
Estimating the size of online social networks 1

Estimating the Size of Online Social Networks

Shaozhi Ye*
Google Inc.
1600 Amphitheatre Pkwy
Mountain View, CA 94043, USA
Email: yeshao@gmail.com
*Corresponding author

S. Felix Wu

Department of Computer Science
University of California, Davis
One Shields Ave
Davis, CA 95616, USA
Email: wu@cs.ucdavis.edu

Abstract: The huge size of online social networks (OSNs) makes
it prohibitively expensive to precisely measure any properties which
require the knowledge of the entire graph. To estimate the size of an
OSN, i.e., the number of users an OSN has, this paper introduces
three estimators using widely available OSN functionalities/services.
The first estimator is a maximum likelihood estimator (MLE) based
on uniform sampling. An O(logn) algorithm is developed to solve the
estimator. In our experiments it is 70 times faster than the naive linear
probing algorithm. The second estimator is mark and recapture (MR),
which we employ to estimate the number of Twitter users behind its
public timeline service. The third estimator (RW) is based on random
walkers and is generalized to estimate other graph properties. In-depth
evaluations are conducted on six real OSNs to show the bias and variance
of these estimators. Our analysis addresses the challenges and pitfalls
when developing and implementing such estimators for OSNs.

Keywords: Online social networks; Maximum likelihood estimation;
Mark and recapture; Random walker.

Reference to this paper should be made as follows: Ye, S. and Wu,
S.F. (xxxx) ‘Estimating the size of online social networks’, Int. J. Social
Computing and Cyber-Physical Systems, Vol. x, No. x, pp.xxx–xxx. A
preliminary version of this paper appeared in Proceedings of the Second
IEEE International Conference on Social Computing (SocialCom2010).

Biographical notes: Shaozhi Ye received his Ph.D in computer science
in 2010 from University of California, Davis. He is currently working as
a software engineer at Google Inc. His research interests include Web
search, online social network analysis, distributed systems and machine
learning. This work was conducted while he was a graduate student at
UC Davis.
S. Felix Wu received his Ph.D in computer science in 1995 from
Columbia University. He is currently a professor at University of

2 S. Ye and S.F. Wu

California, Davis. His latest focus is on the Davis Social Links (DSL)
project, which is currently sponsored by NSF/FIND, NSF/BBN/GENI,
Army/ARO/MURI, Air Force/AFOSR/MURI, and most recently
ARL/CTA Network Science.

1 Introduction

As extensive studies are being conducted on OSNs, various OSN properties become
the quantity of interest, such as size, diameter and clustering coefficient. Many
properties are challenging to measure because they require the knowledge of the
entire graph. It is expensive to crawl OSNs with millions of users. Moreover, OSNs
are not crawler friendly. Most of them enforce rate limiting and block clients if they
issue lots of requests within a short period of time. It is also nontrivial to parse the
dynamic pages generated by OSNs efficiently. Thus sampling and estimation have
to be employed in many cases. In this paper, we examine the problem of estimating
the size of an OSN, i.e., the number of users an OSN has, which is needed in almost
all social network analysis. For instance, to see how representative a sample is, one
important metric is the sampling rate, the number of users in the sample versus
the number of users the OSN has.

Currently there are limited ways to get the size of an OSN without crawling the
entire network.

• The OSN provider may disclose this number but outsiders are unable to verify
it. Meanwhile, more and more OSNs provide the number of active users but
the definition of an active user varies from one to another, sometimes even
unavailable to the public.

• For outsiders, one commonly used approach is estimating the size with the
largest valid user ID, which fails if the OSN assigns user IDs non-sequentially,
such as Facebook (http://www.facebook.com).

• It is possible to estimate the used portion of the non-sequential ID space by
probing the ID space. For example, for every k IDs, we randomly sample
one ID and check if it is valid. Assuming we get c valid IDs out of these
samples, the total number of valid user IDs can be simply estimated as ck.
This approach fails when IDs are assigned non-uniformly. There are more
sophisticated approaches to probe non-uniformly distributed ID space, but
they are expensive as they need to examine a large number of IDs.

• To make things worse, numeric user IDs are unavailable on some OSNs, such
as YouTube (http://www.youtube.com), which makes the ID space both
non-uniform (some strings are more likely to be chosen by users) and huge
(larger alphabets).

This paper introduces three estimators which do not rely on how user IDs are
assigned.

• MLE : Maximum likelihood estimation based on uniform sampling.

Estimating the size of online social networks 3

• MR: Mark and recapture estimator based on uniform sampling.

• RW : Unbiased estimator based on random walkers.

All these estimators require that any two OSN users are distinguishable, which can
be accomplished by comparing user IDs, names, profiles, etc. Besides, they also
have their own assumptions.

• MLE requires the capability to uniformly sample a user from the OSN. Many
OSNs provide a service to suggest a random user, which may serve as a pseudo
uniform sample generator.

• The requirement of MR is very similar to that of MLE. It requires the
capability to sample m users uniformly without replacement from the OSN.

• RW requires the friend lists of users to be available to the random walker.
Although OSNs allow users to hide their friend lists from strangers, most
users keep these lists public (Gross, Acquisti & Heinz 2005).

