

Gesture Avatar: A Technique for Operating Mobile User
Interfaces Using Gestures

Hao Lü*
Computer Science and Engineering

DUB Group, University of Washington
Seattle, WA 98195

hlv@cs.washington.edu

Yang Li
Google Research

1600 Amphitheatre Parkway
Mountain View, CA 94043

yangli@acm.org

ABSTRACT
Finger-based touch input has become a major interaction
modality for mobile user interfaces. However, due to the
low precision of finger input, small user interface
components are often difficult to acquire and operate on a
mobile device. It is even harder when the user is on the go
and unable to pay close attention to the interface. In this
paper, we present Gesture Avatar, a novel interaction
technique that allows users to operate existing arbitrary user
interfaces using gestures. It leverages the visibility of
graphical user interfaces and the casual interaction of
gestures. Gesture Avatar can be used to enhance a range of
mobile interactions. A user study we conducted showed that
compared to Shift (an alternative technique for target
acquisition tasks), Gesture Avatar performed at a much
lower error rate on various target sizes and significantly
faster on small targets (1mm). It also showed that using
Gesture Avatar while walking did not significantly impact
its performance, which makes it suitable for mobile uses.

Author Keywords
Touchscreens, finger-based touch input, gestures, mobile
devices, target acquisition.

ACM Classification Keywords
H.5.2. Use Interfaces: Input devices and strategies,
Interaction style. I.3.6. Methodology and Techniques:
Interaction techniques.

INTRODUCTION
Touchscreen mobile devices have become prevalent in the
recent years [2,12]. However, although finger-based touch
input is intuitive, it suffers from low precision due to two
fundamental problems: the area touched by the finger is
much larger than a single pixel—the fat finger problem—
and the pointing finger often occludes the target before
touching it—the occlusion problem [21].

Although existing mobile interface widgets are often
designed to be easily operated by finger, the tension
remains between the low precision of finger input and the
high precision needed by graphical user interfaces for the
following reasons. First, it consumes precious screen real
estate to make UI widgets large enough to be finger-
operable, especially as the resolution of mobile devices
increases, e.g., the iPhone 4’s resolution is 640 × 960 [12].
Secondly, in a web interface, many UI widgets, e.g.,
hyperlinks or an embedded Flash player, are still small and
hard to operate by finger. Lastly, high precision interactions
are more challenging for mobile users because they are
often on the go, e.g., walking or taking a bus, and cannot
pay a close attention to the interface.

Although many solutions have been explored for addressing
the fat finger and occlusion problems, most of them still
require highly precise visual perception and motor control
such as carefully adjusting a finger’s position [1,4,18,20].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

* This work was conducted during an internship with
Google Research.

 (a)

 (b)

 (c)

(d)

Figure 1: (a) Small mobile interface widgets are difficult to
operate through fingers. (b) In Gesture Avatar, the user can
draw the shape of the target, e.g., the rectangle for the knob of
the slider. (c) Gesture Avatar finds the widget that best
matches the user gesture and shows an avatar attached to it.
(d) The user can then operate the widget (e.g., the slider knob)
through the avatar, e.g., by dragging the avatar to move the
video slider.

In contrast, gesture-based techniques, e.g., panning a map
by swiping a finger across the touch screen, allow for
casual interaction. However, gesture-based interactions tend
to lack visibility compared to graphical user interfaces
whose operation semantics are embodied by their interface
components [16]. Prior work such as Escape [24] creatively
combined the advantages of both worlds using rectilinear
gestures to select graphical objects. However, it is limited
in that it requires a target interface to be designed in a
specific way. In addition, prior work mostly focused on the
one-shot target acquisition, leaving other common
interactions, such as drag-and-drop, unexplored.

To address these issues, we designed and implemented
Gesture Avatar, a novel interaction technique that allows
users to operate mobile user interfaces using gestures.
Figure 1 provides a quick demonstration of the technique.
Gesture Avatar leverages the visibility of graphical user
interfaces and the casual interaction of gestures. A user can
dynamically associate a gesture shape with an arbitrary GUI
widget and then interact with the widget through the drawn
gesture, which is conceptually akin to an avatar.

Gesture Avatar can be used to enhance a range of mobile
interactions. A user study we conducted showed that in
target acquisition tasks, Gesture Avatar achieved a
significantly lower error rate than Shift [20] and performed
faster on small targets (1mm). It also showed that walking
had no significant effect on using Gesture Avatar, which
makes it suitable for mobile uses. We demonstrate the
feasibility and ease of use of Gesture Avatar by integrating
it with existing systems such as a mobile web browser.

In the rest of the paper, we first provide a brief introduction
of how a user interacts with the existing mobile interfaces
through Gesture Avatar and then discuss related work.
Next, we provide a detailed description of our design and
implementation of Gesture Avatar along with more
example applications that our technique can enhance. We
then evaluate Gesture Avatar by comparing it to Shift.
Finally, we discuss the factors in designing Gesture Avatar
and possible future work.

