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ABSTRACT 
Multi-touch gestures have become popular on a wide range 
of touchscreen devices, but the programming of these 
gestures remains an art. It is time-consuming and error-
prone for a developer to handle the complicated touch state 
transitions that result from multiple fingers and their 
simultaneous movements. In this paper, we present Gesture 
Coder, which by learning from a few examples given by the 
developer automatically generates code that recognizes 
multi-touch gestures, tracks their state changes and invokes 
corresponding application actions. Developers can easily 
test the generated code in Gesture Coder, refine it by adding 
more examples and, once they are satisfied with its 
performance, integrate the code into their applications. We 
evaluated our learning algorithm exhaustively with various 
conditions over a large set of noisy data. Our results show 
that it is sufficient for rapid prototyping and can be 
improved with higher quality and more training data. We 
also evaluated Gesture Coder’s usability through a within-
subject study in which we asked participants to implement a 
set of multi-touch interactions with and without Gesture 
Coder. The results show overwhelmingly that Gesture 
Coder significantly lowers the threshold of programming 
multi-touch gestures.  

Author Keywords 
Multi-touch gestures, programming by demonstration, state 
machines, decision trees, Eclipse plug-in. 

ACM Classification Keywords 
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Prototyping. I.5.2 [Design Methodology]: Classifier design 
and evaluation.  

INTRODUCTION 
An increasing number of modern devices are equipped with 
multi-touch capability—from small consumer gadgets, such 
as mp3 players [5], mobile phones [10] and tablets [18], to 
large interactive surfaces, such as tabletops [17] and wall-

size displays [20]. Depending on the desired action, multi-
touch gestures come at a great variety. For example, a user 
might pinch with two fingers to zoom or possibly swipe 
with two fingers to go forward or backward in a web 
browser [19]. As these examples imply, multi-touch 
gestures are intuitive, efficient, and often have physical 
metaphors. Two-finger pinch-to-zoom, for example, is 
analogous to the physical action of stretching a real world 
object using two fingers. 

Clearly, multi-touch gestures are beginning to play an 
important role in modern user interfaces, but they are often 
difficult to implement. The challenge lies in the 
complicated touch state transitions from multiple fingers 
and their simultaneous movements. 

To program a set of multi-touch gestures, a developer must 
track each finger’s landing and movement change, which 
often results in spaghetti code involving a large number of 
states. For example, it is nontrivial to develop simple touch 
behaviors in a note-taking application that features one-
finger move-to-draw, two-finger pinch-to-zoom, and two-
finger move-to-pan gestures. To decide when to draw on 
the screen, a developer must track 1) if more fingers land 
after the first finger touches the screen, and 2) if the amount 
of movement of the first finger is significant. Once the 
second finger lands, the developer must analyze the relative 
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Figure 1: Gesture Coder lets the developer easily add multi-
touch gestures to an application by demonstrating them on a 
target device. In this figure, the developer is demonstrating a 
five-finger-pinch gesture on a tablet device connected to the 

Gesture Coder environment. 
  
* This work was done while the author was an intern at Google Research. 



movement between the two fingers to determine if the user 
is pinching or panning. Our study shows that many 
experienced developers cannot implement interaction of 
this kind in a short time. 

Although substantial work has been done on gesture 
recognition [26,27], it is insufficient to address multi-touch 
gestures for two reasons. First, prior work was primarily 
concerned with classifying gestures based on their 
trajectories that are generated with a single finger or stylus. 
In contrast, multi-touch gestures are produced with multiple 
fingers. The number of fingers involved and the relative 
spatial relationship among them are often more important 
than their absolute movement trajectories. Second, prior 
work largely treats gestures as a shortcut for triggering a 
discrete, one-shot action [4]. In contrast, a multi-touch 
gesture is often employed for direct manipulation that 
requires incremental and continuous feedback [24]. For 
example, when a user pinches to zoom, the target size must 
be continuously updated as the fingers slide, not just when 
the gesture ends. In other words, multi-touch gestures can 
comprise a series of repetitive movements, each of which 
might trigger an action. This demands more frequent 
communication between the UI—the gesture processing 
component—and the application logic. 

Several existing toolkits provide a set of built-in 
recognizers, each of which deals with a common multi-
touch gesture, e.g., a pinch recognizer [28]. However, this 
approach is limited because developers must still deal with 
the low-level details of multi-touch input when creating 
custom gestures. Also, there is little support for handling 

the coexistence of multiple gestures. To do so, developers 
must combine multiple recognizers manually and resolve 
potential ambiguity. Gesture specification languages such 
as [12] attempt to keep developers from the programming 
details, but they require learning a new language and can be 
too complicated to be practical.  