Hence these assumptions are likely to be satisfied in real world.
Instead of using synthetic data generated by social network models, this paper

evaluates these estimators with real OSNs. Our contributions are summarized as
follows.

• Three estimators are introduced to estimate the size of OSNs by using widely
available OSN services. (Section 3, 4, and 5)

• An O(logn) algorithm is developed to solve the MLE problem quickly (70
times faster in our experiments). (Section 3.2)

• MLE and MR are employed to estimate the number of users behind Twitter’s
public timeline service. (Section 3.4 and 4)

• In-depth evaluations are conducted over real OSNs to examine their bias and
variance. (Section 3.3, 3.4 and 5.2)

• The RW estimator is generalized to estimate graph properties other than the
size of the graph. A biased estimator for clustering coefficient is proposed and
evaluated. (Section 6)

• We also discuss the challenges and pitfalls when developing these estimators.
(Section 7)

We believe that this paper presents the first systematic analysis and case study
on estimating the size of OSNs and provides insight into developing estimators on
large OSNs.

2 Preliminaries

This section briefly introduces the terminologies and notations used in this paper.

4 S. Ye and S.F. Wu

2.1 Social graph

By treating a user as a node (or vertex) and the friend relationship between two
users as a link (or edge), an OSN can be modeled as a graph G(V,E), where V
denotes the set of nodes and E denotes the set of links. Let n = |V | denote the size
of G, i.e., the total number of nodes on G.

Different OSNs have different definitions of friends. Some allow friendship to
be asymmetrical, i.e., Alice can choose Bob as her friend while Bod does not need
to set Alice as his friend, while others require friendship to be symmetrical, i.e.,
both Alice and Bob need to specify each other as a friend. Symmetrical (or mutual)
friendship corresponds to undirected graphs and asymmetrical friendship leads to
directed graphs. In this paper euv may represent an undirected edge between u and
v or a directed edge from u to v. There is no ambiguity when the specific G is given.

Given a node u, its neighbors are the set of nodes which are linked by u, i.e.,
{v|∀v,∃euv ∈ E}. In this paper, we assume that when a node is crawled (or visited),
its neighbors are known, but the neighbors of its neighbors are not. This definition
corresponds to the graph crawling process in real world. Crawling an OSN user
may also include crawling his/her profiles, messages, etc., but in this paper we only
need the lists of friends.

2.2 Bias and variance

Formally, the estimation problem can be expressed as follows: Given G, can we
estimate n without crawling the entire G? This paper answers this question with
three estimators. To evaluate how good these estimators are, the main performance
metrics being used here are bias and variance.

Bias quantifies the expected difference between the estimated size (n̂) and the
real size (n) of the graph. In other words, if we use an estimator to estimate the
size of the graph k times and each time we compute how far away our estimated
n̂ is from the true n, the mean of these k differences is the bias of this estimator
when k →∞. As larger n usually leads to larger bias, to evaluate the bias without
being skewed by n, we define the estimation error as follows.

|n− n̂|
n

(1)

The variance of n̂ characterizes how consistent the estimated results are. Given
two estimators with the same bias, the one giving more consistent results is preferred
in most cases.This paper uses its squared root, i.e., standard deviation.

3 Estimating with uniform sampling

Assuming we are able to sample uniformly over an OSN with replacement, as more
and more nodes are sampled, the probability of sampling a previous sampled node
again increases. Given the number of samples, the smaller the OSN is, the more
duplicate samples we may get. Based on this intuition, we develop a maximum-
likelihood estimator for the size of the OSN. Many OSNs provide random users
upon request, therefore this approach is widely applicable.

Estimating the size of online social networks 5

We first formulate this MLE problem in Section 3.1 and then develop a fast
solution in Section 3.2. Section 3.3 gives the simulation results for its bias and
variance and Section 3.4 presents our experiment on Twitter.com.

3.1 Maximum likelihood estimator

Formally, given the number of nodes we have sampled and the number of unique
nodes we have seen, denoted as s and k respectively, the size of the entire graph,
n, can be estimated as the n̂ which maximizes the probability of getting k unique
nodes in s samples, i.e.,

n̂ = arg max
n

P(k|n, s). (2)

Driml and Ullrich (Driml & Ullrich 1967) proved that there exists exactly one n̂
which maximizes P(k|n, s). Therefore a brute-force solution is to compute P(k|n, s),
starting with n = k and ending with the first n which satisfies

P(k|n, s) > P(k|n+ 1, s) (3)

To compute P(k|n, s), we first choose k unique nodes from n, which is
(
n
k

)
, then

assign k labels (node ids) to s samples, i.e.,

P(k|n, s) =

(
n
k

)
F (k, s)

ns
(4)

where F (k, s) can be thought as the number of different placements of s different
balls in k different urns. Considering the sth ball, if there is one empty urn left, the
sth ball has to be put into this urn, thus the problem becomes putting s− 1 different
balls into k − 1 different urns, i.e., F (k − 1, s− 1). Considering that the empty urn
can be any of the k urns, the number of different placements is kF (k − 1, s− 1).
If there is no empty urns, the sth ball can be put into any urn, thus there are
kF (k, s− 1) placements following the same reasoning. Combining these two cases,
we have

F (k, s) = kF (k − 1, s− 1) + kF (k, s− 1) (5)

Therefore a recurrence can be established to compute F (k, s) as proposed by Dhakar
and Mattheiss (Dhakar & Mattheiss 1989). This linear search solution, however,
does not scale to large n and s.