MOBILE INTERACTION USING GESTURE AVATAR
In this section, we describe how a user would interact with
mobile interfaces using Gesture Avatar. Assume that a user
opens the New York Times website (http://nytimes.com) in
a mobile phone web browser. The interaction objects such
as hyperlinks are viewable but too small to be easily tapped
on by a finger.

Here the user wants to navigate to the sports section. She
draws an “s” on the screen1 near the link “SPORTS” (see

1 To allow the user to indicate a drawing action instead of
panning the webpage, an implementation of Gesture Avatar
can use various mode-switching techniques, which we will
discuss later.

Figure 2a). This creates a gesture avatar, the gesture stroke
with a translucent background. The bounding box of the
link that the avatar is associated with is highlighted (see
Figure 2b). The user can then easily trigger the link
“SPORTS” by tapping on the gesture avatar, which is a
much larger target.

As we will discuss in the following sections, to form the
association between a gesture and an object, we leverage
both the shape of the gesture and its distance to the objects
on the screen.

From this example, we can see that a gesture avatar
provides a larger effective area for a user to comfortably
interact with a small target. The type of interaction that
Gesture Avatar can enhance is not limited to tapping. A
gesture avatar essentially re-dispatches whatever touch
events it receives to the associated object. For example, a
user can long press an avatar to long press the associated
object to bring up a context menu.

The gesture that is used to create an avatar can also be
arbitrary. It can be a character or an arbitrary shape. For
example, the user can draw a box to create an avatar for
controlling the progress bar of a media player as seen in
Figure 1. The user can then move the knob of the progress
bar by dragging the avatar.

An avatar may be associated with an undesired object due
to the inaccuracy of gesture recognition and the essential
ambiguity of the objects on the screen. For example, in
Figure 2a, when the user draws an “S”, both “SPORTS”
and “SCIENCE” are good candidates.

When an avatar is associated with an undesired object, the
user can either dismiss the avatar by tapping outside of the
avatar and redraw a gesture, or re-assign an object to the
avatar using directional (collinear) gestures. When the user
draws directional gestures outside the avatar (e.g., Figure
3a), Gesture Avatar will find the next best match in the
direction of the stroke and update the avatar’s position on
the screen accordingly (e.g., Figure 3b). The user can repeat
this process until the avatar is associated with the target.

(a) (b)

Figure 2: Tapping on a target using Gesture Avatar. (a)
The user draws an “S” near the target “SPORTS”. (b) The
user taps on the gesture avatar as if tapping on the target.

The directional gestures of Gesture Avatar enable users to
easily navigate in the possible matches that are presented on
the screen (a 2-dimensional space).

RELATED WORK
A large corpus of prior work has focused on facilitating
target acquisition. Most of this work generally reduces the
Fitts’s Index of Difficulty [10] by increasing a target’s size.
Semantic pointing [6] dynamically adjusts the control-
display (CD) ratio as the cursor approaches the target.
Bubble cursor [11], which is based on area cursor [23],
dynamically changes its size according to the proximity of
surrounding objects so that the pointer is snapped to a
nearby object.

High-precision pointing is hard with an imprecise input
such as a bare finger. Many methods and techniques have
been presented for high-precision touchscreen interaction.
Albinsson and Zhai [1] propose two techniques using
widgets for precise finger positioning by zooming, reducing
CD gain, and discrete pixel-by-pixel adjustment. They
show that though these techniques are faster than Offset
Cursor for targets smaller than 0.8 mm, they are slower for
targets larger than 3.2 mm. Benko et al. [4] present Dual
Finger Selections that facilitate pixel-accurate targeting by
adjusting the CD ratio with a secondary finger.

Much work has also been done in avoiding finger
occlusion. Offset Cursor [18] eliminates finger occlusion by
showing a cursor above users’ fingers. However, users can
no longer aim for the target directly even when the target is
big enough. Instead, users have to first touch the surface to
show the cursor and then move the cursor onto the target to
select it. This contradicts the intuitiveness of direct touch.
Shift [20] improves Offset Cursor by showing a copy of the
occluded screen in a callout above the user’s finger. Unlike
Offset Cursor, users still can aim for the actual target with
Shift. Their user study shows that Shift has a much lower
error rate than unaided touchscreen and is faster than Offset
Cursor for large targets. One problem with Shift is that the

callout view is taken out of context, which requires extra
effort to re-understand the view and re-recognize the target.

Wigdor et al. [22] propose back-of-device interaction to
eliminate the finger occlusion problem. However, they
cause the user’s fingers to be occluded by the device,
causing large error rates. LucidTouch [21] addresses the
problem by introducing pseudo-transparency, which creates
an illusion that users can see their occluded fingers,
decreasing error rates. Baudisch et al. [3] propose a similar
technique on small devices.