In this paper, we describe Gesture Coder, a tool for 
programming multi-touch gestures by demonstration. 
Instead of writing code or specifying the logic for handling 
multi-touch gestures, a developer can demonstrate these 
gestures on a multi-touch device, such as a tablet (see 
Figure 1). Given a few sample gestures from the developer, 
Gesture Coder automatically generates user-modifiable 
code that detects intended multi-touch gestures and 
provides callbacks for invoking application actions. 
Developers can easily test the generated code in Gesture 
Coder and refine it by adding more examples. Once 
developers are satisfied with the code’s performance, they 
can easily integrate it into their application.  

The paper offers the three major contributions. 

• a set of interaction techniques and an architectural 
support for programming multi-touch gestures by 
demonstration that allow developers to easily 
demonstrate, test, and integrate the generated code into 
their application; 

• a conceptualization of multi-touch gestures that 
captures intrinsic properties of these gestures and 
enables effective machine learning from one or a small 
number of gesture examples; and 
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Figure 2: The Gesture Coder interface includes (1) Eclipse’s Project Explorer through which the developer can add a Gesture 
Coder file to the project; (2) the Gesture Coder toolbar, which contains the buttons for adding gesture examples, testing the 

learned recognizer, and exporting source code; (3) the Gesture Collection view, a compendium of all the gesture examples; and (4) 
the Outline view, which categorizes the examples and shows the number available for each gesture. 



• a set of methods for training multi-touch gesture 
recognizers from examples and generating user-
modifiable code for invoking application-specific 
actions. 

In the rest of the paper, we first provide a walkthrough of 
Gesture Coder using a running example. We then examine 
the intrinsic properties of multi-touch gestures from which 
we derived a conceptualization of this type of gestures. We 
next present the algorithms for learning from examples and 
generating the code to recognize multi-touch gestures. We 
then move to our evaluation of Gesture Coder’s learning 
performance and usability. Finally, we discuss the scope of 
our work as well as related work and conclude the paper. 

USING GESTURE CODER: AN EXAMPLE 
To describe how developers can create multi-touch 
interactions using Gesture Coder, we use the context of a 
hypothetical, but typical, development project. The project 
description is based on our current implementation of 
Gesture Coder as an Eclipse plug-in compatible with the 
Android platform [1]. Developers can invoke Gesture 
Coder and leverage the generated code without leaving their 
Android project in Eclipse. Although Gesture Coder’s 
current implementation is tied to a specific platform, its 
general approach is applicable to any programming 
environment and platform that supports multi-touch input.  

Assume a developer, Ann, wants to implement multi-touch 
interactions as part of her drawing application for a tablet 
device. The application should allow the user to draw with 
one finger, pan the drawing canvas with two fingers moving 
together, and zoom with two fingers pinching. In addition, 
panning and zooming should be mutually exclusive; that is, 
only one can be active at a time. These are typical 
interactions for a multi-touch drawing application [7]. 

Demonstrating Gestures on a Multi-Touch Device 
Ann first connects a multi-touch tablet to her laptop where 
she conducts the programming work via a USB cable. She 
then adds a Gesture Coder file to her project using Eclipse’s 
Project Explorer, which opens the Gesture Coder 
environment  (see Figure 2).  

In the background, Gesture Coder launches a touch 
sampling application on the connected device remotely and 
establishes a socket connection with it. The touch sampling 
application, running on the tablet device, will capture touch 
events and send them to Gesture Coder.  

To add an example of multi-touch gestures, Ann clicks on 
the Add button in the Gesture Coder toolbar (see Figure 
2.2). This brings up the Demonstration window, which 
visualizes multi-touch events that the developer produces 
on the tablet in real time and that appear as gradient-yellow 
traces, similar to each example in the Gesture Collection 
view (see Figure 2.3). The traces serve to verify if the 
gesture has been performed correctly. The developer can 
then name the gesture example and add it to the collection 

of examples, which are portrayed as thumbnails. Hovering 
over the thumbnail brings up the Play and Delete buttons. 
When the developer clicks on the Play button, Gesture 
Coder animates the trace in real time, essentially providing 
a playback of the captured example. In our hypothetical 
project, Ann adds examples of five gesture types: Draw, 
Pan, Zoom, Undo, and Redo. 

Testing the Generated Recognizer Anytime 
After adding a few examples, Ann wants to find out if 
Gesture Coder can detect these gestures correctly. She 
begins this process by clicking on the Test Run button in 
the Gesture Coder toolbar; this brings up the Test window 
(see Figure 3). Similar to demonstrating an example, the 
Test window visualizes simultaneous finger movements as 
Ann performs a multi-touch gesture on the connected tablet.  

As Ann tries different gestures, the Test window displays 
recognition results in real time in its Console, including the 
gesture type, its state, and the probability distribution of all 
the target gesture types. Ann can then verify if Gesture 
Coder has correctly recognized her gesture. 

If Ann finds that Gesture Coder has incorrectly recognized 
the gesture that she just performed, she can correct the error 
without leaving the Test window by simply typing the name 
of the intended gesture. This action generates a new 
example for learning. She can then keep testing the revised 
recognition. 