A simpler solution is developed by Finkelstein et al. (Finkelstein, Tucker &
Veeh 1998), shown as Theorem 1.

Theorem 1 If k < n, n̂ is unique and is the smallest integer j ≥ k, which satisfies
j+1

j+1−k (j
j+1)s < 1.

6 S. Ye and S.F. Wu

3.2 Finding n̂ quickly

Finkelstein et al. (Finkelstein et al. 1998) does not provide an efficient way to find
n̂. First of all, the expression j+1

j+1−k (j
j+1)s is unfeasible to compute for large s as

it easily causes integer overflows. When dealing with real OSNs, large sample size
is inevitable. Therefore we use its equivalent form here, i.e., finding the smallest
integer j ≥ k, which satisfies

f(j) = log(
j + 1

j + 1− k
) + slog(

j

j + 1
) < 0 (6)

Secondly, for large OSNs, we expect that s� n, which leads to a huge search space.
In other words, naive linear probing is inefficient.

To find n̂ quickly, we have the following theorem to reduce the search space.

Theorem 2 n̂ ∈ [k, djce], where jc = s(k − 1)/(s− k). Furthermore, f(j) is
monotonically decreasing within the interval [k, bjcc].

Proof: Notice that

f(j) = (1− s)log(j + 1)− log(j + 1− k) + slog(j) (7)

df(j)

dj
= (1− s) 1

j + 1
− 1

j + 1− k
+ s

1

j
(8)

=
(s− k)j − s(k − 1)

j(j + 1)(j + 1− k)
(9)

Let df(j)
dj = 0 and solve for critical points. Considering j ≥ k, s ≥ k, and k > 0,

there is only one critical point s(k − 1)/(s− k), denoted as jc. Moreover, we have

df(j)

dj

{
< 0 if j < jc
> 0 if j > jc

In other words, f(j) is initially monotonically decreasing and then monotonically
increasing. If n̂ < djce, there must exists another integer j < n̂ which also satisfies
f(j) < 0. This, however, contradicts the assumption that n̂ is the smallest number
which satisfies f(j) < 0). Therefore, we have j ≤ djce. We also need to check if
j = djce because it is possible that f(bjcc) > 0 and f(djce) < 0. �

Because f(j) is monotonically decreasing within the interval [k, bjcc], a binary
search or Newton’s method can be applied to find j quickly. Therefore the runtime
complexity can be reduced to O(log(jc − k)). The runtime for the naive linear
probing solution is Θ(n̂− k).

To evaluate the speedup, we perform 1, 000 runs with s = 100, 000 and n =
10, 000, 000 on a dual core Intel Pentium 4 3.2Ghz PC. Our solution, combined with
binary search, costs 32.8 seconds to complete 1, 000 runs whereas the naive linear
proving solution needs 2, 306 seconds! In other words, our algorithm is 70 times
faster.

In reality, jc can be very large, especially when s and k are close. Heuristics may
give us a better upper bound of j. In our implementation, we set the upper bound
of j to be the smaller one between jc and 4 billion thus a 32 bit unsigned integer is
sufficient for j.

Estimating the size of online social networks 7

3.3 Simulation results

MLE neither needs any graph information nor assumes any graph properties. It
just requires the capability to do uniform sampling over the graph. To set up the
simulation, we simply sample s IDs uniformly with replacement from a given user
ID space of size n and count the number of duplicated samples (k). Then we can
evaluate the bias and variance with n̂ and n.

Multiple tests (1, 000) are performed to report reliable results. Shown as
Figure 1, the estimation error diminishes quickly as more nodes are sampled. When
s = 100K and n = 10M, i.e., 1% sampling, the maximum error is 0.2% for all 1, 000
tests. Meanwhile, shown as Figure2, the standard deviation of the estimated n̂
exhibits the same trend. Both Figure 1 and 2 indicate that MLE is a reliable
estimator. Another observation is that the standard deviation is small comparing
to the true population size. For instance, the standard deviation is 4.5% of the
population size when the sample size is 1%. It is a good indicator for the worst case
performance of MLE.

Figure 1 Estimation error versus sample size

3.4 Experiment on Twitter.com

Twitter provides 20 most recent status messages (tweets) every 60 seconds via
a service called public timeline (http://twitter.com/public_timeline). The
messages are chosen from “non-protected users who have set a custom user icon”
according to Twitter API (http://apiwiki.twitter.com). From Feb. 2009 to Nov.
2010, we collected 17, 281, 077 user IDs (s) through the public timeline feed, among
which there are 6, 929, 343 unique ones (k). With MLE, we have n̂ = 7, 772, 803.

Moore (Moore 2010) estimated that as of Jan. 2010 Twitter has 70 million users,
among which only 10% are protected and 38% have never posted a single status

8 S. Ye and S.F. Wu

Figure 2 Standard deviation versus sample size

message. Assuming these two numbers are independent, we have an estimation of
non-protected users who have posted at least one status as 70× 90%× 62% = 37.8
millions. There are several possible causes to explain the huge gap.

• These messages are sampled from a smaller population as described by
Twitter API.

