
Gesture Coder: A Tool for Programming Multi-Touch
Gestures by Demonstration

Hao Lü*
Computer Science and Engineering

DUB Group, University of Washington
Seattle, WA 98195

hlv@cs.washington.edu

Yang Li
Google Research

1600 Amphitheatre Parkway
Mountain View, CA 94043

yangli@acm.org

ABSTRACT
Multi-touch gestures have become popular on a wide range
of touchscreen devices, but the programming of these
gestures remains an art. It is time-consuming and error-
prone for a developer to handle the complicated touch state
transitions that result from multiple fingers and their
simultaneous movements. In this paper, we present Gesture
Coder, which by learning from a few examples given by the
developer automatically generates code that recognizes
multi-touch gestures, tracks their state changes and invokes
corresponding application actions. Developers can easily
test the generated code in Gesture Coder, refine it by adding
more examples and, once they are satisfied with its
performance, integrate the code into their applications. We
evaluated our learning algorithm exhaustively with various
conditions over a large set of noisy data. Our results show
that it is sufficient for rapid prototyping and can be
improved with higher quality and more training data. We
also evaluated Gesture Coder’s usability through a within-
subject study in which we asked participants to implement a
set of multi-touch interactions with and without Gesture
Coder. The results show overwhelmingly that Gesture
Coder significantly lowers the threshold of programming
multi-touch gestures.

Author Keywords
Multi-touch gestures, programming by demonstration, state
machines, decision trees, Eclipse plug-in.

ACM Classification Keywords
H.5.2 [User Interfaces]: Input devices and strategies,
Prototyping. I.5.2 [Design Methodology]: Classifier design
and evaluation.

INTRODUCTION
An increasing number of modern devices are equipped with
multi-touch capability—from small consumer gadgets, such
as mp3 players [5], mobile phones [10] and tablets [18], to
large interactive surfaces, such as tabletops [17] and wall-

size displays [20]. Depending on the desired action, multi-
touch gestures come at a great variety. For example, a user
might pinch with two fingers to zoom or possibly swipe
with two fingers to go forward or backward in a web
browser [19]. As these examples imply, multi-touch
gestures are intuitive, efficient, and often have physical
metaphors. Two-finger pinch-to-zoom, for example, is
analogous to the physical action of stretching a real world
object using two fingers.

Clearly, multi-touch gestures are beginning to play an
important role in modern user interfaces, but they are often
difficult to implement. The challenge lies in the
complicated touch state transitions from multiple fingers
and their simultaneous movements.

To program a set of multi-touch gestures, a developer must
track each finger’s landing and movement change, which
often results in spaghetti code involving a large number of
states. For example, it is nontrivial to develop simple touch
behaviors in a note-taking application that features one-
finger move-to-draw, two-finger pinch-to-zoom, and two-
finger move-to-pan gestures. To decide when to draw on
the screen, a developer must track 1) if more fingers land
after the first finger touches the screen, and 2) if the amount
of movement of the first finger is significant. Once the
second finger lands, the developer must analyze the relative

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Figure 1: Gesture Coder lets the developer easily add multi-
touch gestures to an application by demonstrating them on a
target device. In this figure, the developer is demonstrating a
five-finger-pinch gesture on a tablet device connected to the

Gesture Coder environment.

* This work was done while the author was an intern at Google Research.

movement between the two fingers to determine if the user
is pinching or panning. Our study shows that many
experienced developers cannot implement interaction of
this kind in a short time.

Although substantial work has been done on gesture
recognition [26,27], it is insufficient to address multi-touch
gestures for two reasons. First, prior work was primarily
concerned with classifying gestures based on their
trajectories that are generated with a single finger or stylus.
In contrast, multi-touch gestures are produced with multiple
fingers. The number of fingers involved and the relative
spatial relationship among them are often more important
than their absolute movement trajectories. Second, prior
work largely treats gestures as a shortcut for triggering a
discrete, one-shot action [4]. In contrast, a multi-touch
gesture is often employed for direct manipulation that
requires incremental and continuous feedback [24]. For
example, when a user pinches to zoom, the target size must
be continuously updated as the fingers slide, not just when
the gesture ends. In other words, multi-touch gestures can
comprise a series of repetitive movements, each of which
might trigger an action. This demands more frequent
communication between the UI—the gesture processing
component—and the application logic.

Several existing toolkits provide a set of built-in
recognizers, each of which deals with a common multi-
touch gesture, e.g., a pinch recognizer [28]. However, this
approach is limited because developers must still deal with
the low-level details of multi-touch input when creating
custom gestures. Also, there is little support for handling

the coexistence of multiple gestures. To do so, developers
must combine multiple recognizers manually and resolve
potential ambiguity. Gesture specification languages such
as [12] attempt to keep developers from the programming
details, but they require learning a new language and can be
too complicated to be practical.

In this paper, we describe Gesture Coder, a tool for
programming multi-touch gestures by demonstration.
Instead of writing code or specifying the logic for handling
multi-touch gestures, a developer can demonstrate these
gestures on a multi-touch device, such as a tablet (see
Figure 1). Given a few sample gestures from the developer,
Gesture Coder automatically generates user-modifiable
code that detects intended multi-touch gestures and
provides callbacks for invoking application actions.
Developers can easily test the generated code in Gesture
Coder and refine it by adding more examples. Once
developers are satisfied with the code’s performance, they
can easily integrate it into their application.

The paper offers the three major contributions.