Escape [24] is a gesture-based technique for facilitating
target acquisition. It first assigns directions to all objects.
Users then can press their fingers near the target, followed
by a directional stroke to specify the direction of the target.
Through gestural interaction, Escape greatly reduces the
effort in human visual feedback loop and avoids the
occlusion and fat finger problems. The major limitation of
Escape is that the appearance of the user interface has to be
modified in order to make the assigned directions visible.
Escape is demonstrated with a map-like application where
using directional balloons is possible. However, it is often
inappropriate or impossible to change the appearance of an
application’s user interface, which makes the technique less
applicable. Moreover, as mentioned in their own paper, the
density of the objects (the number of the objects in a certain
area) is limited due to the fact that close objects cannot
have similar directions, and the technique is limited near
screen edges, as gestures cannot go beyond screen edges.

THE DESIGN OF GESTURE AVATAR
In this section, we describe the details of how Gesture
Avatar works. Our design goal is to allow users to easily
interact with mobile interfaces, especially when the target
(e.g., a link or a button) is small and users are on the go. As
a result, we designed Gesture Avatar with reducing or
eliminating high precision interaction in mind.

The Interaction Flow of Gesture Avatar
Figure 4 illustrates the interaction flow of Gesture Avatar.
The interaction with Gesture Avatar involves four states.
The interaction process starts from the Initial state. Once
the finger touches the screen, it enters the Gesturing state,
in which the touch trace is rendered on top of the
underlying user interface that is being operated. When the
user lifts her finger and the trace is a valid gesture (e.g., the
bounding box of the trace is large enough to be considered
as a gesture instead of a tap), the process enters the Avatar
state, in which the drawn gesture stroke forms the avatar
with a translucent background. The object that is associated
with the avatar is also highlighted.

In the Avatar state, the user can choose to operate the
associated object through the avatar, or adjust the
association if the avatar is associated with an undesired
object. In this state, if the user touches down inside of the
avatar, the touch_down as well as the subsequent
touch_move and touch_up events will be re-dispatched to

(a) (b)

Figure 3: Re-assigning a target to the avatar. (a) The user
draws a directional gesture outside the avatar. (b) Gesture

Avatar finds the next best match in the given direction.

the associated object in the underneath user interface. If the
user touches outside of the avatar, the user can either
dismiss the shown avatar by a tap or change the associated
object using directional gestures.

Matching an Gesture against Objects
In this section, we discuss how a gesture, g, is matched
against the potential targets available on the screen, T, so
that the avatar can be associated with a desired target, tmatch
(see Equation 1).

tmatch  argmax
ti T

P ti g  (1)

As discussed earlier, we leverage both the semantics of the
gesture and its spatial relationship with the objects on the
screen. The combination of these two factors can
effectively triangulate a desired object on the screen. As a
result, Equation 1 can be expanded as the following:

     gigii bpPscPgtP  (2)

where P(ci|sg) encodes

how much the content of the object,

ci, matches the semantics of the gesture, sg, and P(pi|bg)
captures the spatial relationship between an object and the
gesture, in particular, the distance between the gesture’s

 bounding box, bg, and the center of the object, pi. We
discuss how these two quantities are calculated in the
following sections. (α is the normalizing constant.)

Matching Based on Semantic Information
A gesture can be a character or an arbitrary shape, and the
content of an object is either a set of characters for a textual
object or the contour of a graphical object (e.g., the
triangular boundary of the play button of a media player).

Character and shape recognition have several fundamental
differences, and distinct approaches have been developed
for handling each case [5]. As a result, we first classify
whether the gesture is a character or a shape and then
employs different recognizers for each case. For character
matching, Gesture Avatar employs a neural network
handwriting recognizer that recognizes letters and numbers
used in English. The recognized character is then used to
search against the content of each object on the screen. For
shape matching, Gesture Avatar uses a template-based
shape recognizer that is conceptually akin to [14]. The
templates, i.e., the contours of all the objects on the screen,
are added on the fly. The shape recognizer then finds the
object that has the most similar contour to the gesture. Note
that rather than only keeping the best guess, this calculation
gives a distribution of all possible characters and shapes,
which is fed into P(ci|sg) of Equation 2.

Matching Based on Spatial Relationships
Since users tend to aim for the target, the position of the
gesture for interacting with the target is often a strong
indicator of where the target is. As a result, it is reasonable
to assume that the closer an object is to the gesture, the
more likely it is the target.

To capture this intuition, we use a 2D Gaussian distribution
over the distance between the center of an object and the
bounding box of the gesture. To save computation when
there are numerous objects on the screen, we use the
Manhattan distance, instead of the Euclidean distance, of an
object to the bounding box (see Figure 5). The output of the
Gaussian provides an indication of how likely the object is
the target, i.e., P(pi|bg).