• The sample may not be uniform across all users. The public timeline service
provides random samples of messages instead of users. As some users post
more messages than others, this sample is likely skewed towards users with
more messages, which leads to underestimation of the size.

• The network grows during the sampling period. In the past 12 months, Twitter
has almost doubled its size (Moore 2010). It is hard to estimate a moving
target.

• Twitter is a fast changing website. Its definition of public timeline may have
changed over the year. For example, as we have noticed, users with default
icons are also shown in the public timeline.

4 Mark and recapture

Twitter’s public timeline data are a good candidate for mark and recapture, which is
commonly used in ecology to estimate the population size of a certain species (Seber
1982). The basic idea is that if we perform two independent samplings on the same
population, the smaller the population is, the larger the overlap between these two
samples is likely to be. More specifically, m nodes are sampled uniformly from
the population without replacement, and returned to the population after they
are marked. Then C nodes are sampled from the population without replacement.

Estimating the size of online social networks 9

Assuming R nodes in the second sample are marked (a.k.a. they are in the prior
sampled list), the population size n can be estimated as

n̂ =mC/R (10)

As shown in Section 3.4, it is hard to make a good estimation if the underlying
population is growing. To use this data, we make a more realistic assumption: the
size of this user pool does not change a lot within a short period of time. More
specifically, we split the data by days, then use the list of ids in Day i as the marked
sample and the list of ids in Day i+ 1 as the recaptured sample. Therefore we can
make a sequence of estimations, shown as Figure 3.

Figure 3 Estimating with mark and recapture

This gives us some idea of the number of Twitter users covered by its public
timeline service. Although the estimated size of this user pool, 1.2 million, is small
compared to the size of the entire Twitter.com, which is reported as 175 million as
of Oct. 2010 (Miller 2010), this corresponds to the number of users who actively post
messages every day. Excluding a couple of outliers, Figure 3 shows a clear increasing
trend over the past 600 days. In fact, it is 10 times larger in Nov. 2010 than what
it was in Feb. 2009. It was reported that in 2009 Twitter almost doubled its total
number of users. If its public timeline service uniformly samples over daily message
posters, our results show that the actual user generated content on Twitter.com

is growing even faster. More importantly, if we make a sliding window with several
days as its width, the estimations are consistent within the window, which gives us
some confidence of how reliable this estimator is.

This estimator, also known as the Lincoin-Petersen method, has been extended
with various assumptions and settings, such as using multiple samples instead of
two and deciding m and C adaptively according to the previous R. Its bias and
variance have also been extensively studied thus we omit these analysis here. We
believe that there exist more sophisticated methods to get better results than what

10 S. Ye and S.F. Wu

we present in this section but the naive estimator already gives us some insights.
As far as we know, this is the first estimation to the size of this population. As this
feed is becoming widely used in many OSN studies, we encourage researchers to
apply this estimation to their data.

5 Estimating with random walkers

When uniform sampling is unavailable or we can not get a lot of uniform samples,
random walkers can be employed to estimate the size of the graph. This section
introduces an unbiased estimator (named as RW in this paper) proposed by
Marchetti-Spaccamela (Marchetti-Spaccamela 1989) and evaluates this estimator
with five real OSNs.

5.1 Estimating the size of a connected graph

Given a node v0, Marchetti-Spaccamela (Marchetti-Spaccamela 1989) estimates the
number of nodes connecting to v0 with the following two-phase procedure.

1. Forward walking: Find a random acyclic path P starting from v0. More
specifically, the random walker works as follows.

(a) Set P = φ and the current node to be v0.

(b) Assuming the current node is vi−1, uniformly select a neighbor vi.

(c) Terminate if vi does not have any outlinks (dead ends) or is a node the
random walker has previously visited (acyclic path), i.e., vi ∈ P.

(d) Add vi to P, i.e., P = {v0, v1, . . . , vi}.

(e) Return to Step (b).

When the random walker terminates, P consists of all the nodes the random
walker has visited, except the terminating node.

2. Back tracing: For each node v ∈ P, we try to find an acyclic path between
v0 and v in the reverse graph. Given a graph G(V,E), its reverse graph is

defined as G′(V,E′) where ∀−→ij ∈ E, we have
−→
ji ∈ E′ and vice versa. In the

reverse graph, a random walker generates acyclic paths starting from v as
what we do in the forward walking phase. The random worker terminates
when it reaches v0. If the random walker reaches a dead end or a previously
seen node, it restarts from v. The only information we need to keep during
this phase is the number of restarts it takes to reach v0, i.e., the number of
acyclic paths it generates.

To generalize this estimator in Section 6, we present its proof in detail, which
is initially provided by Marchetti-Spaccamela (Marchetti-Spaccamela 1989).

Given a random acyclic path P starting from v0, let Pv be the prefix of P
finishing at v, i.e., Pv =< v0, v1, . . . , v >. Πout(Pv) denotes the product of the out
degrees of all the nodes in Pv except the last node v. Similarly Πin(Pv) denotes the

Estimating the size of online social networks 11

product of the in degrees of all the nodes in Pv except the first node v0. Finally, we
define bP(v) = Πout(Pv)/Πin(Pv) and cP(v) to be the number of acyclic paths the
random walker generates in the back tracing phase. bv and cv are used as shorthands
when there is no confusion of P given the context. We have the following theorem.

