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ABSTRACT 
Finger-based touch input has become a major interaction 
modality for mobile user interfaces. However, due to the 
low precision of finger input, small user interface 
components are often difficult to acquire and operate on a 
mobile device. It is even harder when the user is on the go 
and unable to pay close attention to the interface. In this 
paper, we present Gesture Avatar, a novel interaction 
technique that allows users to operate existing arbitrary user 
interfaces using gestures. It leverages the visibility of 
graphical user interfaces and the casual interaction of 
gestures. Gesture Avatar can be used to enhance a range of 
mobile interactions. A user study we conducted showed that 
compared to Shift (an alternative technique for target 
acquisition tasks), Gesture Avatar performed at a much 
lower error rate on various target sizes and significantly 
faster on small targets (1mm). It also showed that using 
Gesture Avatar while walking did not significantly impact 
its performance, which makes it suitable for mobile uses. 
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INTRODUCTION 
Touchscreen mobile devices have become prevalent in the 
recent years [2,12]. However, although finger-based touch 
input is intuitive, it suffers from low precision due to two 
fundamental problems: the area touched by the finger is 
much larger than a single pixel—the fat finger problem—
and the pointing finger often occludes the target before 
touching it—the occlusion problem [21]. 

Although existing mobile interface widgets are often 
designed to be easily operated by finger, the tension 
remains between the low precision of finger input and the 
high precision needed by graphical user interfaces for the 
following reasons. First, it consumes precious screen real 
estate to make UI widgets large enough to be finger-
operable, especially as the resolution of mobile devices 
increases, e.g., the iPhone 4’s resolution is 640 × 960 [12]. 
Secondly, in a web interface, many UI widgets, e.g., 
hyperlinks or an embedded Flash player, are still small and 
hard to operate by finger. Lastly, high precision interactions 
are more challenging for mobile users because they are 
often on the go, e.g., walking or taking a bus, and cannot 
pay a close attention to the interface. 

Although many solutions have been explored for addressing 
the fat finger and occlusion problems, most of them still 
require highly precise visual perception and motor control 
such as carefully adjusting a finger’s position [1,4,18,20]. 
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Figure 1: (a) Small mobile interface widgets are difficult to
operate through fingers. (b) In Gesture Avatar, the user can
draw the shape of the target, e.g., the rectangle for the knob of
the slider. (c) Gesture Avatar finds the widget that best
matches the user gesture and shows an avatar attached to it.
(d) The user can then operate the widget (e.g., the slider knob)
through the avatar, e.g., by dragging the avatar to move the
video slider. 



 

In contrast, gesture-based techniques, e.g., panning a map 
by swiping a finger across the touch screen, allow for 
casual interaction. However, gesture-based interactions tend 
to lack visibility compared to graphical user interfaces 
whose operation semantics are embodied by their interface 
components [16]. Prior work such as Escape [24] creatively 
combined the advantages of both worlds using rectilinear 
gestures to select graphical objects. However, it is limited 
in that it requires a target interface to be designed in a 
specific way. In addition, prior work mostly focused on the 
one-shot target acquisition, leaving other common 
interactions, such as drag-and-drop, unexplored.  

To address these issues, we designed and implemented 
Gesture Avatar, a novel interaction technique that allows 
users to operate mobile user interfaces using gestures. 
Figure 1 provides a quick demonstration of the technique. 
Gesture Avatar leverages the visibility of graphical user 
interfaces and the casual interaction of gestures. A user can 
dynamically associate a gesture shape with an arbitrary GUI 
widget and then interact with the widget through the drawn 
gesture, which is conceptually akin to an avatar. 

Gesture Avatar can be used to enhance a range of mobile 
interactions. A user study we conducted showed that in 
target acquisition tasks, Gesture Avatar achieved a 
significantly lower error rate than Shift [20] and performed 
faster on small targets (1mm). It also showed that walking 
had no significant effect on using Gesture Avatar, which 
makes it suitable for mobile uses. We demonstrate the 
feasibility and ease of use of Gesture Avatar by integrating 
it with existing systems such as a mobile web browser. 

In the rest of the paper, we first provide a brief introduction 
of how a user interacts with the existing mobile interfaces 
through Gesture Avatar and then discuss related work. 
Next, we provide a detailed description of our design and 
implementation of Gesture Avatar along with more 
example applications that our technique can enhance. We 
then evaluate Gesture Avatar by comparing it to Shift. 
Finally, we discuss the factors in designing Gesture Avatar 
and possible future work. 

