space representation is
inherently meaningful by an application of cross-city search.

6.3.1 Place effects
We now study how place effects such as price levels and cuisine

types affect the final scores in Zagat ratings. Recall that our results
are based on ratings submitted by users who have chosen to patron-
ize specific places and then submit their ratings. In other words, the
findings reported herein reflect dining experience through the eyes
of the users who chose to report it.
Price levels. To investigate the effects of pricing we compute the
inner products between the latent price attributes u$ and the associ-
ated rating vectors vzf , vzd, vzs. This effectively amounts to price
specific offsets. Figure 1 shows how scores in food, decor and ser-
vice change with price. With the exception of food for the $ or $$
price levels we see a monotone increase in each of the three dimen-
sions. The fact that estimated food score for the $$ places is slightly
lower than that in the cheaper restaurants suggests that at the low-
est price level, service and decor may be the key differentiators.
Alternatively, this may be due to other reporting bias that we did
not account for, i.e. customers having relatively lower expectations
when rating inexpensive restaurants. We find that the estimated
decor score exhibits the largest increase as price increases. The
difference in the decor score between the $$$$ and $ places is as
high as 1.0, which corresponds to 10.0 on the usual 30-point Zagat
scale. It appears that more expensive places are differentiated more
by design and service rather than food (again as estimated from the
ratings reported by GP users).
Cuisine types. We now check how the estimated scores vary by
cuisine type. For that we first compute the inner products between
ucuisine and vzf , vzd, and vzs, then sort within each dimension. Ta-
ble 5 lists the top 5 cuisines types and the bottom 5 cuisine types.

15Some of the findings may be also observed by simply averaging,
which can be seen as sanity-check. Here we are more interested in
exploring the results of our model.
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Figure 1: Price Level Effects. The numbers are all relative to
the $ category. Note that the food score remains essentially un-
changed for the $ vs. the $$ category.

Table 5: Best rated and lowest rated cuisine types based on
latent variables.

food decor service

Top tier

latin american latin american latin american
korean korean korean
thai mediterranean thai
vegetarian fine dining mediterranean
mediterranean thai vegetarian

Bottom tier

hamburger hamburger hamburger
buffet buffet buffet
seafood fast food fast food
family chicken family
american chicken wings seafood

We observe Latin American and Korean restaurants among the top
rated based on the food score, while hamburger and buffet-style
restaurants appear at the bottom. Again, note that this is based on
data from users who choose to patronize and rate respective restau-
rant types, so the results reflect the perception of those users rather
than an objective consensus. For example, it is plausible that vege-
tarian restaurants would be rated mainly by vegetarians, who might
give them higher scores than non-vegetarians. However, the fact
that fast food restaurants occupy the bottom tier on decor and ser-
vice but not on food provides some external validity for our analy-
sis.

6.3.2 User bias
Another question on user behavior is whether rater bias is related

to rater’s experience. Figure 2 shows estimated user bias vs. log of
the number of ratings per user.16 As can be seen, the results are
noisy but there is a clear decreasing trend, suggesting that users
who give more ratings have a more negative bias. This indicates
that as customers rate more places they may become less impres-
sionable. Interestingly, Byers et al. [4] and Godes and Silva [12]
respectively observe that average ratings for restaurants and books
decrease over time. Our observation is consistent with this trend but
from the perspective of raters. Similarly, McAuley and Leskovec
[25] find that experts give more “extreme” ratings: they rate the top
products more highly, and the bottom products more harshly.

16We use logarithmic binning because the number of ratings per user
is heavy-tailed. We remove data points with more than 256 ratings,
because the error bars become too large to be meaningful.
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Figure 2: Rater bias as a function of the number of reviews.
The error bar corresponds to 95% confidence intervals.

6.3.3 Most similar places
Our use of latent variable models also makes possible what we

shall call “search by example”. This can come in handy when mak-
ing recommendations to people who are traveling or moving to a
different city. Suppose that the user is quite familiar with his or
her home city and would like to find an equivalent of a particular
place in the destination city. For instance, we can use the latent
features to find restaurants most similar to “Gary Danko” (a well
known fine dining restaurant in San Francisco) in New York City.
To do so, we remove city effects from the model and fix restaurant
category. After that, we use the Euclidean distance between latent
vectors up+u$ to find the closest restaurants in the destination city
to the selected restaurant in the source city.

We show a few such examples in Table 6. We choose a couple
of characteristic places from San Francisco and New York, and for
each of them find the best match in a different city. We note that
the matches intuitively make sense, e.g. with Per Se corresponding
to Alinea. Some notable exceptions are Denny’s as a purported San
Francisco equivalent of Shake Shack (where one should probably
expect In-N-Out Burger) and Starbucks suggested by our model as
one of Chicago’s answers to Tartine (a popular and well-regarded
San Francisco bakery).

7. CONCLUSION
We have discussed the problem of inferring expert Zagat-style

three-dimensional restaurant ratings based on noisy user-contributed
one-dimensional ratings from Google Places. Inspired by research
in collaborative filtering, we employ a latent factor model to link
Zagat ratings with GP ratings.

Joint optimization over the two datasets can indeed improve the
performance in terms of both RMSE and Pearson correlation com-
pared to the baseline. Curiously, we find that the improvement is
more prominent in estimating decor than in food and service scores.
This indicates that user-contributed ratings in GP are more likely to
reflect the quality of food and service. Without the joint optimiza-
tion, most latent features do not provide information about decor.

We have explored a number of variations on our model. Ex-
ponential renormalization leads to better performance in terms of
log-likelihood in GP ratings and also the best performance in terms
of average RMSE for Zagat ratings. It validates the effectiveness of
considering the ordinal rankings using exponential family models.
Based on different evaluation measures, the best performance was
generally achieved by incorporating either user precision or place



Table 6: Similar places in different cities based on latent vari-
able data. SRC represents source, and DST means destination.

SRC place DST place
SF Tartine NYC Veniero’s Pasticceria

Amy’s Bread Chelsea
Mille-feuille Bakery Cafe

CHI Lou Mitchell’s
Starbucks
Molly’s Cupcakes

Gary Danko NYC Jean Georges Restaurant
Cafe Boulud
Annisa

CHI Les Nomades
Tru
Spiaggia

NYC Per Se SF Opaque
Bix
Frascati

CHI Alinea
Joe’s Seafood Home
Girl & The Goat

Shake Shack SF Denny’s
Tommy’s Joynt
Acme Burgerhaus

CHI Bread Basket
Hot Dog Express
Pockets

precision. This suggests that in similar applications it may be use-
ful to explicitly model rating variance within users and places.

In general, we have shown that it is possible to reconcile the
two quite different approaches to collecting user ratings. Using the
noisier user-contributed ratings from Google Places, we are able to
infer Zagat-style expert ratings reasonably well. This suggests that
it may be a good idea to combine these two approaches (ad hoc rat-
ing collection and planned surveys) in the design of recommender
systems so that a large number of ratings can be collected and then
transformed to aggregate scores of better quality.

Posterior analysis also suggests some interesting research prob-
lems in user behavior analysis. For instance, we observe that as
users submit more ratings, they tend to become more discerning
overall. It is not clear whether this phenomenon holds in differ-
ent application domains; there may be multiple behavioral expla-
nations. Therefore, a better understanding of the cognitive, so-
cial, and technological processes that drive the production of user-
contributed ratings is necessary for designing better recommenda-
tion platforms.
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