Figure 4: The interaction flow of Gesture Avatar. The interaction starts from the Initial state. Touch events are shown in bold.
The conditions for a transition to occur are enclosed in brackets and the actions of a transition are shown in italic.

The 2D Gaussian distribution employs a changing variance
that is dynamically adjusted based on the length of the
longer edge of the gesture’s bounding box (see Figure 6).
This design of our algorithm is based on the observation
that users draw gestures in different sizes, and the smaller
the gesture is, the more specific area the user is targeting at.

Correcting a Mismatch by Navigating in Objects
Due to the inaccuracy of gesture recognition and the
inherent ambiguity of objects available on the screen, it is
unavoidable that an avatar is associated with an undesired
object. For example, multiple objects with similar content
might be cluttered in one area. Furthermore, objects on the
edges of the screen are also prone to incorrect matching,
since users cannot draw gestures over these objects and the
Gaussian distribution cannot efficiently capture this
situation.

One typical approach to correct a mismatch is to ask the
user to dismiss the avatar and then recreate it. However, this
approach cannot guarantee success and can be annoying if

it is only a close miss, e.g., when the target object is just
next to the mismatched object.

In our design, we allow the user to go to the next best match
in the given direction by drawing a directional stroke.
Directional strokes are fast to perform and the outcomes of
them are more predictable.

Based on the directional stroke the user draws, we infer the
next best match based on not only how well an object
matches the avatar gesture semantically, but also the
angular distance between the directional stroke and the
direction from the currently matched object to the object
being evaluated. Again, we use a Gaussian function to give
each object a score based on its angular distance (see
Figure 7). To reduce computation cost, we restrict the
search to the objects within 45º of the stroke direction.

MORE EXAMPLES
In the previous sections, we demonstrated the use of
Gesture Avatar through a media player and a mobile
browser. In this section, we discuss two more examples.

The first example (see Figure 8a) applies Gesture Avatar to
moving the caret in a text box. The on-screen keyboards on
most touchscreen mobile phones do not have dedicated
keys for moving the caret. Instead, users need to directly
touch between two characters. Since the text is small,
moving the caret is error-prone. The iPhone uses a Shift-
like technique to address this problem. With Gesture
Avatar, the user can draw the character before (or after) the
desired position to assign an avatar to it and then tap on the
right (or left) half of the avatar to move the caret.

The second example (see Figure 8b) applies Gesture Avatar
to Google Maps. Previously, maps have been a heavily used
example to demonstrate and evaluate different target
acquisition techniques [20,24]. Locations on a map are
typically represented by distinct letters. This property
makes Gesture Avatar promising for acquiring locations,

(a) (b)

Figure 8: (a) Moving the caret in a text box using Gesture
Avatar. (b) Acquiring a location in Google maps.

Figure 5: The distance of a target (denoted as a circle) to
the avatar is calculated as the smallest Manhattan distance

from it to the gesture’s bounding box.

Figure 6: The larger the bounding box is, the less impact
the distance has on the scoring.

Figure 7: Searching the next best match in the given
direction. We restrict the search area to the objects in a

45-degree range. A Gaussian function on the angular
distance from the given direction gives a scoring factor.

distance = 0 distance = d distance = dx+dy

d

dy
dx

45º
Search

area

Direction

Gaussian
on angle

since there is little semantic ambiguity in these location
objects.

IMPLEMENTATION
Gesture Avatar was primarily written in Java using Android
SDK 2.2. For image contents, we first compute their edges
using the Canny edge detector and then pass them to our
shape recognizer. The image processing and edge detection
were written in C++ using OpenCV [17] and built with a
variation of Android NDK.

The example applications that we have discussed in the
paper were written in Java. We built these examples by
wrapping an existing user interface, e.g., a web browser or a
text input field, with an additional interaction layer, i.e.,
Gesture Avatar. In the mobile web browser example, the
current version of mobile WebKit does not expose its UI
structures, i.e., the DOM tree, in Java but only accessible
through JavaScript. As a workaround, we implemented the
logic for searching the best matches in JavaScript and inject
the JavaScript code upon loading a webpage.

EVALUATION
As discussed earlier, Gesture Avatar addresses not only the
acquisition of small targets, but also the follow-up
interaction such as dragging an object after it is acquired.
There has been little prior work in addressing the latter. So
Gesture Avatar makes a clear contribution in that regard. As
a result, we here focus on its performance on target
acquisition compared to Shift.

We hypothesize that Gesture Avatar outperforms Shift on
small targets and is better for mobile uses. Specifically:

(H1) Gesture Avatar will be slower than Shift on larger
targets, but faster on small targets.

(H2) Gesture Avatar will have fewer errors than Shift.

(H3) Mobile situations such as walking will decrease the
time performance and increase the error rate of Shift, but
have little influence on Gesture Avatar.