• a set of interaction techniques and an architectural
support for programming multi-touch gestures by
demonstration that allow developers to easily
demonstrate, test, and integrate the generated code into
their application;

• a conceptualization of multi-touch gestures that
captures intrinsic properties of these gestures and
enables effective machine learning from one or a small
number of gesture examples; and

Add Test Run Export

1

2

3

4

Figure 2: The Gesture Coder interface includes (1) Eclipse’s Project Explorer through which the developer can add a Gesture
Coder file to the project; (2) the Gesture Coder toolbar, which contains the buttons for adding gesture examples, testing the

learned recognizer, and exporting source code; (3) the Gesture Collection view, a compendium of all the gesture examples; and (4)
the Outline view, which categorizes the examples and shows the number available for each gesture.

• a set of methods for training multi-touch gesture
recognizers from examples and generating user-
modifiable code for invoking application-specific
actions.

In the rest of the paper, we first provide a walkthrough of
Gesture Coder using a running example. We then examine
the intrinsic properties of multi-touch gestures from which
we derived a conceptualization of this type of gestures. We
next present the algorithms for learning from examples and
generating the code to recognize multi-touch gestures. We
then move to our evaluation of Gesture Coder’s learning
performance and usability. Finally, we discuss the scope of
our work as well as related work and conclude the paper.

USING GESTURE CODER: AN EXAMPLE
To describe how developers can create multi-touch
interactions using Gesture Coder, we use the context of a
hypothetical, but typical, development project. The project
description is based on our current implementation of
Gesture Coder as an Eclipse plug-in compatible with the
Android platform [1]. Developers can invoke Gesture
Coder and leverage the generated code without leaving their
Android project in Eclipse. Although Gesture Coder’s
current implementation is tied to a specific platform, its
general approach is applicable to any programming
environment and platform that supports multi-touch input.

Assume a developer, Ann, wants to implement multi-touch
interactions as part of her drawing application for a tablet
device. The application should allow the user to draw with
one finger, pan the drawing canvas with two fingers moving
together, and zoom with two fingers pinching. In addition,
panning and zooming should be mutually exclusive; that is,
only one can be active at a time. These are typical
interactions for a multi-touch drawing application [7].

Demonstrating Gestures on a Multi-Touch Device
Ann first connects a multi-touch tablet to her laptop where
she conducts the programming work via a USB cable. She
then adds a Gesture Coder file to her project using Eclipse’s
Project Explorer, which opens the Gesture Coder
environment (see Figure 2).

In the background, Gesture Coder launches a touch
sampling application on the connected device remotely and
establishes a socket connection with it. The touch sampling
application, running on the tablet device, will capture touch
events and send them to Gesture Coder.

To add an example of multi-touch gestures, Ann clicks on
the Add button in the Gesture Coder toolbar (see Figure
2.2). This brings up the Demonstration window, which
visualizes multi-touch events that the developer produces
on the tablet in real time and that appear as gradient-yellow
traces, similar to each example in the Gesture Collection
view (see Figure 2.3). The traces serve to verify if the
gesture has been performed correctly. The developer can
then name the gesture example and add it to the collection

of examples, which are portrayed as thumbnails. Hovering
over the thumbnail brings up the Play and Delete buttons.
When the developer clicks on the Play button, Gesture
Coder animates the trace in real time, essentially providing
a playback of the captured example. In our hypothetical
project, Ann adds examples of five gesture types: Draw,
Pan, Zoom, Undo, and Redo.

Testing the Generated Recognizer Anytime
After adding a few examples, Ann wants to find out if
Gesture Coder can detect these gestures correctly. She
begins this process by clicking on the Test Run button in
the Gesture Coder toolbar; this brings up the Test window
(see Figure 3). Similar to demonstrating an example, the
Test window visualizes simultaneous finger movements as
Ann performs a multi-touch gesture on the connected tablet.

As Ann tries different gestures, the Test window displays
recognition results in real time in its Console, including the
gesture type, its state, and the probability distribution of all
the target gesture types. Ann can then verify if Gesture
Coder has correctly recognized her gesture.

If Ann finds that Gesture Coder has incorrectly recognized
the gesture that she just performed, she can correct the error
without leaving the Test window by simply typing the name
of the intended gesture. This action generates a new
example for learning. She can then keep testing the revised
recognition.

Integrating Generated Code into Developers’ Project
Once Ann is satisfied with the recognition results, she
clicks on the Export button from the Gesture Coder toolbar.
This exports the recognizer as a Java class in Ann’s
drawing application project.

To use the generated class MultiTouchRecognizer (see
Figure 4), Ann first instantiates a recognizer object from it
and lets recognizer handle all the low-level touch events
received by the multitouchUI, a View object in Android. The
recognizer class takes low-level touch events and invokes

Figure 3: Gesture Coder’s Test window with a magnified view

of the Console output.

an appropriate callback. It encapsulates the details of
recognizing and tracking the state transition of each gesture.

Similar to Apple iOS’s touch framework, the lifecycle of a
gesture in Gesture Coder can involve six possible stages:
Possible, Failed, Began, Changed, Cancelled, and Ended. A
developer can add a callback for each gesture stage that will
be invoked when the stage becomes active.

Every gesture starts as Possible when the user input starts,
that is, when the first finger lands. A gesture is Failed when
it can no longer be a possible match with the user input. A
gesture is Began when it becomes recognized and Changed
whenever there is a new touch event while the gesture
remains recognized. A recognized gesture is Cancelled
when it no longer matches the user input or Finished when
the user has finished the input.