Theorem 3
∑
v∈P

bvcv is an unbiased estimator of the number of nodes connected to

v0.

Proof: To see this estimator is unbiased, we just need to show that its expected
value is the number of all the nodes connected to v0. The key to the proof is to
rewrite the expectation, a summation over all possible paths (P), as a summation
over all the nodes connected to v0, i.e.,

E(
∑
v∈P

bvcv) =
∑
P

[(
∑
v∈P

bvcv)P(P)] (11)

=
∑
v

∑
q∈Qv

bq(v)cq(v)P(q) (12)

=
∑
v

E(bq(v)cq(v)) (13)

where P(P) is the probability that P is chosen by the random walker, Qv is the
set of all the acyclic paths from v0 to v, and P(q) is the probability for a random
walker to walk through path q. To get the total number of nodes connected to v0,
we just need to show that E(bq(v)cq(v)) = 1.

bq(v) is determined by the random path q. cq(v) is determined by the number of
random walks needed to backtrace v from v0. They are independent of each other
because the random walk is memoryless. Therefore we have

E(bq(v)cq(v)) = E(bq(v))E(cq(v)) (14)

The probability for the random walker to walk through a path q ∈ Qv is 1
Πoutq

.
Hence we have

E(bq(v)) =
∑
∀q∈Qv

bq(v)P(q) (15)

=
∑
∀q∈Qv

Πout(q)

Πin(q)
P(q) (16)

=
∑
∀q∈Qv

1

Πin(q)
(17)

Let Q′v be the set of all acyclic paths in the reverse graph G′ starting from v to v0.
The probability for the random walker to walk through a path q ∈ Q′v is

∑
∀q∈Q′

v

1

Πout(q)
(18)

12 S. Ye and S.F. Wu

Notice that a path in G′ from v to v0 actually corresponds to a path in G from
v0 to v and the out degree of v in the G′ is the in degree of v in G. Therefore we
have ∑

∀q∈Qv

1

Πin(q)
=
∑
∀q∈Q′

v

1

Πout(q)
(19)

Combining (17) and (19), E(bq(v)) is the probability for the random walker to find
an acyclic path from v to v0 in the reverse graph, which we denote as P(v → v0).

E(cq(v)) is the number of random walks needed to get a path in Q′v. As the
random walks are independent of each other, cq(v) follows a geometric distribution
with parameter P(v → v0) thus E(cq(v)) = 1

P(v→v0) .

Therefore we have E(bq(v))E(cq(v)) = 1. �

If G(V,E) is a connected graph, i.e., there exists a path between any two nodes
in G, then the number of nodes connected to any node v is n− 1, where n is the
size of G. As a special case, for a node on an undirected graph, its in degree is equal
to its out degree thus we have bv = v0/v, i.e., given a path P from node v0 to v, bv
is solely decided by v0 and vi.

5.2 Experiments on real OSNs

To evaluate the RW estimator, we use four real OSN graphs collected by Mislove et
al. (Mislove, Marcon, Gummadi, Druschel & Bhattacharjee 2007). Being published
in 2007, these four graphs have been widely used in OSN studies. These four
OSNs are of different nature. Flickr (http://www.flickr.com) specializes in
photo sharing, YouTube focuses on video sharing, and LiveJournal (http://
www.livejournal.com) and Orkut (http://www.orkut.com) are general social
websites. In addition, we crawled the entire Buzznet.com, another general OSN
website. Therefore the results reported here may apply to a variety of OSNs.

To avoid being trapped in small regions which are not connected to the majority
of the graph, we consider the largest connected components (LCC). Since these
graphs are highly symmetrical and well connected, their LCCs cover a large portion
of the original graphs, shown as Table 1. Orkut is supposed to be a bi-directed
graph but the data we got from Mislove et al. (Mislove et al. 2007) do contain
some asymmetrical links. We suspect that it is caused by the crawling process.
For example, node A is crawled before node B. By the time node A is crawled, A
and B are not connected yet. But when node B is crawled, A and B are already
connected. As it takes a large amount of time to crawl huge graphs such as Orkut,
such asymmetry is likely to be introduced.

Unless explicitly specified, for the rest of the paper we use LCCs instead of the
whole graphs. Table 2 summaries the basic properties of these five LCCs.

With LCCs, the number of nodes connected to any node is n− 1. From each of
the five graphs we randomly select 2, 000 nodes as v0. The results given by the RW
estimator are shown as Figure 4.

The small gaps between the true sizes and the estimated sizes suggest that
RW gives a good estimation to all these graphs. The large estimation error over
LiveJournal indicates that more tests are needed for getting reliable results on this
social graph.

Estimating the size of online social networks 13

Table 1 Largest connected components versus their original graphs

Graph Nodes in LCC Links in LCC

Buzznet 85.6% 72.6%

Flickr 79.4% 60.6%

LiveJournal 87.7% 72.7%

Orkut 99.9% 95.2%

YouTube 86.9% 78.3%

Table 2 Graphs used in our experiments

Graph Total Total Mean Clustering

(LCC) Nodes Links Degree Coefficient

Buzznet 423, 020 6, 616, 264 15.6 0.221

Flickr 1, 144, 940 13, 709, 764 12.0 0.136

LiveJournal 4, 033, 137 56, 296, 041 14.0 0.317

Orkut 2, 997, 166 212, 698, 418 71.0 0.170

YouTube 495, 957 3, 873, 496 7.8 0.110

Figure 4 Estimating the size of five OSNs with RW. Left bars represent the true sizes
and right bars represent the estimated sizes.