Integrating Generated Code into Developers’ Project 
Once Ann is satisfied with the recognition results, she 
clicks on the Export button from the Gesture Coder toolbar. 
This exports the recognizer as a Java class in Ann’s 
drawing application project.  

To use the generated class MultiTouchRecognizer (see 
Figure 4), Ann first instantiates a recognizer object from it 
and lets recognizer handle all the low-level touch events 
received by the multitouchUI, a View object in Android. The 
recognizer class takes low-level touch events and invokes 

 
Figure 3: Gesture Coder’s Test window with a magnified view 

of the Console output.  



an appropriate callback. It encapsulates the details of 
recognizing and tracking the state transition of each gesture. 

Similar to Apple iOS’s touch framework, the lifecycle of a 
gesture in Gesture Coder can involve six possible stages: 
Possible, Failed, Began, Changed, Cancelled, and Ended. A 
developer can add a callback for each gesture stage that will 
be invoked when the stage becomes active. 

Every gesture starts as Possible when the user input starts, 
that is, when the first finger lands. A gesture is Failed when 
it can no longer be a possible match with the user input. A 
gesture is Began when it becomes recognized and Changed 
whenever there is a new touch event while the gesture 
remains recognized. A recognized gesture is Cancelled 
when it no longer matches the user input or Finished when 
the user has finished the input. 

MULTI-TOUCH GESTURES 
Before diving into the details of how the underlying system 
works, we first discuss multi-touch gestures that we 
intended to address. The research community and industry 
have used  “touch gesture” broadly to refer to various 
interaction behaviors on the touch screen or surface of a 
touch-sensitive device. Overall, touch gestures tend to fall 
into one of the following two categories. 

A large body of work was concerned with gestures that 
have a predefined trajectory or shape, e.g., recognizing 
handwriting symbols for text entry or gesture shortcuts for 
invoking commands [4,26], or detecting the crossing over a 
series of targets to trigger a specific action [14,27]. These 
gestures are often produced with a single finger or the 
stylus. The interaction behaviors associated with this type 
of gesture are one-shot—an action is triggered only when 
the gesture is finished. 

The second category of gestures refers to those for direct 
manipulation of interfaces, e.g., tapping to activate, swiping 
to scroll, pinching to zoom, or twisting to rotate, which are 
more prevalent in commercial products. These gestures may 
involve more than one finger and typically do not concern 
the exact trajectory of the finger movement. For example, 
when panning a map with two fingers, the absolute 
trajectory of the fingers can be arbitrary. In addition, the 
interaction behaviors associated with these gestures often 
require frequent communication with application logic to 

provide incremental feedback, an important property of 
direct manipulation interfaces [24]. We focus on this type 
of gestures, especially those involving the use of multiple 
fingers.  

Conceptualizing Multi-Touch Gestures 
We here form a conceptualization of multi-touch gestures, 
which defines the scope of our work and serves as a basis 
for our learning algorithms. Apple introduced a definition 
of multi-touch gestures [9]: “comprising a chord and a 
motion associated with chord, wherein a chord comprises a 
predetermined number of hand parts in a predetermined 
configuration.” This definition effectively captures many 
existing multi-touch gestures. However, it has two 
shortcomings.  

First, the definition does not clarify what motion can be 
associated with the fingers (chord). By analyzing existing 
gestures, we found the absolute trajectories of the fingers 
often do not matter, but the change of the spatial 
relationship between the fingers usually does. For example, 
the two-finger pinching gesture is determined solely on the 
basis of whether the distance between the two fingers has 
changed. Although this definition does not exclude 
complicated trajectories to be associated with each finger, 
we have not seen such gestures. In fact, when multiple 
fingers must move in a coordinated fashion, the type of 
motion that a finger can perform is fundamentally bounded 
by a physical limitation—at some point, the motion is no 
longer humanly possible. In addition, because these 
gestures are used primarily for direct manipulation, they 
often consist of a sequence of repetitive motions, which 
generates incremental changes of the same nature.  

The second shortcoming is that the definition leaves out 
gestures that have multiple finger configurations (or 
multiple chords) such as double-tap. Although only a few 
cases of multi-touch gestures have multiple finger 
configurations, we argue that these emerging gestures can 
be useful, since using different finger configurations can 
effectively indicate a mode switch, which is an important 
problem in modern interfaces. In addition, even a gesture 
defined for a single-finger configuration can incur multiple 
finger configurations during interaction. For example, 
imperfect finger coordination can cause the number of 
fingers sensed for a two-finger pinch gesture from 
beginning to end as 1, 2 and 1. The duration of the single-
finger stages could be short. 

As a result, we propose a new framing for multi-touch 
gestures based on the previous definition: 

Definition 1. A multi-touch gesture consists of a 
sequence of finger configuration changes, and each 
finger configuration might produce a series of repetitive 
motions. A motion is repetitive when any of its segments 
triggers the same type of action as its whole.  