MOBILE INTERACTION USING GESTURE AVATAR 
In this section, we describe how a user would interact with 
mobile interfaces using Gesture Avatar. Assume that a user 
opens the New York Times website (http://nytimes.com) in 
a mobile phone web browser. The interaction objects such 
as hyperlinks are viewable but too small to be easily tapped 
on by a finger. 

Here the user wants to navigate to the sports section. She 
draws an “s” on the screen1 near the link “SPORTS” (see 

                                                           
1 To allow the user to indicate a drawing action instead of 
panning the webpage, an implementation of Gesture Avatar 
can use various mode-switching techniques, which we will 
discuss later. 

Figure 2a). This creates a gesture avatar, the gesture stroke 
with a translucent background. The bounding box of the 
link that the avatar is associated with is highlighted (see 
Figure 2b). The user can then easily trigger the link 
“SPORTS” by tapping on the gesture avatar, which is a 
much larger target. 

As we will discuss in the following sections, to form the 
association between a gesture and an object, we leverage 
both the shape of the gesture and its distance to the objects 
on the screen. 

From this example, we can see that a gesture avatar 
provides a larger effective area for a user to comfortably 
interact with a small target. The type of interaction that 
Gesture Avatar can enhance is not limited to tapping. A 
gesture avatar essentially re-dispatches whatever touch 
events it receives to the associated object. For example, a 
user can long press an avatar to long press the associated 
object to bring up a context menu.  

The gesture that is used to create an avatar can also be 
arbitrary. It can be a character or an arbitrary shape. For 
example, the user can draw a box to create an avatar for 
controlling the progress bar of a media player as seen in 
Figure 1. The user can then move the knob of the progress 
bar by dragging the avatar.  

An avatar may be associated with an undesired object due 
to the inaccuracy of gesture recognition and the essential 
ambiguity of the objects on the screen. For example, in 
Figure 2a, when the user draws an “S”, both “SPORTS” 
and “SCIENCE” are good candidates.  

When an avatar is associated with an undesired object, the 
user can either dismiss the avatar by tapping outside of the 
avatar and redraw a gesture, or re-assign an object to the 
avatar using directional (collinear) gestures. When the user 
draws directional gestures outside the avatar (e.g., Figure 
3a), Gesture Avatar will find the next best match in the 
direction of the stroke and update the avatar’s position on 
the screen accordingly (e.g., Figure 3b). The user can repeat 
this process until the avatar is associated with the target. 

   
(a)                                   (b) 

Figure 2: Tapping on a target using Gesture Avatar. (a) 
The user draws an “S” near the target “SPORTS”. (b) The 
user taps on the gesture avatar as if tapping on the target. 



  

The directional gestures of Gesture Avatar enable users to 
easily navigate in the possible matches that are presented on 
the screen (a 2-dimensional space). 

RELATED WORK 
A large corpus of prior work has focused on facilitating 
target acquisition. Most of this work generally reduces the 
Fitts’s Index of Difficulty [10] by increasing a target’s size. 
Semantic pointing [6] dynamically adjusts the control-
display (CD) ratio as the cursor approaches the target. 
Bubble cursor [11], which is based on area cursor [23], 
dynamically changes its size according to the proximity of 
surrounding objects so that the pointer is snapped to a 
nearby object. 

High-precision pointing is hard with an imprecise input 
such as a bare finger. Many methods and techniques have 
been presented for high-precision touchscreen interaction. 
Albinsson and Zhai [1] propose two techniques using 
widgets for precise finger positioning by zooming, reducing 
CD gain, and discrete pixel-by-pixel adjustment. They 
show that though these techniques are faster than Offset 
Cursor for targets smaller than 0.8 mm, they are slower for 
targets larger than 3.2 mm. Benko et al. [4] present Dual 
Finger Selections that facilitate pixel-accurate targeting by 
adjusting the CD ratio with a secondary finger. 

Much work has also been done in avoiding finger 
occlusion. Offset Cursor [18] eliminates finger occlusion by 
showing a cursor above users’ fingers. However, users can 
no longer aim for the target directly even when the target is 
big enough. Instead, users have to first touch the surface to 
show the cursor and then move the cursor onto the target to 
select it. This contradicts the intuitiveness of direct touch. 
Shift [20] improves Offset Cursor by showing a copy of the 
occluded screen in a callout above the user’s finger. Unlike 
Offset Cursor, users still can aim for the actual target with 
Shift. Their user study shows that Shift has a much lower 
error rate than unaided touchscreen and is faster than Offset 
Cursor for large targets. One problem with Shift is that the 

callout view is taken out of context, which requires extra 
effort to re-understand the view and re-recognize the target. 