14 S. Ye and S.F. Wu

It might be tempting to understand why some graphs are overestimated whereas
others are underestimated. Further examination of the results indicates that this
difference is probably the result of variance. According to the law of large numbers,
the more tests we have, the closer the mean of the tests is to the expected value.
Shown as Figure 5, the estimation on Buzznet approaches its true size quickly as
the number of tests increases while the estimation on Flickr fluctuates.

(a) Flickr

(b) Buzznet

Figure 5 Estimation versus number of tests

To see whether the estimation is sensitive to the selection of v0, we select v0 with
different degrees, i.e., k(v0). For k(v0) = 10, 20, . . . , 100, the results do not show
significant difference between each other, in terms of both bias and variance. One

Estimating the size of online social networks 15

interesting observation is that the number of nodes crawled during the estimation
becomes smaller when high degree nodes are chosen for v0, shown as Figure 6. To
compare the results on graphs with different size, the number of nodes crawled is
normalized by the number of nodes crawled when k(v0) = 10. For YouTube, the
number of nodes which need to be crawled for k(v0) = 70 is about 50% smaller
than that for k(v0) = 10. Identifying the graph structure which causes this effect is
an interesting direction for future work.

Figure 6 Number of nodes crawled (normalized by the number of nodes crawled when
k(v0) = 10) versus the degree of v0.

6 Generalizing the RW estimator

The proof of Theorem 3 actually provides a way to estimate other quantities besides
the number of nodes in a graph.

Corollary 1 If ω(v) is not a random variable given node v,
∑
v∈P

ω(v)bvcv is an

unbiased estimator of
∑
v
ω(v).

Proof: Following Theorem 3 we have

E(
∑
∀v∈P

ω(v)bvcv) =
∑
v

E(ω(v)bvcv) (20)

=
∑
v

ω(v)E(bvcv) (21)

=
∑
v

ω(v) (22)

16 S. Ye and S.F. Wu

�

For example, if we set ω(v) to be the degree of v, then
∑
v
ω(v) is the total number

of links of the graph. In fact, we got similar results as Section 5.2 when applying
RW to estimate the number of links a graph has.

More generally, we have the following corollary:

Corollary 2 If ω(v) is a random variable independent of b(v) and c(v),∑
∀v∈P

ω(v)bvcv is an unbiased estimator of
∑
v
E(ω(v)).

Proof: Following Theorem 3 we have

E(
∑
∀v∈P

ω(v)bvcv) =
∑
v

E(ω(v)bvcv) (23)

=
∑
v

E(ω(v))E(bv)E(cv) (24)

=
∑
v

E(ω(v)) (25)

�

In other words, as long as the quantity of interest can be expressed as a random
variable which is independent of b(v) and c(v), we can estimate it with this
approach.

6.1 Estimating clustering coefficient

As an important metric for small world graphs, the clustering coefficient is
computed and analyzed in many social network studies (Watts & Strogatz 1998).
With Corollary 1, we may estimate the total clustering coefficient of a network
(
∑
cc) if we set ω(v) to be the clustering coefficient of node v. Then an estimator

for the mean clustering coefficient of the network is given by∑̂
cc

n̂
(26)

This is a biased estimator because in general we have

E(cc) = E(

∑
cc

n
) 6= E(

∑
cc)

E(n)
(27)

If we know the size of the graph, we can have an unbiased estimator as follows.

E(cc) = E(

∑
cc

n
) =

E(
∑
cc)

n
(28)

The difference is that n in (26) is a random variable thus needs to be estimated
whereas the n in (28) is a known constant. The results given by these two estimators

Estimating the size of online social networks 17

(average of 1, 000 tests) are shown as Figure 7. To our surprise, the biased estimator
actually is not much worse than the unbiased one. On the YouTube graph, it even
outperforms the unbiased estimator. A possible resolution is that the error of n̂

introduced by the random walker can be compensated by the error of
∑̂
cc in the

same run. Meanwhile, our analysis on the variance suggests that more tests for the
unbiased estimator is needed to get closer to the true value.

Figure 7 Estimating the clustering coefficient of five OSNs with RW. Left bars
represent the true value, middle bars represent the unbiased estimation given
by (28) and right bars represent the biased estimation given by (26).

7 Pitfalls

This section presents the pitfalls and challenges we encountered when developing
estimators for OSNs. We believe that these discussions provide valuable insights for
future work.

7.1 Combining MLE with MHRW

Gjoka et al. (Gjoka, Kurant, Butts & Markopoulou 2010) proposed an unbiased
sampling method, Metropolis-Hastings Random Walk (MHRW), to sample OSNs.
We tried to combined MLE with MHRW. This approach would have two
advantages.

• It does not rely on the OSN to provide uniform samples.

• It does not need to crawl lots of nodes.

This idea, however, does not work. Let Ψ = {v1, v2, . . . , v} be the set of nodes
crawled by MHRW. MHRW generates a uniform sampling within Ψ, therefore
combining MLE with MHRW, we are only able to estimate the size of Ψ.