// Instantiate the recognizer class generated by Gesture Coder. 
recognizer = new MultiTouchRecognizer(multitouchUI); 
 

// Add app-specific actions in response to each gesture stage. 
recognizer.addGesturePinchListener( 
    new GestureSimpleListener () { 
        @Override 
        public void onBegan (GestureEvent event) { 
            // Init. 
        } 
        @Override 
        public void onChanged (GestureEvent event) { 
            // Zoom. 
        }
Figure 4. A code snippet for using the generated recognizer. 



In Gesture Coder, a finger configuration primarily refers to 
the number of fingers landed and their landing orders, and a 
motion refers to the continuous finger movement. In the 
next section, we discuss how this framing enables Gesture 
Coder to learn recognizers from a few examples. 

ALGORITHMS 
In this section, we discuss the underlying algorithms that 
enable Gesture Coder to generate a gesture recognizer from 
a set of examples. We first derive a generic computational 
model for detecting multi-touch gestures, and then discuss 
how to automatically create such a model for a specific set 
of gestures by learning from a collection of examples.  

Deriving a Computational Model for Detecting Gestures 
Based on our conceptualization, a multi-touch gesture 
involves a sequence of finger configuration where each 
configuration might have a continuous motion associated 
with the fingers. Each gesture can have a different finger 
configuration sequence and a different set of motions. 
Given a set of multi-touch gestures, their sequences are well 
represented by a state machine, which takes primitive touch 
events and triggers application actions associated with each 
state transition. 

State Transitions Based on Finger Configurations 
A finger configuration such as the number of fingers on the 
touchscreen determines what motion can be performed. As 
a result, we treat each configuration as a state and the 
landing or lifting of a finger triggers the transition from one 
state to another.  

If we use the order of a finger touching the screen to 
represent the finger, we can represent each finger 
configuration as a set of numbers (the orders). We can then 
describe the possible transitions for a two-finger-tap gesture 
as two sequences: {}→+1 {1}→+2 {1, 2}→-2 {1}→-1 {} or 
{}→+1 {1}→+2 {1, 2}→-1 {2}→-2 {}, depending on which 
finger first lifts up (see Figure 5a). In our representation,  +i 
and –i denote the landing and lifting of the ith finger 
respectively. We assume without loss of generality that no 
two events will occur at exactly the same time. Otherwise, 
we can always treat them as two sequential events with the 
same timestamp. 

Multiple gestures can be captured in the same state 
machine. For example, the state machine in Figure 5b 
captures both one-finger-tap and two-finger-tap gestures, 
denoted as T1 and T2 respectively. Each state keeps a set of 
possible gestures when the state is reached, e.g., both T1 
and T2 are possible at the beginning. 

State Transitions Based on Motions and Timeouts 
So far, we have addressed only gestures that are not 
concerned with time and motions. However, many gestures 
contain motions, such as two-finger-pinch, while others, 
such as press-and-hold, rely on timing. 

To represent timing and motion in gestures, we introduce 
two event types in addition to finger landing and lifting. 
The Move event occurs when the fingers start noticeable 
movement; the Timeout event takes place when the fingers 
have remained static over a specific period. For example, 
the two-finger-pinch gesture can have a transition sequence 
{}→+1 {1}→+2 {1, 2}→move…→move {1, 2}→-2 {1}→-1 {}, 
and the press-and-hold gesture can have {} →+1 {1} 
→timeout(1sec) {1} →-1 {}. As the latter sequence indicates, the 
Timeout event takes a parameter to specify the duration. A 
Timeout event can also invalidate a gesture. For example, 
the double-tap gesture will not be recognized if the time 
interval between two taps is longer than a specified time 
window (see Figure 5c).  

Figure 5d shows a larger example, a state machine that 
enumerates all the possible transitions of a set of six gesture 
types: one-finger tap, two-finger tap, one-finger press-and-
hold, one-finger double-tap, two-finger move (to pan), and 
a two-finger pinch (to zoom). When two gestures have the 
same event sequence, such as, two-finger panning and 
zooming, they are indistinguishable if we rely only on their 
event sequence (e.g., the panning and zooming gestures in 
Figure 5d). In this case, we must look at the difference of 
motions under each finger configuration for these gestures. 
For example, at the two-finger state, we detect if the 
observed motion satisfies one of the two-finger gestures 
each time that a Move event occurs. If it does, a state 
transition takes place.  
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Figure 5: State machines that recognize (a) two-finger tap; 
(b) one-finger tap and two-finger tap; (c) double-tap; (d) T1: 

tap with one finger; T2: tap with two fingers; DT: double-
tap; H: press-n-hold; P: two-finger move (to pan); and Z: 

two-finger pinch (to zoom). 



In the figure, the state machine transitions to zooming if the 
distance between two fingers varies more than a certain 
threshold or to panning if the centroid of the two fingers 
travels over a certain distance. Because only one gesture 
can be active at a time, the one that is satisfied first is 
activated. Consequently, the result of motion detection can 
condition a state transition. 