MULTI-TOUCH GESTURES
Before diving into the details of how the underlying system
works, we first discuss multi-touch gestures that we
intended to address. The research community and industry
have used “touch gesture” broadly to refer to various
interaction behaviors on the touch screen or surface of a
touch-sensitive device. Overall, touch gestures tend to fall
into one of the following two categories.

A large body of work was concerned with gestures that
have a predefined trajectory or shape, e.g., recognizing
handwriting symbols for text entry or gesture shortcuts for
invoking commands [4,26], or detecting the crossing over a
series of targets to trigger a specific action [14,27]. These
gestures are often produced with a single finger or the
stylus. The interaction behaviors associated with this type
of gesture are one-shot—an action is triggered only when
the gesture is finished.

The second category of gestures refers to those for direct
manipulation of interfaces, e.g., tapping to activate, swiping
to scroll, pinching to zoom, or twisting to rotate, which are
more prevalent in commercial products. These gestures may
involve more than one finger and typically do not concern
the exact trajectory of the finger movement. For example,
when panning a map with two fingers, the absolute
trajectory of the fingers can be arbitrary. In addition, the
interaction behaviors associated with these gestures often
require frequent communication with application logic to

provide incremental feedback, an important property of
direct manipulation interfaces [24]. We focus on this type
of gestures, especially those involving the use of multiple
fingers.

Conceptualizing Multi-Touch Gestures
We here form a conceptualization of multi-touch gestures,
which defines the scope of our work and serves as a basis
for our learning algorithms. Apple introduced a definition
of multi-touch gestures [9]: “comprising a chord and a
motion associated with chord, wherein a chord comprises a
predetermined number of hand parts in a predetermined
configuration.” This definition effectively captures many
existing multi-touch gestures. However, it has two
shortcomings.

First, the definition does not clarify what motion can be
associated with the fingers (chord). By analyzing existing
gestures, we found the absolute trajectories of the fingers
often do not matter, but the change of the spatial
relationship between the fingers usually does. For example,
the two-finger pinching gesture is determined solely on the
basis of whether the distance between the two fingers has
changed. Although this definition does not exclude
complicated trajectories to be associated with each finger,
we have not seen such gestures. In fact, when multiple
fingers must move in a coordinated fashion, the type of
motion that a finger can perform is fundamentally bounded
by a physical limitation—at some point, the motion is no
longer humanly possible. In addition, because these
gestures are used primarily for direct manipulation, they
often consist of a sequence of repetitive motions, which
generates incremental changes of the same nature.

The second shortcoming is that the definition leaves out
gestures that have multiple finger configurations (or
multiple chords) such as double-tap. Although only a few
cases of multi-touch gestures have multiple finger
configurations, we argue that these emerging gestures can
be useful, since using different finger configurations can
effectively indicate a mode switch, which is an important
problem in modern interfaces. In addition, even a gesture
defined for a single-finger configuration can incur multiple
finger configurations during interaction. For example,
imperfect finger coordination can cause the number of
fingers sensed for a two-finger pinch gesture from
beginning to end as 1, 2 and 1. The duration of the single-
finger stages could be short.

As a result, we propose a new framing for multi-touch
gestures based on the previous definition:

Definition 1. A multi-touch gesture consists of a
sequence of finger configuration changes, and each
finger configuration might produce a series of repetitive
motions. A motion is repetitive when any of its segments
triggers the same type of action as its whole.

// Instantiate the recognizer class generated by Gesture Coder.
recognizer = new MultiTouchRecognizer(multitouchUI);

// Add app-specific actions in response to each gesture stage.
recognizer.addGesturePinchListener(
 new GestureSimpleListener () {
 @Override
 public void onBegan (GestureEvent event) {
 // Init.
 }
 @Override
 public void onChanged (GestureEvent event) {
 // Zoom.
 }
Figure 4. A code snippet for using the generated recognizer.

In Gesture Coder, a finger configuration primarily refers to
the number of fingers landed and their landing orders, and a
motion refers to the continuous finger movement. In the
next section, we discuss how this framing enables Gesture
Coder to learn recognizers from a few examples.

ALGORITHMS
In this section, we discuss the underlying algorithms that
enable Gesture Coder to generate a gesture recognizer from
a set of examples. We first derive a generic computational
model for detecting multi-touch gestures, and then discuss
how to automatically create such a model for a specific set
of gestures by learning from a collection of examples.

Deriving a Computational Model for Detecting Gestures
Based on our conceptualization, a multi-touch gesture
involves a sequence of finger configuration where each
configuration might have a continuous motion associated
with the fingers. Each gesture can have a different finger
configuration sequence and a different set of motions.
Given a set of multi-touch gestures, their sequences are well
represented by a state machine, which takes primitive touch
events and triggers application actions associated with each
state transition.

State Transitions Based on Finger Configurations
A finger configuration such as the number of fingers on the
touchscreen determines what motion can be performed. As
a result, we treat each configuration as a state and the
landing or lifting of a finger triggers the transition from one
state to another.

If we use the order of a finger touching the screen to
represent the finger, we can represent each finger
configuration as a set of numbers (the orders). We can then
describe the possible transitions for a two-finger-tap gesture
as two sequences: {}→+1 {1}→+2 {1, 2}→-2 {1}→-1 {} or
{}→+1 {1}→+2 {1, 2}→-1 {2}→-2 {}, depending on which
finger first lifts up (see Figure 5a). In our representation, +i
and –i denote the landing and lifting of the ith finger
respectively. We assume without loss of generality that no
two events will occur at exactly the same time. Otherwise,
we can always treat them as two sequential events with the
same timestamp.