18 S. Ye and S.F. Wu

7.2 Large variance and expensive back tracing

There are two problems when we apply RW to large OSNs. First of all, the variance
is large. For example, among 30, 000 tests on Buzznet, only 24% of them have
estimation error within 50%. To get reliable estimations, we need the mean of
multiple runs.

Secondly, during back tracing, RW may need lots of random walks before it
reaches v0. For instance, in some cases, more than 90% of the graph are crawled
before v0 is reached. On average, each test on the Buzznet graph crawls 254, 344
nodes (60% of the entire graph). This number looks scary but it is skewed by a
small portion of random walkers which cover a majority of the graph.

It is possible to replace the back tracing with a breadth first search (BFS) and
estimate a lower bound for the number of random walks needed to reach v0, but
due to the small world property of OSNs, BFS is likely to cover a large portion of
the graph as well, as shown by Ye et al. (Ye, Lang & Wu 2010).

To finish the back tracing quickly, parallel random walkers can be used while
careful coordination needs to be implemented. To avoid duplicated crawlings, we
need to cache visited nodes across multiple random walkers. Once a random walker
reaches v0, all the random walkers need to be stopped (to save the crawling costs)
and the random walkers starting after the one which reaches v0 should be discarded
(otherwise the number of random walks needed to reach v0 will be overestimated).

7.3 Poor lower and upper bounds for RW

Marchetti-Spaccamela (Marchetti-Spaccamela 1989) proposed an estimator for the
lower bound of RW, which performs up to k random walks in the back tracing
phase. If after k random walks, v0 is still not reached, k is returned as the minimum
number of random walks needed to reach v0. Without prior knowledge of the graph
size, however, it is nontrivial to set a proper k: Large ks do not serve the purpose
of accelerating the back tracing whereas small ks produce poor lower bounds. In
our experiments, with k = 1M, the lower bounds given by this estimator are still
poor for large graphs such as LiveJournal and Orkut.

An upper bound is also proposed in (Marchetti-Spaccamela 1989) which simply
assumes that G is a tree instead of a graph. This estimator, however, greatly
overestimates the size when G is large. On our graphs the upper bound estimator
overestimates by several magnitudes.

7.4 Expensive computation costs in simulations

Simulations on large graphs such as OSNs are computationally expensive. In our
tests, we used a cluster of 36 PCs with two AMD Opteron 2.6GHz CPU/4GB
memory per node. It took us a month to finish various tests presented here. To
improve the performance, we have the following optimizations.

• Tight data structures: An adjacency list (array) is used to represent the
neighbors of each node. A large array is used to keep pointers to these lists
therefore random access to any list is simple and fast. Initially we used the
IDs coming with the datasets, which are not continuous especially when we

Estimating the size of online social networks 19

deal with LCCs. To make the array as small as possible, we reassign the IDs
for the nodes in LCCs such that they are continuous.

• Accelerating frequently executed routines: As a lot of similar operations are
performed multiple times, making such components faster greatly reduces the
simulation time.

For example, we need to set/check whether a node has been visited when
trying to find an acyclic path. This was initially implemented with a set in
the C++ Standard Template Library (STL). Set is implemented with trees
but we actually do not need to keep the order of the items. Then we changed
to unordered set, which is a hash table. Being still not satisfied with its
performance, we finally replaced it with a bit field where each bit corresponds
to a node, then the check is done by simply examining whether the bit is set
or not.

Another example is that we sort the IDs within each adjacency list such that
when computing clustering coefficients, a binary search can be applied to
check if the list has a certain node.

• Improving data locality : The random walker incurs a lot of cache misses, which
become the main bottleneck of our simulation. More specifically, after the
random walker visits a node v, it needs to check v’s neighbors, say Nv, then
it moves to u ∈ Nv and checks u’s neighbors, say Nu. If the two adjacency
lists corresponding to Nv and Nu are far away from each other, a cache miss
is likely to happen. To alleviate this problem, we malloc a large continuous
memory pool for the adjacency lists and rearrange them to keep adjacency
lists of neighbors close to each other in the memory layout. Although the
random walker makes it impossible to predict the precise access order, our
experimental results show that this simple optimization reduces a lot of cache
misses.

With all the optimizations applied, the simulation runs 10− 20 times faster.

8 Related work

The coupon collector’s problem (Feller 1957) asks the following question: Given
n coupons, from which coupons are randomly sampled with replacement, what is
the probability that s sample trials are needed to collect all n coupons? In our
MLE problem, n is the quantity of interest while in coupon collector’s problem, n
is known and the number of unique coupons which have been collected (k) is the
quantity of interest.

Knuth (Knuth 1975) proposed an unbiased estimator to estimate the size of a
tree with random walkers. Pitt (Pitt 1987) extended this estimator to estimate the
size of directed acyclic graphs (DAGs). These two pieces of work inspire the RW
estimator, which we have discussed in detail in Section 5.1.