Consistency with Existing Implementation Practice 
Our model is an abstraction of the current practice for 
implementing multi-touch gestures. After analyzing the 
implementation of several typical multi-touch interaction 
behaviors, such as pinching to zoom or moving to pan, we 
found developers tend to use a large number of hierarchical, 
conditional clauses (e.g., the If-Then-Else statement) to 
track these states and trigger transitions. 

It is time-consuming and error-prone to implement such a 
model manually—an assertion that we confirmed in our 
user study. When we asked highly experienced 
programmers to implement multi-touch interactions, many 
could not capture these behaviors in the required time (45 
minutes in our study). These results argue strongly for the 
need for a tool like Gesture Coder, which automatically 
learns such a model from gesture examples. 

Automatically Learning the Model from Examples 
Our learning algorithm consists of two stages: 1) learning a 
state machine that is based on the event sequences in the 
examples (e.g., a series of finger configuration changes) 
and 2) resolving the ambiguity in the learned state machine 
using motion differences. The second stage involves 
learning one or multiple decision trees. Before an example 
is used for learning, we preprocess the example by applying 
noise filtering, such as low-pass filtering. 

Learning a Coarse State Machine from Event Sequences 
This stage establishes the state machine’s skeleton by 
identifying the transitions triggered by events such as finger 
configuration changes. A multi-touch gesture example 
consists of a sequence of discrete events. For example, 
Figure 6b denotes Zoom as a series of Move events after 
two fingers touch the screen, and the sequence finishes as 
two fingers lift. The nature of learning in this stage is to 
automatically create a state machine that can model event 
sequences of target gesture examples.  

Our learning process begins by seeding the hypothetical 
state machine with a single node that serves as the starting 
state (see Figure 6d). It then iteratively applies the state 
machine to each training example and expands states and 
transitions if the machine fails to capture the example.  

Assume we want to learn a state machine that can detect 
one-finger move (to draw), two-finger pinch (to zoom) and 
two-finger move (to pan) (see Figures 6a, b and c), which 
can be three basic interactions for a multi-touch drawing 
pad. When our learning algorithm examines an example, it 

selects a path in the state machine that can maximize the 
alignment with the example’s event sequence. If the state 
machine cannot fully absorb the sequence, it expands 
accordingly. For example, Draw’s starting node (see Figure 
6a) matches that of the state machine. However, the state 
machine must expand to accommodate the rest of Draw’s 
sequence (see Figure 6e). When there are consecutively 
occurring events of the same type (e.g., a sequence of Move 
events), the learning algorithm abstracts them as a single 
loop transition.  

Similarly, to capture Zoom in Figure 6b, our learning 
algorithm expands the state machine as shown in Figure 6f. 
However, the third gesture Pan (see Figure 6c) will not 
cause the state machine to further expand, because the event 
sequence of Pan is the same as that of Zoom and thus the 
state machine can fully absorb it. As a result, the state 
machine learned in this phase can distinguish Draw from 
Zoom and Pan, but cannot tell the difference between Zoom 
and Pan (Figure 6g). 

Resolving Ambiguity by Learning Motion Decision Trees  
Because event sequences alone might be insufficient for 
modeling all the target gestures, our learning algorithm 
automatically looks into motions associated with each 
finger configuration to seek motion differences between 
ambiguous gestures. In the previous example, we identified 
the need to resolve the ambiguity in Figure 6g by 
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Figure 6: Learning a state machine from examples. 



determining if the motion is Zoom or Pan; that is, we must 
generate the state machine illustrated in Figure 6h.  

We here employ a binary decision tree [21], which takes 
finger motion and outputs a probability distribution over 
possible gestures. We chose this method partially because 
decision trees are easy to convert to user-modifiable code. 

Having a large amount of data is critical to learning. Based 
on Definition 1, for a given gesture, we can consider each 
Move in the motion series as primitive motion with the 
same nature, e.g., each Move in the scaling motion is also a 
scaling. The motion’s repetitive nature offers an effective 
way to extract many training samples from a single 
example. For example, for a motion that has a sequence of 
N segments, we acquire N samples instead of one. This 
makes our approach practical. 

By analyzing existing multi-touch gestures, we extracted an 
initial feature set for our decision tree learner, including 
translation, rotation, and scaling. Richer motion can be built 
on top of these transformation primitives. Translation is 
defined as the change of the centroid of multiple fingers 
along both X and Y axes. Rotation is defined as the average 
angular change of each finger relative to the centroid. 
Scaling is defined as the average change of the distance 
between each finger and the centroid. These constitute the 
feature vector for each sample.  

To train a decision tree, we use the standard C4.5 algorithm 
[21] from the Weka toolkit [25]. During the training, we 
bound the depth of the decision tree to avoid overfitting. A 
learned decision tree outputs a probabilistic distribution of 
possible gestures upon each Move event occurrence. 

Invoking Callbacks 
In a traditional state machine, an action is often triggered 
when a transition takes place. We use the same style to 
invoke callbacks. 