Wigdor et al. [22] propose back-of-device interaction to 
eliminate the finger occlusion problem. However, they 
cause the user’s fingers to be occluded by the device, 
causing large error rates. LucidTouch [21] addresses the 
problem by introducing pseudo-transparency, which creates 
an illusion that users can see their occluded fingers, 
decreasing error rates. Baudisch et al. [3] propose a similar 
technique on small devices. 

Escape [24] is a gesture-based technique for facilitating 
target acquisition. It first assigns directions to all objects. 
Users then can press their fingers near the target, followed 
by a directional stroke to specify the direction of the target. 
Through gestural interaction, Escape greatly reduces the 
effort in human visual feedback loop and avoids the 
occlusion and fat finger problems. The major limitation of 
Escape is that the appearance of the user interface has to be 
modified in order to make the assigned directions visible. 
Escape is demonstrated with a map-like application where 
using directional balloons is possible. However, it is often 
inappropriate or impossible to change the appearance of an 
application’s user interface, which makes the technique less 
applicable. Moreover, as mentioned in their own paper, the 
density of the objects (the number of the objects in a certain 
area) is limited due to the fact that close objects cannot 
have similar directions, and the technique is limited near 
screen edges, as gestures cannot go beyond screen edges. 

THE DESIGN OF GESTURE AVATAR 
In this section, we describe the details of how Gesture 
Avatar works. Our design goal is to allow users to easily 
interact with mobile interfaces, especially when the target 
(e.g., a link or a button) is small and users are on the go. As 
a result, we designed Gesture Avatar with reducing or 
eliminating high precision interaction in mind.  

The Interaction Flow of Gesture Avatar 
Figure 4 illustrates the interaction flow of Gesture Avatar. 
The interaction with Gesture Avatar involves four states. 
The interaction process starts from the Initial state. Once 
the finger touches the screen, it enters the Gesturing state, 
in which the touch trace is rendered on top of the 
underlying user interface that is being operated. When the 
user lifts her finger and the trace is a valid gesture (e.g., the 
bounding box of the trace is large enough to be considered 
as a gesture instead of a tap), the process enters the Avatar 
state, in which the drawn gesture stroke forms the avatar 
with a translucent background. The object that is associated 
with the avatar is also highlighted. 

In the Avatar state, the user can choose to operate the 
associated object through the avatar, or adjust the 
association if the avatar is associated with an undesired 
object. In this state, if the user touches down inside of the 
avatar, the touch_down as well as the subsequent 
touch_move and touch_up events will be re-dispatched to 

   
(a)                                  (b) 

Figure 3: Re-assigning a target to the avatar. (a) The user 
draws a directional gesture outside the avatar. (b) Gesture 

Avatar finds the next best match in the given direction.



 

the associated object in the underneath user interface. If the 
user touches outside of the avatar, the user can either 
dismiss the shown avatar by a tap or change the associated 
object using directional gestures. 

Matching an Gesture against Objects 
In this section, we discuss how a gesture, g, is matched 
against the potential targets available on the screen, T, so 
that the avatar can be associated with a desired target, tmatch 
(see Equation 1). 

tmatch  argmax
ti T

P ti g                              (1) 

As discussed earlier, we leverage both the semantics of the 
gesture and its spatial relationship with the objects on the 
screen. The combination of these two factors can 
effectively triangulate a desired object on the screen. As a 
result, Equation 1 can be expanded as the following: 

     gigii bpPscPgtP                           (2) 

where P(ci|sg) encodes
 
how much the content of the object, 

ci, matches the semantics of the gesture, sg, and P(pi|bg) 
captures the spatial relationship between an object and the 
gesture, in particular, the distance between the gesture’s

 bounding box, bg, and the center of the object, pi. We 
discuss how these two quantities are calculated in the 
following sections. (α is the normalizing constant.) 

Matching Based on Semantic Information  
A gesture can be a character or an arbitrary shape, and the 
content of an object is either a set of characters for a textual 
object or the contour of a graphical object (e.g., the 
triangular boundary of the play button of a media player). 