Apparatus
The experiment was conducted on a Motorola Droid
running Android 2.2 (see Figure 1). It has a 3.7-inch,
480×854 pixel multi-touch display. The walking tasks were
conducted on a treadmill desk from Steelcase, with a
maximum speed of 2.0 mph (see Figure 9b). Walking on a
treadmill offers a reasonable simulation that captures
common properties of various “on the go” scenarios, such
as device shaking and significant body movement. At the
same time, an indoor treadmill setting allowed us to
conduct the experiment in a more controlled manner.

Participants
Twelve participants (8 male and 4 female), between age 20
and 30, were recruited from a company. They were all
right-handed. All the participants owned touchscreen
mobile devices and used their phones extensively. Each

participant received a gratuity equal to a US$30 gift card
for their participation.

Experimental Design
A within-subjects factorial user study was used in this
experiment. Half of the participants learned and performed
Gesture Avatar first and then Shift, while the other half did
the opposite so that the order of two techniques was
counterbalanced. For each technique, participants were
asked to complete the tasks in two conditions: sitting and
walking as shown in Figure 9.

The objects in the tasks were represented as letter boxes
(see Figure 10). Participants were asked to acquire targets
of different sizes, positions, letters, and ambiguity using
both Gesture Avatar and Shift. In the starting screen of a
task (Figure 10a), the participants were shown 24 small
letter boxes. The target box, which was always near the
center, was highlighted in red. To eliminate the time for
searching for the target visually, which was not the focus of
this experiment, a magnified version of the target was
shown 300 pixels below the target. Participants needed to

Figure 9: (a) The user was sitting on a stool. (b) The user
was walking on a treadmill.

Figure 10: The experimental task. (a) The target is
highlighted in red and a magnified copy serves as the start

button. (b) and (c) show a typical run of the task.

(a)

(b)

(c)

(a) (b)

tap the magnified target to start the task. Performance times
were measured between the tap on the magnified target and
the selection of the target.

We chose 24 letter boxes for our study for several reasons.
First, we wanted to cover the entire spectrum of semantic
ambiguity in targets, from very ambiguous (i.e., few letters
are used with high repetitions) to non-ambiguous cases (i.e.,
each box has a unique letter). As a result, the number of
letter boxes should not be larger than 26, the size of the
English alphabet. Second, we wanted the number of unique
letters shown on the screen to be a factor of the total
number of boxes so that the distribution of the letter usage
is uniform, i.e., each letter can have an equal number of
instances and affect the gesture recognizer equally. 24 is a
good option as it has many nontrivial factors (2, 3, 4, 6, 8,
and 12). Lastly, 24 objects offer an information density that
reasonably simulates real life scenarios.

The ambiguity of the target, i.e., the number of objects that
have the same letter near the target, may affect the
performance of Gesture Avatar. We simulated the
ambiguity by controlling the distance between objects and
the number of letters used. Since the performance of Shift
correlates to the size of the objects instead of the distance
between them, we fixed the margin of objects to 5px and
varied the size of the objects to affect both techniques.
Three sizes were used in the study: 10px (1mm), 15px
(1.5mm) and 20px (2mm).

Some objects at a small size such as 1mm would become
uncomfortable or difficult for users to read. However, many
UI widgets in a web interface are often presented at such a
scale. In addition, mobile users are often on the go. The
short attention span of a mobile user as well as interacting
in motion affects the performance of human motor control.
These factors can greatly decrease the effective size of a
target, such that a large target in such circumstances might
have a much smaller effective size.

When using Gesture Avatar to acquire the target, we
highlighted the currently matched object with an orange
border (see Figure 10b). Participants could tap on the avatar
to acquire the matched object. For this comparison, we re-
implemented Shift and used the escalation time 0, 50, and
200 milliseconds for 10, 15, and 20 pixel objects,
respectively.

To make the finger position more stable, we averaged the
finger positions with a smoothing factor of 0.25 as a low
pass filter for the finger position signals.

While performing these techniques, participants were
required to acquire targets with the index finger of their
dominant hands while holding the device in their non-
dominant hands, as required in previous studies.

Experimental Procedure
Upon being introduced to a new technique, participants had
a practice session where they performed the same type of

tasks as the test sessions. They were allowed to practice
until they felt comfortable using it. During the test period,
participants could take a break between tasks. For each
technique, participants performed the first 12 test sessions
while sitting on a stool (see Figure 9a) and the second 12
while walking on a treadmill (see Figure 9b). The walking
speed was between 1.8 and 2 mph depending on
participants’ preference. The 12 sessions covered all
combinations of box sizes and numbers of unique letters. In
each session, there were 10 tasks, with the same box size
and same number of unique letters. They were drawn
randomly from a pre-generated task pool (50 tasks for each
combination).