As discussed earlier, there are six callbacks for each 
gesture, which correspond to six stages: Possible, Fail, 
Begin, Changed, Cancel, and End. When the arriving state 
has more than one available gesture, the state machine 
invokes these gestures’ onPossible callbacks. For example, 
given a state {D, Z} in Figure 6, we invoke both gestures’ 
onPossible. When a gesture’s probability increases above a 
given threshold for the first time, its onBegan is invoked 
and its onChanged is invoked thereafter as long as its 
probability remains above the threshold.  

If a gesture becomes unavailable in the arriving state, there 
are three situations. If the gesture’s onBegan has never been 
invoked, the gesture’s onFailed will be invoked. If the 
arriving state is an end state (see Figure 6), its onEnded will 
be invoked. Otherwise, onCancelled will be invoked.  

Generating Code 
Once we learn the state machine as well as the decision 
trees for evaluating conditions on Move transitions, it is 

straightforward to transform the learned model into 
executable code. We briefly discuss the process in the 
context of generating Java source code. 

The first step is to encode the states into integers. Then the 
transitions are translated into a function that takes a state 
and a touch event and returns a new state. This function 
consists of a large Switch-Case statement. Each entry of the 
Switch-Case statement corresponds to one state in the state 
machine. The possible gestures under each state are 
represented as arrays, which update the probability 
distribution after each transition. Decision trees are 
translated into If-Then-Else statements. 

IMPLEMENTATION 
We implemented Gesture Coder as an Eclipse Plugin in 
Java, using SWT for its user interface and Android SDK [1] 
to communicate with Android-powered touch devices. We 
have also developed a separate Android application to send 
the touch events from the connected touch device to the 
development machine through a TCP socket. 

EVALUATION 
We evaluated both the performance and usability of Gesture 
Coder. We analyzed performance in terms of recognition 
accuracy and speed using a set of gestures collected from 
users in a public setting. We investigated usability through 
a laboratory study with eight professional programmers.  

Evaluating Gesture Recognition Performance 
To evaluate the Gesture Coder’s recognition performance, 
we collected 720 gesture examples from 12 participants at a 
cafeteria. These participants were passers-by whom 
experimenters recruited on the scene, including three 
children who wanted to play with the tablet, three elders 
who have never used multi-touch devices, and two foreign 
tourists seeking a translator. The experimenters asked each 
participant to perform four times for each of a set of 15 
target gestures that we selected from a set of existing multi-
touch gestures (see Table 1), on a Motorola Xoom Multi-
Touch Tablet (10’1” capacitive screen with 1280x800 
resolution and 160dpi), running Android 3.0. During data 
collection, the tablet remained blank. The touch traces 
displayed on a laptop connected to the tablet through a USB 
cable.  

The experimenter explained all the gestures to a participant 
before the actual tasks, and prompted the participants for 
each gesture. Because no application was associated with 
the gestures, for gestures such as 1-Finger-Scroll, the 
experimenters gave participants more specific instructions 
such as “scroll to the left” rather than just “scroll.”  

Our aim was to examine how the accuracy of our 
recognition algorithm changes with the number of available 
examples and target gestures to recognize. Hypothetically, 
the more available examples, the better the performance. 
The more target gestures, the more difficult it is for a 



recognizer to recognize them correctly. Our 
experimentation was based on the following procedure. 

Along the spectrum of recognition complexity, we 
randomly selected k different target gestures from the set in 
Table 1 and repeated (for each k) 100 times to compute the 
average. Based on our data, k was varied from 2 to 15, 
where the 2-gesture case is the simplest and the 15-gesture 
one the hardest.  

Given a k, we then conducted a 12-fold cross validation 
across users. To simulate real system use, each time we 
trained on the data of 1 participant (as the developer) and 
tested on the data of the remaining 11 participants (as the 
users). Notice that our cross validation is different from a 
typical leave-one-out approach, which would train on 11 
participants and test on the remaining 1. Consequently, our 
cross validation uses a more challenging learning condition.  

Given a selected developer, we varied from 1 to 4 the 
number of developer-supplied examples available for 
training, m. We then used a trained model to recognize all 
the gesture examples from the 11 users. Figure 7 shows the 
average accuracy with m from 1 to 4 and k from 2 to 15. 

Overall, our algorithm was effective and achieved over 
90% accuracy for simple cases where only two gestures 
were to be recognized. When there were 4 gestures—the 
number in many existing multi-touch applications—our 
algorithm achieved about 80% accuracy. 

The results largely confirmed our hypotheses. When the 
number of target gestures to recognize increases, accuracy 
decreases (see Figure 7). However, performance soon 
became stable and did not drop further even with more 
target gestures involved.  