Multiple gestures can be captured in the same state
machine. For example, the state machine in Figure 5b
captures both one-finger-tap and two-finger-tap gestures,
denoted as T1 and T2 respectively. Each state keeps a set of
possible gestures when the state is reached, e.g., both T1
and T2 are possible at the beginning.

State Transitions Based on Motions and Timeouts
So far, we have addressed only gestures that are not
concerned with time and motions. However, many gestures
contain motions, such as two-finger-pinch, while others,
such as press-and-hold, rely on timing.

To represent timing and motion in gestures, we introduce
two event types in addition to finger landing and lifting.
The Move event occurs when the fingers start noticeable
movement; the Timeout event takes place when the fingers
have remained static over a specific period. For example,
the two-finger-pinch gesture can have a transition sequence
{}→+1 {1}→+2 {1, 2}→move…→move {1, 2}→-2 {1}→-1 {},
and the press-and-hold gesture can have {} →+1 {1}
→timeout(1sec) {1} →-1 {}. As the latter sequence indicates, the
Timeout event takes a parameter to specify the duration. A
Timeout event can also invalidate a gesture. For example,
the double-tap gesture will not be recognized if the time
interval between two taps is longer than a specified time
window (see Figure 5c).

Figure 5d shows a larger example, a state machine that
enumerates all the possible transitions of a set of six gesture
types: one-finger tap, two-finger tap, one-finger press-and-
hold, one-finger double-tap, two-finger move (to pan), and
a two-finger pinch (to zoom). When two gestures have the
same event sequence, such as, two-finger panning and
zooming, they are indistinguishable if we rely only on their
event sequence (e.g., the panning and zooming gestures in
Figure 5d). In this case, we must look at the difference of
motions under each finger configuration for these gestures.
For example, at the two-finger state, we detect if the
observed motion satisfies one of the two-finger gestures
each time that a Move event occurs. If it does, a state
transition takes place.

-2

{1,2}

{1}

{ }
+1

+2

-1 -2

-1

{2} {1}

{ }

-2

{ } / {DT}

{1} / {DT}

{ } / {DT}
+1

-1

+2 timeout(200ms)

{2} / {DT} { } / { }

{ } / {DT}

-2

{1,2} / {T2}

{1} / {T1, T2}

{ } / {T1, T2}

+1

+2

-1 -2

-1
{2} / {T2}

{1} / {T2}

{ } / {T2}

{ } / {T1}

-1

-2

{1,2} / {T2, P, Z}

{1} / {T1, T2, DT, H, P, Z}

{ } / {T1, T2, DT, H, P, Z}

+1

+2
-1

-2

-1

{2} / {T2}

{1} / {T2}

{ } / {T2}

{ } / {T1, DT}

-1
{1} / {H}

timeout(1sec)

-1
{ } / {H}

-2

+2

{1} / {DT}

{ } / {T1}

{ } / {DT}

move

(a) (b) (c)

(d)

move

-2

{1,2} / {Z}
-1 -2

{2} / {Z}
{1} / {Z}

{ } / {Z}

-1-2

{1,2} / {P}
-1 -2

{2} / {P} {1} / {P}

{ } / {P}

-1

[pan] [zoom]
timeout(200ms)

move move

{1,2} / {P, Z}

Figure 5: State machines that recognize (a) two-finger tap;
(b) one-finger tap and two-finger tap; (c) double-tap; (d) T1:

tap with one finger; T2: tap with two fingers; DT: double-
tap; H: press-n-hold; P: two-finger move (to pan); and Z:

two-finger pinch (to zoom).

In the figure, the state machine transitions to zooming if the
distance between two fingers varies more than a certain
threshold or to panning if the centroid of the two fingers
travels over a certain distance. Because only one gesture
can be active at a time, the one that is satisfied first is
activated. Consequently, the result of motion detection can
condition a state transition.

Consistency with Existing Implementation Practice
Our model is an abstraction of the current practice for
implementing multi-touch gestures. After analyzing the
implementation of several typical multi-touch interaction
behaviors, such as pinching to zoom or moving to pan, we
found developers tend to use a large number of hierarchical,
conditional clauses (e.g., the If-Then-Else statement) to
track these states and trigger transitions.

It is time-consuming and error-prone to implement such a
model manually—an assertion that we confirmed in our
user study. When we asked highly experienced
programmers to implement multi-touch interactions, many
could not capture these behaviors in the required time (45
minutes in our study). These results argue strongly for the
need for a tool like Gesture Coder, which automatically
learns such a model from gesture examples.

Automatically Learning the Model from Examples
Our learning algorithm consists of two stages: 1) learning a
state machine that is based on the event sequences in the
examples (e.g., a series of finger configuration changes)
and 2) resolving the ambiguity in the learned state machine
using motion differences. The second stage involves
learning one or multiple decision trees. Before an example
is used for learning, we preprocess the example by applying
noise filtering, such as low-pass filtering.

Learning a Coarse State Machine from Event Sequences
This stage establishes the state machine’s skeleton by
identifying the transitions triggered by events such as finger
configuration changes. A multi-touch gesture example
consists of a sequence of discrete events. For example,
Figure 6b denotes Zoom as a series of Move events after
two fingers touch the screen, and the sequence finishes as
two fingers lift. The nature of learning in this stage is to
automatically create a state machine that can model event
sequences of target gesture examples.