Independent Variables
The independent variables were Technique (Gesture Avatar
versus Shift), MobileState (sitting versus walking),
TargetSize (10, 15, or 20px), and NumOfLetters (the
number of unique letters used: 1, 4, 8, and 24). In summary,
the experimental design was:

12 Users ×
2 Techniques (Gesture Avatar versus Shift) ×
2 MobileState (Sitting versus Walking) ×
3 TargetSizes (5, 15, 20px) ×
4 NumOfLetters (1, 4, 8, 24) ×
10 Target Acquiring Tasks
= 5760 tasks

Results
Here we discuss our findings, including time performance,
accuracy and subjective preferences.

Time Performance
For performance time, we performed a within-subjects
analysis of variance (ANOVA) for Technique ×
MobileState × TargetSize × NumOfLetters. A main effect
was found for Technique (F1,5758=51.574, p<0.001),
MobileState (F1,5758=18.668, p<0.001), and TargetSize
(F2,5757=140.736, p<0.001), but not NumOfLetters. The
significant interactions were Technique × MobileState
(F1,5756=19.070, p<0.001), Technique × TargetSize
(F2,5754=122.165, p<0.001), Technique × NumOfLetters
(F3,5752=5.170, p<0.001), MobileState × TargetSize
(F2,5754=5.760, p<0.005) and Technique × MobileState ×
TargetSize (F2,5748=9.583, p<0.001).

Tukey’s post-hoc pair-wise comparison showed that
Gesture Avatar was significantly slower than Shift when
TargetSize was 20px, but significantly faster than Shift
when TargetSize was 10px. There was no significant
difference between two techniques when TargetSize was
15px. Both techniques were significantly faster on larger
target sizes. Shift with MobileState as sitting was
significantly faster than it with MobileState as walking. For
Gesture Avatar, there was no significant difference between
MobileState being sitting versus walking.

(b)

(c)

We performed the same analysis on Shift and Gesture
Avatar separately. We found that for Gesture Avatar, there
was no significant difference across different MobileStates
and TargetSizes. For Shift, TargetSize=10px was
significantly slower than larger sizes at all MobileStates,
and sitting was significant faster than walking when the
TargetSize is 10px.

Error Rates
For the error rate, we also performed a within-subjects
ANOVA for Technique × MobileState × TargetSize ×
NumOfLetters. A main effect was found for Technique
(F1,5758=674.166, p<0.001), MobileState (F1,5758=26.493,
p<0.001), and TargetSize (F2,5757=41.057, p<0.001), but not
NumOfLetters. The significant interactions were Technique
× MobileState (F1,5756=18.878, p<0.001), Technique ×
TargetSize (F2,5754=41.201, p<0.001), and MobileState ×
TargetSize (F2, 5754=6.729, p<0.001).

Tukey’s post-hoc pair-wise comparison showed that
Gesture Avatar had lower error rates than Shift on all
TargetSizes, while there was no significant difference for
Gesture Avatar across different TargetSizes.

We performed the same analysis on Shift and Gesture
separately. We found that for Gesture Avatar, there was no
significant difference across all MobileStates and
TargetSizes. For Shift, TargetSize=10px when walking had
a significantly higher error rate than any other TargetSizes
and MobileStates.

Subjective Preferences
In the post-study questionnaire participants were asked
about their preferences for the two techniques. 10 of the 12
participants preferred Gesture Avatar, 1 Shift, and 1 both.
All commented that Shift was more stressful especially
while walking. 10 participants agreed that Gesture Avatar is
useful, 1 strongly agreed and 1 neutral. 8 participants
agreed that Gesture Avatar is easy to use, 3 strongly agreed
and 1 neutral.

Experiment Discussion
Our results support hypothesis H1. Figure 11 and Figure 12
show that Shift’s performance time increases as the target
size decreases. However, Gesture Avatar’s performance
time almost remains unaffected by the change of the target
size. As a result, Gesture Avatar is slightly slower than
Shift when the target size is 20px, but quickly catches up
and becomes a lot faster when it is 10px. This also implies
that Gesture Avatar scales well to small targets.

Our results support hypothesis H2. Figure 13 and Figure 14
show trends in error rates that are similar to those of
performance time. However, Gesture Avatar has much
lower error rates than Shift. Though Gesture Avatar has a
correction stage, achieving such low error rates with little
sacrifice in performance is still surprising.

Our results also support hypothesis H3. By comparing
Figure 11 to Figure 12, and Figure 13 to Figure 14, we can

Figure 11: Mean performance time for Technique ×

TargetSize × NumOfLetters when participants were sitting
on a stool. In this and all later charts, error bars represent

95% confidence intervals.

Figure 12: Mean performance time for Technique ×
TargetSize × NumOfLetters when participants were

walking on a treadmill.

Figure 13: Mean error rate for Technique × TargetSize ×
NumOfLetters when participants were sitting on a stool.