Character and shape recognition have several fundamental 
differences, and distinct approaches have been developed 
for handling each case [5]. As a result, we first classify 
whether the gesture is a character or a shape and then 
employs different recognizers for each case. For character 
matching, Gesture Avatar employs a neural network 
handwriting recognizer that recognizes letters and numbers 
used in English. The recognized character is then used to 
search against the content of each object on the screen. For 
shape matching, Gesture Avatar uses a template-based 
shape recognizer that is conceptually akin to [14]. The 
templates, i.e., the contours of all the objects on the screen, 
are added on the fly. The shape recognizer then finds the 
object that has the most similar contour to the gesture. Note 
that rather than only keeping the best guess, this calculation 
gives a distribution of all possible characters and shapes, 
which is fed into P(ci|sg) of Equation 2. 

Matching Based on Spatial Relationships 
Since users tend to aim for the target, the position of the 
gesture for interacting with the target is often a strong 
indicator of where the target is. As a result, it is reasonable 
to assume that the closer an object is to the gesture, the 
more likely it is the target. 

To capture this intuition, we use a 2D Gaussian distribution 
over the distance between the center of an object and the 
bounding box of the gesture. To save computation when 
there are numerous objects on the screen, we use the 
Manhattan distance, instead of the Euclidean distance, of an 
object to the bounding box (see Figure 5). The output of the 
Gaussian provides an indication of how likely the object is 
the target, i.e., P(pi|bg). 

 

Figure 4: The interaction flow of Gesture Avatar. The interaction starts from the Initial state. Touch events are shown in bold. 
The conditions for a transition to occur are enclosed in brackets and the actions of a transition are shown in italic. 



  

The 2D Gaussian distribution employs a changing variance 
that is dynamically adjusted based on the length of the 
longer edge of the gesture’s bounding box (see Figure 6). 
This design of our algorithm is based on the observation 
that users draw gestures in different sizes, and the smaller 
the gesture is, the more specific area the user is targeting at.  

Correcting a Mismatch by Navigating in Objects 
Due to the inaccuracy of gesture recognition and the 
inherent ambiguity of objects available on the screen, it is 
unavoidable that an avatar is associated with an undesired 
object. For example, multiple objects with similar content 
might be cluttered in one area. Furthermore, objects on the 
edges of the screen are also prone to incorrect matching, 
since users cannot draw gestures over these objects and the 
Gaussian distribution cannot efficiently capture this 
situation. 

One typical approach to correct a mismatch is to ask the 
user to dismiss the avatar and then recreate it. However, this 
approach cannot guarantee success and can be annoying if 

it is only a close miss, e.g., when the target object is just 
next to the mismatched object. 

In our design, we allow the user to go to the next best match 
in the given direction by drawing a directional stroke. 
Directional strokes are fast to perform and the outcomes of 
them are more predictable. 

Based on the directional stroke the user draws, we infer the 
next best match based on not only how well an object 
matches the avatar gesture semantically, but also the 
angular distance between the directional stroke and the 
direction from the currently matched object to the object 
being evaluated. Again, we use a Gaussian function to give 
each object a score based on its angular distance (see 
Figure 7). To reduce computation cost, we restrict the 
search to the objects within 45º of the stroke direction. 

MORE EXAMPLES 
In the previous sections, we demonstrated the use of 
Gesture Avatar through a media player and a mobile 
browser. In this section, we discuss two more examples. 

The first example (see Figure 8a) applies Gesture Avatar to 
moving the caret in a text box. The on-screen keyboards on 
most touchscreen mobile phones do not have dedicated 
keys for moving the caret. Instead, users need to directly 
touch between two characters. Since the text is small, 
moving the caret is error-prone. The iPhone uses a Shift-
like technique to address this problem. With Gesture 
Avatar, the user can draw the character before (or after) the 
desired position to assign an avatar to it and then tap on the 
right (or left) half of the avatar to move the caret. 

The second example (see Figure 8b) applies Gesture Avatar 
to Google Maps. Previously, maps have been a heavily used 
example to demonstrate and evaluate different target 
acquisition techniques [20,24]. Locations on a map are 
typically represented by distinct letters. This property 
makes Gesture Avatar promising for acquiring locations, 

   
(a)                                       (b) 

Figure 8: (a) Moving the caret in a text box using Gesture 
Avatar. (b) Acquiring a location in Google maps. 

 

 

 

 

Figure 5: The distance of a target (denoted as a circle) to 
the avatar is calculated as the smallest Manhattan distance 

from it to the gesture’s bounding box. 
 

 

 

 

 

 

Figure 6: The larger the bounding box is, the less impact 
the distance has on the scoring. 

 

 

 

 

 

 

 

Figure 7: Searching the next best match in the given 
direction. We restrict the search area to the objects in a 

45-degree range. A Gaussian function on the angular 
distance from the given direction gives a scoring factor. 
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since there is little semantic ambiguity in these location 
objects. 