Our learning process begins by seeding the hypothetical
state machine with a single node that serves as the starting
state (see Figure 6d). It then iteratively applies the state
machine to each training example and expands states and
transitions if the machine fails to capture the example.

Assume we want to learn a state machine that can detect
one-finger move (to draw), two-finger pinch (to zoom) and
two-finger move (to pan) (see Figures 6a, b and c), which
can be three basic interactions for a multi-touch drawing
pad. When our learning algorithm examines an example, it

selects a path in the state machine that can maximize the
alignment with the example’s event sequence. If the state
machine cannot fully absorb the sequence, it expands
accordingly. For example, Draw’s starting node (see Figure
6a) matches that of the state machine. However, the state
machine must expand to accommodate the rest of Draw’s
sequence (see Figure 6e). When there are consecutively
occurring events of the same type (e.g., a sequence of Move
events), the learning algorithm abstracts them as a single
loop transition.

Similarly, to capture Zoom in Figure 6b, our learning
algorithm expands the state machine as shown in Figure 6f.
However, the third gesture Pan (see Figure 6c) will not
cause the state machine to further expand, because the event
sequence of Pan is the same as that of Zoom and thus the
state machine can fully absorb it. As a result, the state
machine learned in this phase can distinguish Draw from
Zoom and Pan, but cannot tell the difference between Zoom
and Pan (Figure 6g).

Resolving Ambiguity by Learning Motion Decision Trees
Because event sequences alone might be insufficient for
modeling all the target gestures, our learning algorithm
automatically looks into motions associated with each
finger configuration to seek motion differences between
ambiguous gestures. In the previous example, we identified
the need to resolve the ambiguity in Figure 6g by

+1 move -1

+1 +2 -2 -1

(d)

(a)

(b)

(e)

{ } / { }

move

{1} / {D}

{ } / {D}

+1

move

-1

{ } / {D}

{1} / {D}

{1,2} / {Z}

{1} / {D, Z}

{ } / {D, Z}
+1

+2

-2

-1
{1} / {Z}

{ } / {Z}

move
{1,2} / {Z}

move

-1

{ } / {D}

{1} / {D}

{1,2} / {Z, P}

{1} / {D, Z, P}

{ } / {D, Z, P}

+1

+2

move

{1,2} / {Z, P}

move

-1
{ } / {D}

{1} / {D}

(f)

(h)

-2

-1

{1} / {Z}

{ } / {Z}

{1,2} / {Z}
-2

-1

{1} / {P}

{ } / {P}

{1,2} / {P}

[pan][zoom]

+1 +2 -2 -1
(c)

move

(Zoom)

(Pan)

(Draw)

(g)

move

move

move

+1

+2

-2

-1
{ } / {Z, P}

move

move

-1

{ } / {D}

{1} / {D}

move

move

{1} / {D, Z, P}

{ } / {D, Z, P}

{1,2} / {Z, P}

{1,2} / {Z, P}

{1} / {Z, P}

move

movemove

move

Figure 6: Learning a state machine from examples.

determining if the motion is Zoom or Pan; that is, we must
generate the state machine illustrated in Figure 6h.

We here employ a binary decision tree [21], which takes
finger motion and outputs a probability distribution over
possible gestures. We chose this method partially because
decision trees are easy to convert to user-modifiable code.

Having a large amount of data is critical to learning. Based
on Definition 1, for a given gesture, we can consider each
Move in the motion series as primitive motion with the
same nature, e.g., each Move in the scaling motion is also a
scaling. The motion’s repetitive nature offers an effective
way to extract many training samples from a single
example. For example, for a motion that has a sequence of
N segments, we acquire N samples instead of one. This
makes our approach practical.

By analyzing existing multi-touch gestures, we extracted an
initial feature set for our decision tree learner, including
translation, rotation, and scaling. Richer motion can be built
on top of these transformation primitives. Translation is
defined as the change of the centroid of multiple fingers
along both X and Y axes. Rotation is defined as the average
angular change of each finger relative to the centroid.
Scaling is defined as the average change of the distance
between each finger and the centroid. These constitute the
feature vector for each sample.

To train a decision tree, we use the standard C4.5 algorithm
[21] from the Weka toolkit [25]. During the training, we
bound the depth of the decision tree to avoid overfitting. A
learned decision tree outputs a probabilistic distribution of
possible gestures upon each Move event occurrence.

Invoking Callbacks
In a traditional state machine, an action is often triggered
when a transition takes place. We use the same style to
invoke callbacks.

As discussed earlier, there are six callbacks for each
gesture, which correspond to six stages: Possible, Fail,
Begin, Changed, Cancel, and End. When the arriving state
has more than one available gesture, the state machine
invokes these gestures’ onPossible callbacks. For example,
given a state {D, Z} in Figure 6, we invoke both gestures’
onPossible. When a gesture’s probability increases above a
given threshold for the first time, its onBegan is invoked
and its onChanged is invoked thereafter as long as its
probability remains above the threshold.

If a gesture becomes unavailable in the arriving state, there
are three situations. If the gesture’s onBegan has never been
invoked, the gesture’s onFailed will be invoked. If the
arriving state is an end state (see Figure 6), its onEnded will
be invoked. Otherwise, onCancelled will be invoked.