The level of accuracy achieved is reasonable for rapid 
prototyping but seems unsatisfactory for production use. 
This experiment allowed us to quickly examine the learning 
algorithm at a large scale with 67,200 recognizers learned. 
However, it in fact underestimated the performance that 
Gesture Coder would achieve in real use. In actual product 
development, a professional developer, not random passers-
by, would provide examples, which would yield much 
higher quality training data than what we acquired in the 
cafeteria. In addition, a developer will have the opportunity 
to refine recognition iteratively with demonstration and 
testing in Gesture Coder. In our cross validation, when the 
person’s data used in training had a poor quality, it could 
seriously hurt the recognition rates. By playing back some 
of the collected traces, we found messy and incorrect 
samples from several participants. 

Our evaluation demonstrated that Gesture Coder can learn 
effectively with a large corpus of data. We expect improved 
recognition rates with more training data, which is often 
available in an iterative development-testing process. 
Figure 7 already shows such a trend that recognition rates 
improved when more examples became available. 

In terms of speed, under the most complex condition (15 
gestures and 4 examples per gesture), the average training 
time was 28ms, and the average prediction time was 0.1ms. 
We obtained the performance data on a MacBook Pro with 
Quad-Core Intel Core-i7 2.0GHz CPU and 8GB RAM. 

Laboratory Study 
To evaluate the Gesture Coder’s usefulness and usability, 
we compared it with a baseline condition in which 
developers implement multi-touch interactions based on 
touch events dispatched by the platform. We chose not to 
use an existing toolkit as a baseline condition for several 
reasons. Most existing toolkits provide built-in recognizers 
for a limited set of predefined gestures. A developer has to 
start from scratch and deal with raw touch input when the 
toolkit does not support a gesture. Existing toolkits are 
designed such that each predefined gesture has its own 
built-in recognizer. Thus, when multiple gestures are 
involved, the developer must manually combine the 
outcome of each individual recognizer, which can be 
nontrivial.  

We conducted a laboratory study with 8 professional 
programmers (all males, aged from 20 to 50 with a mean 
age of 30). All the participants were familiar with the Java 
programming language, the Eclipse environment, and the 
Android platform. They had varied experience in 
programming touch interactions: two participants had 
multi-touch experiences, five had programmed only single-

1. 1-Finger-Move 
2. 1-Finger-Tap 
3. 1-Finger-DoubleTap 
4. 1-Finger-TripleTap 
5. 1-Finger-Hold 
6. 1-Finger-Hold-And-Move 
7. 1-Finger-Swipe 

(up, down, left, or right) 
8. 2-Finger-Move 
9. 2-Finger-Pinch 

(scale up or down) 

10. 2-Finger-Rotate 
(CW or CCW) 

11. 2-Finger-Swipe 
(up, down, left, or right) 

12. 4-Finger-Vertical-Swipe 
(up or down) 

13. 4-Finger-Horizontal-Swipe 
(left or right) 

14. 5-Finger-Rotate 
(CW or CCW) 

15. 5-Finger-Pinch 
(scale up or down) 

Table 1: The 15 gestures used in evaluating Gesture Coder’s 
recognition performance. 

 
Figure 7: The accuarcy varies as the number of training 
sample and the complexity of recogniton task changes. 



touch interactions; and one had never programmed touch 
interactions. 

Study Setup 
We asked each participant to implement a realistic 
application with and without Gesture Coder in Eclipse and 
we counterbalanced the order of the two conditions across 
participants. We grouped the participants according to task.  
Participants in the first group had to implement a Drawing 
application for tablets. Participants in the second group 
were assigned a Map navigation application for mobile 
phones. Our goal was to examine both conditions with two 
multi-touch applications that embody a set of typical multi-
touch interaction behaviors in a feasible timeframe for a 
laboratory study.  

The Drawing application requires five gesture behaviors: 
one-finger move to draw, two-finger move to pan the 
canvas, two-finger pinch to zoom, three-finger leftward 
swipe to undo, and rightward swipe to redo. The Map 
application requires five gesture behaviors: one-finger 
move to pan the map, one-finger double-tap to zoom in 2x, 
one-finger triple-tap to zoom out 2x, two-finger pinch to 
zoom the map continuously, and two-finger vertical move 
to tilt the viewing angle. We instructed participants not to 
worry about ideal solutions and corner cases, but to 
implement a solution that they considered “good enough” 
for a demonstration. 

We implemented the skeleton code for each application as 
an Eclipse Android project, which includes all the 
application logic, such as rendering the map at a certain 
scale, except the part regarding detecting gestures and 
invoking application logic. The participants had to integrate 
their gesture recognition code with the skeleton code via 
exposed methods. These methods were designed in such a 
way that participants needed to pass only simple parameters 
such as finger locations.  

We gave participants a tutorial on the tools that they could 
use in each condition and then asked them to do a warm-up 
task. After a participant became comfortable with the 
condition, we demonstrated the application to be 
implemented and clarified the gestures involved in the 
application and the methods exposed by the skeleton code. 
We then let the participants work on the task for 45 minutes 
as we observed their screen from a different monitor.  