Figure 14: Mean error rate for Technique × TargetSize ×

NumOfLetters when participants were walking on a
treadmill.

see that walking greatly hurt Shift both in performance
times and error rates, but had almost no influence on
Gesture Avatar. This indicates that Gesture Avatar is
promising when users are on the go.

One surprising finding is that the number of unique letters
had no significant influence on Gesture Avatar, as we
thought that more content ambiguity would decrease the
effectiveness of the gesture recognizer, and therefore
decrease the overall performance. However, in our study,
we observed that the participants tended to draw smaller
gestures when there was more ambiguity and as a result the
matched objects were often either the targets or very close
to the targets. We also observed that all participants quickly
converged to “flicking” [9] towards the targets as their
correction strokes, which was very efficient.

DISCUSSION

Accelerating for One-Shot Interactions
As we have discussed in the previous sections, Gesture
Avatar offers unique advantages for manipulating small
targets beyond target acquisition. As a result, it can address
many common interaction behaviors that prior techniques
cannot support, e.g., adjusting a slider, drag-and-drop,
double tapping, and long pressing.

However, for a target that only accepts one-shot interaction,
e.g., the only valid interaction for a button is to be clicked,
it might be unnecessary to show the avatar when the match
is highly unambiguous. For example, a user can simply
draw a gesture near a target (such as a hyperlink) and if the
ambiguity is low, the target should be triggered
immediately, instead of having to display an avatar for the
user’s confirmation. In such case, Gesture Avatar supports a
one-shot interaction as prior techniques did, although
Gesture Avatar still has the advantage of allowing casual
interactions.

Another design alternative is to show the avatar at the end
of gesturing, but before the user lifts her finger, which gives
the user an opportunity to confirm the match. If the match is
incorrect, the user can either continue gesturing, or dwell
the finger, e.g., for a half second, on the touch screen to
bring up the avatar. She can then adjust the matching using
directional gestures. This design would require us to detect
the potential ending of a gesture stroke being drawn.

Acquiring Moving Targets
Prior work on target acquisition often assumes fixed
locations for targets, which is not always the case. As we
have seen in the previous media player example (Figure 1),
the knob of the progress bar moves towards the right end
while the media player is playing. As another example, in a
real-time location information application, objects such as
cars can move quickly on a map.

Moving targets make a technique that requires high
precision difficult to use since acquiring these targets
require intensive visual tracking and more challenging

motor control. As a result, many existing techniques are
inefficient in acquiring moving targets. In Shift, the target
can move out of the callout view during the interaction, and
in Escape, the target can move to items with the same or
similar directions. In contrast, for Gesture Avatar, moving
targets are not a challenge. Since the target matching
algorithm works on a static state of the user interface, all
the claims in this paper should still hold for moving targets.
We do need to update the avatar view constantly in order to
attach the avatar to the moving targets.

Avatar Representations
We explored various representations for gesture avatars.
We focused on two representations in our iterative design
process: stroke and lens representations (see Figure 15). We
employ the stroke representation in the current design, i.e.,
an avatar is shown as the gesture stroke with a translucent
background. The lens representation is to show a magnified
version of the matched target and has been explored in
literature [19]. Both representations highlight the bounding
box of the original target. We chose the stroke over the lens
representation for the following reasons.

First, a lens often affords different interaction behaviors
that are inconsistent with the avatar metaphor that we
intended to support. For example, dragging lens would be
naturally interpreted as shifting the view rather than moving
the magnified object. Secondly, a magnified view often has
a more complicated appearance than a gesture stroke. As a
result, the lens representation is more likely to obscure the
underlying user interface and adds visual complexity. In
contrast, the stroke representation is more lightweight.

Mode Switching Issues
Similar to many other gesture-based techniques, mode
switching [15] is also an issue in integrating Gesture Avatar
into existing user interfaces. For example, when gesturing
on a map, it is necessary to distinguish the initial gesturing
for creating an avatar from actions such as panning.

In our implementation of Gesture Avatar, a user gestures by
first pressing and holding a holding finger, and then
drawing gestures with a different finger, the gesturing
finger. If the holding finger moves, it is considered as a
regular touch-based interaction, e.g., panning or pinching to

(a) (b)

Figure 15: Two different representations we explored
for Gesture Avatar: (a) the stroke and (b) the lens

representation.

zoom. Similar asymmetric dependent two-handed
techniques have been studied in [13].

Integrating with Existing Systems
Gesture Avatar needs to be aware of the objects available
on the user interface being operated, although it does not
require these objects to be in a specific presentation. The
more Gesture Avatar knows about the underlying user
interface, the better it can perform. The ideal situation is
that we can access the structure of the underlying user
interface. For example, the structure of a webpage can be
accessed via its DOM tree [8]. However, this information
can be inaccessible to Gesture Avatar (e.g., in a Flash
application embedded in a webpage). One possible solution
is to reverse engineer the underlying user interface from its
pixels as previously explored in Prefab [7]. The limitation
of this kind of approach is that it only works for known UI
widgets. To make Gesture Avatar a general technique and
avoid the effort for implementing it for every user interface,
we designed Gesture Avatar as an interaction layer that can
be easily used to wrap around a specific interface via a
simple API. We implemented a toolkit based on the
Android platform and all the examples demonstrated in the
paper were implemented using the toolkit.