Besides estimating the size of graphs, there are studies on estimating other graph
properties but few of them focuses on OSNs. Tsonis et al. (Tsonis, Swanson &
Wang 2008) proposed an estimator for clustering coefficient in scale free networks.
Magnien et al. (Magnien, Latapy & Habib 2009) developed a fast algorithm to find

20 S. Ye and S.F. Wu

tight bounds for diameters. Becchetti et al. (Becchetti, Boldi, Castillo & Gionis
2008) proposed two approximation algorithms to count the number of triangles
incident to every node in a graph. Buchsbaum et al. (Buchsbaum, Giancarlo &
Racz 2008) considered the problem of finding common neighbors between two nodes.
It would be interesting to see how these estimators work on OSNs.

9 Conclusions

In this paper we introduce three existing estimators to estimate the size of OSNs.
The first estimator, MLE, relies on uniform sampling and gives accurate estimations
with a small sample size. We develop an algorithm to solve the MLE problem
with logarithm runtime complexity, which is 70 times faster than the naive linear
probing method in our experiment. We employ the second estimator, MR, to give
a better estimation of the number of users behind Twitter’s public timeline service.
We extend the third estimator, RW, to estimate other graph properties such as
clustering coefficient. Real OSNs are used to evaluate the bias and variance of these
estimators. We also discuss the pitfalls we had when developing these estimators.

Evaluating the resource requirement of RW and other random walk based
estimators will be an interesting direction to explore. More specifically, we are
interested in how these estimators perform given the number of nodes they can crawl
and try to reduce such resource requirement without losing too much accuracy.

We believe that this paper for the first time addresses the challenges of
estimating on OSNs. The analysis and pitfalls presented here provides us with
valuable insight for developing such estimators.

Acknowledgements

The authors would like to thank Alan Mislove for sharing the social graphs and Matt
Spear for crawling the Buzznet graph. Norm Matloff provided valuable comments
to improve the paper, especially in formulating the MLE problem. The authors are
also grateful to Jeff Rowe and Prantik Bhattacharyya for helpful references.

References and Notes

Becchetti, L., Boldi, P., Castillo, C. & Gionis, A. (2008), Efficient semi-streaming
algorithms for local triangle counting in massive graphs, in ‘KDD ’08: Proceeding
of the 14th ACM SIGKDD international conference on knowledge discovery and
data mining’, pp. 16–24.

Buchsbaum, A. L., Giancarlo, R. & Racz, B. (2008), ‘New results for finding
common neighborhoods in massive graphs in the data stream model’, Theoretical
computer science 407(1-3), 302–309.

Dhakar, T. & Mattheiss, T. (1989), ‘Determining the size of a finite population
of different objects from a finite sample taken at random with replacement’,
Communications in statistics - simulation and computation 18, 1311–1323.

Estimating the size of online social networks 21

Driml, M. & Ullrich, M. (1967), ‘Maximum likelihood estimate of the number of
types’, Acta Technica ČSAV pp. 300–303.

Feller, W. (1957), Introduction to probability and its applications, Vol. 1, second
edn, John Wiley.

Finkelstein, M., Tucker, H. G. & Veeh, J. A. (1998), ‘Confidence intervals for the
number of unseen types’, Statistics and probability letters 37(4), 423–430.

Gjoka, M., Kurant, M., Butts, C. T. & Markopoulou, A. (2010), Walking in
Facebook: A case study of unbiased sampling of OSNs, in ‘Proceedings of the
2010 IEEE Infocom conference’, pp. 1–9.

Gross, R., Acquisti, A. & Heinz, III, H. J. (2005), Information revelation and privacy
in online social networks, in ‘WPES ’05: Proceedings of the 2005 ACM workshop
on privacy in the electronic society’, pp. 71–80.

Knuth, D. E. (1975), ‘Estimating the efficiency of backtrack programs’, Mathematics
of computation 29(129), 121–136.

Magnien, C., Latapy, M. & Habib, M. (2009), ‘Fast computation of empirically tight
bounds for the diameter of massive graphs’, Journals of experimental algorithmics
13, 1.10–1.9.

Marchetti-Spaccamela, A. (1989), ‘On the estimate of the size of a directed graph’,
Graph-theoretic concepts in computer science 344, 317–326.

Miller, C. C. (2010), ‘Why twitters c.e.o. demoted himself’. http://www.nytimes.
com/2010/10/31/technology/31ev.html.

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P. & Bhattacharjee, B. (2007),
Measurement and analysis of online social networks, in ‘IMC’07: Proceedings of
the 7th ACM SIGCOMM conference on Internet measurement’, pp. 29–42.

Moore, R. J. (2010), ‘New data on Twitter’s users and
engagement’. http://themetricsystem.rjmetrics.com/2010/01/26/

new-data-on-twitters-users-and-engagement/.

Pitt, L. (1987), ‘A note on extending Knuth’s tree estimator to directed acyclic
graphs’, Information processing letters 24(3), 203–206.

Seber, G. (1982), The Estimation of Animal Abundance, The Blackburn Press.

Tsonis, A., Swanson, K. & Wang, G. (2008), ‘Estimating the clustering coefficient
in scale-free networks on lattices with local spatial correlation structure.’, Physica
A: Statistical mechanics and its applications 387, 5287–5294.

Watts, D. J. & Strogatz, S. H. (1998), ‘Collective dynamics of ’small-world’
networks’, Nature 393, 440–442.

Ye, S., Lang, J. & Wu, F. (2010), Crawling online social graphs, in ‘APWeb ’08:
Proceeding of the 2010 Asia Pacific Web conference’, pp. 236–242.