Results 
All the participants finished their tasks using Gesture Coder 
within a mean of 20 minutes (std=6). However, none of the 
participants could complete the task within 45 minutes in 
the baseline condition (Gesture Coder is not available). 

After the study, we asked participants to answer a 
questionnaire about Gesture Coder’s usefulness and 
usability using a 5-point Likert scale (1: Strongly Disagree 
and 5: Strongly Agree). Participants overwhelmingly 
thought Gesture Coder was useful (seven Strongly Agreed) 

and easy to use (six Strongly Agreed). In contrast, all 
participants responded negatively to the baseline condition. 

We observed that participants tended to implement the 
gestures incrementally in the baseline condition. For 
example, they first implemented a one-finger-move gesture 
and then tested it before moving to the next gesture. They 
had to constantly come back to modify the previously 
implemented gestures. In contrast, with Gesture Coder, 
participants tended to demonstrate all the gestures at once 
and then test the performance. Interestingly, however, when 
integrating the generated code with the skeleton code, they 
tended to handle one gesture at a time. Yet, participants 
never had to come back to modify previously implemented 
gesture behaviors. One participant even noted that Gesture 
Coder is “much more scalable.” In the baseline condition, 
participants all did heavy debugging using console output 
that they injected in their code to verify gesture behaviors. 
In contrast, with Gesture Coder, participants relied 
primarily on its more efficient testing support. All the 
participants strongly agreed that the ability to test on the fly 
is useful. 

Two participants were confused about how to demonstrate 
arbitrary movement. One commented, “It took me awhile to 
wrap my head around arbitrary gestures like single-finger 
panning.” Such confusion was partially due to our 
insufficient explanation of Gesture Coder during the study. 
For this special case, explicit specification of a random 
motion could be more efficient than demonstration. 

DISCUSSION AND FUTURE WORK 
Assuming repetitive motions lets Gesture Coder effectively 
learn and detect the motion of many useful multi-touch 
gestures. However, training based on individual motion 
segment does not allow the capture of a motion’s global 
features, such as its shape trajectory of a motion. However, 
as discussed earlier, global geometrics such as shape 
trajectories are less important for multi-touch gestures.  

There are several opportunities for improving Gesture 
Coder. In addition to training with higher quality and more 
training data, we could improve recognition performance by 
tuning parameters such as motion segment length and the 
threshold for the low-pass filtering of touch motion. 
Because our framework is extensible, we could easily add 
more features such as the contour of finger touches to our 
model or plug other motion classifiers into the framework. 
Finally, developers can fine-tune recognition to handle 
more complicated situations by modifying the generated 
Java code or adding constraints such as the absolute 
location of a gesture on the screen.  

RELATED WORK 
Multi-touch gestures are employed in various applications 
on a range of devices, e.g., [10,17,18]. To support the 
implementation of these gestures, Apple iOS’s SDK 
provides a gesture framework [28] that supports six 



predefined gestures with one recognizer for each gesture. 
Similar frameworks can be found on other platforms, e.g., 
[1]. However, even with these frameworks, developers still 
need to deal with low-level touch events when they want to 
implement custom gestures or combine multiple 
recognizers.  

Higher-level specification languages can hide low-level 
programming details in creating multi-touch gestures 
[12,13,23], but these languages can lead to complex 
specifications and are hard to scale when the number and 
complexity of gestures grow. In addition, learning a new 
language is a nontrivial burden on developers. In contrast, 
with Gesture Coder, developers can create multi-touch 
gestures without programming or specification; they need 
only demonstrate a few gesture examples. 

Although several previous tools (e.g., [6,16,22]) allow users 
to create gesture recognizers using examples, none of them 
deals with the types of multi-touch gestures that we focus 
on. In addition, Gesture Coder provides unique support for 
integrating the generated recognizer with application code, 
which is not available in these previous tools.  

Gesture Coder employs a programming by demonstration 
(PBD) approach, which has been successfully applied in 
prior work, e.g., [8,11,15]. Gesture Coder adds to the family 
of PBD systems by addressing a new problem. It 
contributes a set of methods for inferring target touch 
interactions from examples and for generating developer-
modifiable code that can be easily integrated with the 
developer’s application. 

Extensive work has been done on recognizing gestures from 
the trajectories generated with a single finger or stylus 
[2,3,26,27]. However, prior work is insufficient to address 
multi-touch gestures, which employ features such as the 
number of fingers involved and the relative spatial 
relationship among them, instead of absolute movement 
trajectories. In addition, prior work mostly treats gestures as 
a shortcut for triggering a discrete, one-shot action [4]. In 
contrast, multi-touch gestures are often employed for direct 
manipulation that requires constant communication with 
application logic [24]. 

CONCLUSION 
We presented Gesture Coder, a tool for programming multi-
touch gestures by demonstration. It automatically generates 
developer-modifiable code by learning from examples 
demonstrated by the developer. The code can be easily 
integrated into an application.  
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