Generating Code
Once we learn the state machine as well as the decision
trees for evaluating conditions on Move transitions, it is

straightforward to transform the learned model into
executable code. We briefly discuss the process in the
context of generating Java source code.

The first step is to encode the states into integers. Then the
transitions are translated into a function that takes a state
and a touch event and returns a new state. This function
consists of a large Switch-Case statement. Each entry of the
Switch-Case statement corresponds to one state in the state
machine. The possible gestures under each state are
represented as arrays, which update the probability
distribution after each transition. Decision trees are
translated into If-Then-Else statements.

IMPLEMENTATION
We implemented Gesture Coder as an Eclipse Plugin in
Java, using SWT for its user interface and Android SDK [1]
to communicate with Android-powered touch devices. We
have also developed a separate Android application to send
the touch events from the connected touch device to the
development machine through a TCP socket.

EVALUATION
We evaluated both the performance and usability of Gesture
Coder. We analyzed performance in terms of recognition
accuracy and speed using a set of gestures collected from
users in a public setting. We investigated usability through
a laboratory study with eight professional programmers.

Evaluating Gesture Recognition Performance
To evaluate the Gesture Coder’s recognition performance,
we collected 720 gesture examples from 12 participants at a
cafeteria. These participants were passers-by whom
experimenters recruited on the scene, including three
children who wanted to play with the tablet, three elders
who have never used multi-touch devices, and two foreign
tourists seeking a translator. The experimenters asked each
participant to perform four times for each of a set of 15
target gestures that we selected from a set of existing multi-
touch gestures (see Table 1), on a Motorola Xoom Multi-
Touch Tablet (10’1” capacitive screen with 1280x800
resolution and 160dpi), running Android 3.0. During data
collection, the tablet remained blank. The touch traces
displayed on a laptop connected to the tablet through a USB
cable.

The experimenter explained all the gestures to a participant
before the actual tasks, and prompted the participants for
each gesture. Because no application was associated with
the gestures, for gestures such as 1-Finger-Scroll, the
experimenters gave participants more specific instructions
such as “scroll to the left” rather than just “scroll.”

Our aim was to examine how the accuracy of our
recognition algorithm changes with the number of available
examples and target gestures to recognize. Hypothetically,
the more available examples, the better the performance.
The more target gestures, the more difficult it is for a

recognizer to recognize them correctly. Our
experimentation was based on the following procedure.

Along the spectrum of recognition complexity, we
randomly selected k different target gestures from the set in
Table 1 and repeated (for each k) 100 times to compute the
average. Based on our data, k was varied from 2 to 15,
where the 2-gesture case is the simplest and the 15-gesture
one the hardest.

Given a k, we then conducted a 12-fold cross validation
across users. To simulate real system use, each time we
trained on the data of 1 participant (as the developer) and
tested on the data of the remaining 11 participants (as the
users). Notice that our cross validation is different from a
typical leave-one-out approach, which would train on 11
participants and test on the remaining 1. Consequently, our
cross validation uses a more challenging learning condition.

Given a selected developer, we varied from 1 to 4 the
number of developer-supplied examples available for
training, m. We then used a trained model to recognize all
the gesture examples from the 11 users. Figure 7 shows the
average accuracy with m from 1 to 4 and k from 2 to 15.

Overall, our algorithm was effective and achieved over
90% accuracy for simple cases where only two gestures
were to be recognized. When there were 4 gestures—the
number in many existing multi-touch applications—our
algorithm achieved about 80% accuracy.

The results largely confirmed our hypotheses. When the
number of target gestures to recognize increases, accuracy
decreases (see Figure 7). However, performance soon
became stable and did not drop further even with more
target gestures involved.

The level of accuracy achieved is reasonable for rapid
prototyping but seems unsatisfactory for production use.
This experiment allowed us to quickly examine the learning
algorithm at a large scale with 67,200 recognizers learned.
However, it in fact underestimated the performance that
Gesture Coder would achieve in real use. In actual product
development, a professional developer, not random passers-
by, would provide examples, which would yield much
higher quality training data than what we acquired in the
cafeteria. In addition, a developer will have the opportunity
to refine recognition iteratively with demonstration and
testing in Gesture Coder. In our cross validation, when the
person’s data used in training had a poor quality, it could
seriously hurt the recognition rates. By playing back some
of the collected traces, we found messy and incorrect
samples from several participants.

Our evaluation demonstrated that Gesture Coder can learn
effectively with a large corpus of data. We expect improved
recognition rates with more training data, which is often
available in an iterative development-testing process.
Figure 7 already shows such a trend that recognition rates
improved when more examples became available.

In terms of speed, under the most complex condition (15
gestures and 4 examples per gesture), the average training
time was 28ms, and the average prediction time was 0.1ms.
We obtained the performance data on a MacBook Pro with
Quad-Core Intel Core-i7 2.0GHz CPU and 8GB RAM.

Laboratory Study
To evaluate the Gesture Coder’s usefulness and usability,
we compared it with a baseline condition in which
developers implement multi-touch interactions based on
touch events dispatched by the platform. We chose not to
use an existing toolkit as a baseline condition for several
reasons. Most existing toolkits provide built-in recognizers
for a limited set of predefined gestures. A developer has to
start from scratch and deal with raw touch input when the
toolkit does not support a gesture. Existing toolkits are
designed such that each predefined gesture has its own
built-in recognizer. Thus, when multiple gestures are
involved, the developer must manually combine the
outcome of each individual recognizer, which can be
nontrivial.