CONCLUSION AND FUTURE WORK
This paper presents Gesture Avatar, a gesture-based
interaction technique for operating mobile interface that
supports casual interaction of the existing mobile interfaces.
We discussed the interaction design of Gesture Avatar. We
showed how Gesture Avatar can improve user experience
on mobile devices via four example applications. A
controlled user study and the range of interactions that are
supported indicate that Gesture Avatar outperforms its
peers in many ways.

REFERENCES
1. Albinsson, P.-A. and Zhai, S. High precision touch screen

interaction. Proc. CHI 2003, ACM Press (2003), 105-112.

2. Android (operating system).
http://en.wikipedia.org/wiki/Android_(operating_system).

3. Baudisch, P. and Chu, G. Back-of-device interaction
allows creating very small touch devices. Proc. CHI
2009, ACM Press (2009), 1923-1932.

4. Benko, H., Wilson, A.D., and Baudisch, P. Precise
selection techniques for multi-touch screens. Proc. CHI
2006, ACM Press (2006), 1263-1272.

5. Bishop, C.M. Pattern Recognition and Machine
Learning (Information Science and Statistics). 2006.

6. Blanch, R., Guiard, Y., and Beaudouin-Lafon, M. Semantic
pointing: improving target acquisition with control-display ratio
adaptation. Proc. CHI 2004, ACM Press (2004), 519-526.

7. Dixon, M. and Fogarty, J. Prefab: implementing
advanced behaviors using pixel-based reverse

engineering of interface structure. Proc. CHI 2010,
ACM Press (2010), 1525-1534.

8. Document Object Model.
http://en.wikipedia.org/wiki/Document_Object_Model.

9. Dulberg, M.S., Amant, R.S., and Zettlemoyer, L.S. An
Imprecise Mouse Gesture for the Fast Activation of
Controls. INTERACT, (1999), 375-382.

10. Fitts, P.M. The information capacity of the human
motor system in controlling the amplitude of movement.
Journal of experimental psychology 47, 6 (1954), 381-391.

11. Grossman, T. and Balakrishnan, R. The bubble cursor:
enhancing target acquisition by dynamic resizing of the cursor’s
activation area. Proc. CHI 2005, ACM Press (2005), 281-290.

12. iPhone 4. http://en.wikipedia.org/wiki/IPhone_4.

13. Kabbash, P., Buxton, W., and Sellen, A. Two-handed input in
a compound task. Proc. CHI 1994, ACM Press (1994), 417-423.

14. Kara, L.B. and Stahovich, T.F. An Image-Based
Trainable Symbol Recognizer for Sketch-Based
Interfaces. AAAI Fall Symposium Series 2004: Making
Pen-Based Interaction Intelligent and Natural, (2004).

15. Li, Y., Hinckley, K., Guan, Z., and Landay, J.A.
Experimental analysis of mode switching techniques in
pen-based user interfaces. Proc. CHI 2005, ACM Press
(2005), 461-470.

16. Norman, D.A. The way I see it: natural user interfaces
are not natural. Interactions 17, 3 (2010), 6-10.

17. OpenCV. http://opencv.willowgarage.com/wiki/.

18. Potter, R.L., Weldon, L.J., and Shneiderman, B. Improving
the accuracy of touch screens: an experimental evaluation of
three strategies. Proc. CHI 1988, ACM Press (1988), 27-32.

19. Ramos, G., Cockburn, A., Balakrishnan, R., and
Beaudouin-Lafon, M. Pointing Lenses : Facilitating Stylus
Input through Visual- and Motor-Space Magnification.
Proc. CHI 2007, ACM Press (2007), 757-766.

20. Vogel, D. and Baudisch, P. Shift: a technique for
operating pen-based interfaces using touch. Proc. CHI
2007, ACM Press (2007), 657-666.

21. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., and
Shen, C. LucidTouch : a see-through mobile device.
Proc. UIST 2007, ACM Press (2007), 269-278.

22. Wigdor, D., Leigh, D., Forlines, C., et al. Under the table
interaction. Proc. UIST 2006, ACM Press (2006), 259-268.

23. Worden, A., Walker, N., Bharat, K., and Hudson, S. Making
computers easier for older adults to use: area cursors and
sticky icons. Proc. CHI 1997, ACM Press (1997), 266-271.

24. Yatani, K., Partridge, K., Bern, M., and Newman, M.W.
Escape: a target selection technique using visually-cued
gestures. Proc. CHI 2008, ACM Press (2008), 285-294.