We conducted a laboratory study with 8 professional
programmers (all males, aged from 20 to 50 with a mean
age of 30). All the participants were familiar with the Java
programming language, the Eclipse environment, and the
Android platform. They had varied experience in
programming touch interactions: two participants had
multi-touch experiences, five had programmed only single-

1. 1-Finger-Move
2. 1-Finger-Tap
3. 1-Finger-DoubleTap
4. 1-Finger-TripleTap
5. 1-Finger-Hold
6. 1-Finger-Hold-And-Move
7. 1-Finger-Swipe

(up, down, left, or right)
8. 2-Finger-Move
9. 2-Finger-Pinch

(scale up or down)

10. 2-Finger-Rotate
(CW or CCW)

11. 2-Finger-Swipe
(up, down, left, or right)

12. 4-Finger-Vertical-Swipe
(up or down)

13. 4-Finger-Horizontal-Swipe
(left or right)

14. 5-Finger-Rotate
(CW or CCW)

15. 5-Finger-Pinch
(scale up or down)

Table 1: The 15 gestures used in evaluating Gesture Coder’s
recognition performance.

Figure 7: The accuarcy varies as the number of training
sample and the complexity of recogniton task changes.

touch interactions; and one had never programmed touch
interactions.

Study Setup
We asked each participant to implement a realistic
application with and without Gesture Coder in Eclipse and
we counterbalanced the order of the two conditions across
participants. We grouped the participants according to task.
Participants in the first group had to implement a Drawing
application for tablets. Participants in the second group
were assigned a Map navigation application for mobile
phones. Our goal was to examine both conditions with two
multi-touch applications that embody a set of typical multi-
touch interaction behaviors in a feasible timeframe for a
laboratory study.

The Drawing application requires five gesture behaviors:
one-finger move to draw, two-finger move to pan the
canvas, two-finger pinch to zoom, three-finger leftward
swipe to undo, and rightward swipe to redo. The Map
application requires five gesture behaviors: one-finger
move to pan the map, one-finger double-tap to zoom in 2x,
one-finger triple-tap to zoom out 2x, two-finger pinch to
zoom the map continuously, and two-finger vertical move
to tilt the viewing angle. We instructed participants not to
worry about ideal solutions and corner cases, but to
implement a solution that they considered “good enough”
for a demonstration.

We implemented the skeleton code for each application as
an Eclipse Android project, which includes all the
application logic, such as rendering the map at a certain
scale, except the part regarding detecting gestures and
invoking application logic. The participants had to integrate
their gesture recognition code with the skeleton code via
exposed methods. These methods were designed in such a
way that participants needed to pass only simple parameters
such as finger locations.

We gave participants a tutorial on the tools that they could
use in each condition and then asked them to do a warm-up
task. After a participant became comfortable with the
condition, we demonstrated the application to be
implemented and clarified the gestures involved in the
application and the methods exposed by the skeleton code.
We then let the participants work on the task for 45 minutes
as we observed their screen from a different monitor.

Results
All the participants finished their tasks using Gesture Coder
within a mean of 20 minutes (std=6). However, none of the
participants could complete the task within 45 minutes in
the baseline condition (Gesture Coder is not available).

After the study, we asked participants to answer a
questionnaire about Gesture Coder’s usefulness and
usability using a 5-point Likert scale (1: Strongly Disagree
and 5: Strongly Agree). Participants overwhelmingly
thought Gesture Coder was useful (seven Strongly Agreed)

and easy to use (six Strongly Agreed). In contrast, all
participants responded negatively to the baseline condition.

We observed that participants tended to implement the
gestures incrementally in the baseline condition. For
example, they first implemented a one-finger-move gesture
and then tested it before moving to the next gesture. They
had to constantly come back to modify the previously
implemented gestures. In contrast, with Gesture Coder,
participants tended to demonstrate all the gestures at once
and then test the performance. Interestingly, however, when
integrating the generated code with the skeleton code, they
tended to handle one gesture at a time. Yet, participants
never had to come back to modify previously implemented
gesture behaviors. One participant even noted that Gesture
Coder is “much more scalable.” In the baseline condition,
participants all did heavy debugging using console output
that they injected in their code to verify gesture behaviors.
In contrast, with Gesture Coder, participants relied
primarily on its more efficient testing support. All the
participants strongly agreed that the ability to test on the fly
is useful.

Two participants were confused about how to demonstrate
arbitrary movement. One commented, “It took me awhile to
wrap my head around arbitrary gestures like single-finger
panning.” Such confusion was partially due to our
insufficient explanation of Gesture Coder during the study.
For this special case, explicit specification of a random
motion could be more efficient than demonstration.

DISCUSSION AND FUTURE WORK
Assuming repetitive motions lets Gesture Coder effectively
learn and detect the motion of many useful multi-touch
gestures. However, training based on individual motion
segment does not allow the capture of a motion’s global
features, such as its shape trajectory of a motion. However,
as discussed earlier, global geometrics such as shape
trajectories are less important for multi-touch gestures.

There are several opportunities for improving Gesture
Coder. In addition to training with higher quality and more
training data, we could improve recognition performance by
tuning parameters such as motion segment length and the
threshold for the low-pass filtering of touch motion.
Because our framework is extensible, we could easily add
more features such as the contour of finger touches to our
model or plug other motion classifiers into the framework.
Finally, developers can fine-tune recognition to handle
more complicated situations by modifying the generated
Java code or adding constraints such as the absolute
location of a gesture on the screen.

RELATED WORK
Multi-touch gestures are employed in various applications
on a range of devices, e.g., [10,17,18]. To support the
implementation of these gestures, Apple iOS’s SDK
provides a gesture framework [28] that supports six

predefined gestures with one recognizer for each gesture.
Similar frameworks can be found on other platforms, e.g.,
[1]. However, even with these frameworks, developers still
need to deal with low-level touch events when they want to
implement custom gestures or combine multiple
recognizers.

Higher-level specification languages can hide low-level
programming details in creating multi-touch gestures
[12,13,23], but these languages can lead to complex
specifications and are hard to scale when the number and
complexity of gestures grow. In addition, learning a new
language is a nontrivial burden on developers. In contrast,
with Gesture Coder, developers can create multi-touch
gestures without programming or specification; they need
only demonstrate a few gesture examples.

Although several previous tools (e.g., [6,16,22]) allow users
to create gesture recognizers using examples, none of them
deals with the types of multi-touch gestures that we focus
on. In addition, Gesture Coder provides unique support for
integrating the generated recognizer with application code,
which is not available in these previous tools.

Gesture Coder employs a programming by demonstration
(PBD) approach, which has been successfully applied in
prior work, e.g., [8,11,15]. Gesture Coder adds to the family
of PBD systems by addressing a new problem. It
contributes a set of methods for inferring target touch
interactions from examples and for generating developer-
modifiable code that can be easily integrated with the
developer’s application.

Extensive work has been done on recognizing gestures from
the trajectories generated with a single finger or stylus
[2,3,26,27]. However, prior work is insufficient to address
multi-touch gestures, which employ features such as the
number of fingers involved and the relative spatial
relationship among them, instead of absolute movement
trajectories. In addition, prior work mostly treats gestures as
a shortcut for triggering a discrete, one-shot action [4]. In
contrast, multi-touch gestures are often employed for direct
manipulation that requires constant communication with
application logic [24].

CONCLUSION
We presented Gesture Coder, a tool for programming multi-
touch gestures by demonstration. It automatically generates
developer-modifiable code by learning from examples
demonstrated by the developer. The code can be easily
integrated into an application.

REFERENCES
1. Android. http://www.android.com.
2. Anthony, L. and Wobbrock, J.O. A lightweight

multistroke recognizer for user interface prototypes.
Proc. GI 2010, 245-252.

3. Appert, C. and Bau, O. Scale detection for a priori
gesture recognition. Proc. CHI 2010, 879-882.

4. Appert, C. and Zhai, S. Using strokes as command
shortcuts. Proc. CHI 2009, 2289-2298.

5. Apple iPod Nano 6th Generation.
http://www.apple.com/ipodnano/.

6. Ashbrook, D. and Starner, T. MAGIC: a motion gesture
design tool. Proc. CHI 2010, 2159-2168.

7. Brushes. http://www.brushesapp.com/.
8. Cypher, A., ed. Watch What I Do: Programming by

Demonstration. MIT Press, 1993.
9. Elias, J.G., Westerman, W.C., and Haggerty, M.M.

Multi-Touch Gesture Dictionary. US Patent, 2007.
10. Google Nexus. http://www.google.com/nexus/.
11. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer,

S.R. Authoring sensor-based interactions by
demonstration with direct manipulation and pattern
recognition. Proc. CHI 2007, 145-154.

12. Hoste, L. Software engineering abstractions for the
multi-touch revolution. Proc. ICSE 2010, 509-510.

13. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton: Multitouch Gestures as Regular Expressions.
Proc. CHI 2012.

14. Kurtenbach, G. and Buxton, W. User learning and
performance with marking menus. Proc. CHI 1994,
258-264.

15. Lieberman, H., E. Your Wish Is My Command:
Programming by Example. Morgan Kaufmann, 2001.

16. Long, Jr., A.C. Quill: a gesture design tool for pen-
based user interfaces. Doctoral Dissertation, University
of California, Berkeley, 2001.

17. Microsoft Surface. http://www.microsoft.com/surface/.
18. Motorola Xoom.

http://developer.motorola.com/products/xoom/.
19. OS X Lion: About Multi-Touch gestures.

http://support.apple.com/kb/HT4721.
20. Perceptive Pixel Multi-Touch Collaboration Wall.

http://www.perceptivepixel.com.
21. Quinlan, J.R. C4.5: programs for machine learning.

Morgan Kaufmann, 1993.
22. Rubine, D. Specifying gestures by example. ACM

SIGGRAPH Computer Graphics 25, 4 (1991), 329-337.
23. Scholliers, C., Hoste, L., Signer, B., and De Meuter, W.

Midas: a declarative multi-touch interaction framework.
Proc. TEI 2011, 49-56.

24. Shneiderman, B. Direct manipulation: a step beyond
programming languages. Computer 16, 8 (1983), 57-69.

25. Weka. http://www.cs.waikato.ac.nz/ml/weka/.
26. Wobbrock, J.O., Wilson, A.D., and Li, Y. Gestures

without libraries, toolkits or training: a $1 recognizer for
user interface prototypes. Proc. UIST 2007, 159-168.

27. Zhai, S. and Kristensson, P.-O. Shorthand writing on
stylus keyboard. Proc. CHI 2003, 97-104.

28. iOS developer library.
http://developer.apple.com/library/ios/.