IMPLEMENTATION 
Gesture Avatar was primarily written in Java using Android 
SDK 2.2. For image contents, we first compute their edges 
using the Canny edge detector and then pass them to our 
shape recognizer. The image processing and edge detection 
were written in C++ using OpenCV [17] and built with a 
variation of Android NDK.  

The example applications that we have discussed in the 
paper were written in Java. We built these examples by 
wrapping an existing user interface, e.g., a web browser or a 
text input field, with an additional interaction layer, i.e., 
Gesture Avatar. In the mobile web browser example, the 
current version of mobile WebKit does not expose its UI 
structures, i.e., the DOM tree, in Java but only accessible 
through JavaScript. As a workaround, we implemented the 
logic for searching the best matches in JavaScript and inject 
the JavaScript code upon loading a webpage. 

EVALUATION 
As discussed earlier, Gesture Avatar addresses not only the 
acquisition of small targets, but also the follow-up 
interaction such as dragging an object after it is acquired. 
There has been little prior work in addressing the latter. So 
Gesture Avatar makes a clear contribution in that regard. As 
a result, we here focus on its performance on target 
acquisition compared to Shift.  

We hypothesize that Gesture Avatar outperforms Shift on 
small targets and is better for mobile uses. Specifically: 

(H1) Gesture Avatar will be slower than Shift on larger 
targets, but faster on small targets. 

(H2) Gesture Avatar will have fewer errors than Shift. 

(H3) Mobile situations such as walking will decrease the 
time performance and increase the error rate of Shift, but 
have little influence on Gesture Avatar. 

Apparatus 
The experiment was conducted on a Motorola Droid 
running Android 2.2 (see Figure 1). It has a 3.7-inch, 
480×854 pixel multi-touch display. The walking tasks were 
conducted on a treadmill desk from Steelcase, with a 
maximum speed of 2.0 mph (see Figure 9b). Walking on a 
treadmill offers a reasonable simulation that captures 
common properties of various “on the go” scenarios, such 
as device shaking and significant body movement. At the 
same time, an indoor treadmill setting allowed us to 
conduct the experiment in a more controlled manner. 

Participants 
Twelve participants (8 male and 4 female), between age 20 
and 30, were recruited from a company. They were all 
right-handed. All the participants owned touchscreen 
mobile devices and used their phones extensively. Each 

participant received a gratuity equal to a US$30 gift card 
for their participation. 

Experimental Design 
A within-subjects factorial user study was used in this 
experiment. Half of the participants learned and performed 
Gesture Avatar first and then Shift, while the other half did 
the opposite so that the order of two techniques was 
counterbalanced. For each technique, participants were 
asked to complete the tasks in two conditions: sitting and 
walking as shown in Figure 9. 

The objects in the tasks were represented as letter boxes 
(see Figure 10). Participants were asked to acquire targets 
of different sizes, positions, letters, and ambiguity using 
both Gesture Avatar and Shift. In the starting screen of a 
task (Figure 10a), the participants were shown 24 small 
letter boxes. The target box, which was always near the 
center, was highlighted in red. To eliminate the time for 
searching for the target visually, which was not the focus of 
this experiment, a magnified version of the target was 
shown 300 pixels below the target. Participants needed to 

  

Figure 9: (a) The user was sitting on a stool. (b) The user 
was walking on a treadmill. 

 

Figure 10: The experimental task. (a) The target is 
highlighted in red and a magnified copy serves as the start 

button. (b) and (c) show a typical run of the task. 

(a)

(b)

(c)

(a) (b)



  

tap the magnified target to start the task. Performance times 
were measured between the tap on the magnified target and 
the selection of the target. 

We chose 24 letter boxes for our study for several reasons. 
First, we wanted to cover the entire spectrum of semantic 
ambiguity in targets, from very ambiguous (i.e., few letters 
are used with high repetitions) to non-ambiguous cases (i.e., 
each box has a unique letter). As a result, the number of 
letter boxes should not be larger than 26, the size of the 
English alphabet. Second, we wanted the number of unique 
letters shown on the screen to be a factor of the total 
number of boxes so that the distribution of the letter usage 
is uniform, i.e., each letter can have an equal number of 
instances and affect the gesture recognizer equally. 24 is a 
good option as it has many nontrivial factors (2, 3, 4, 6, 8, 
and 12). Lastly, 24 objects offer an information density that 
reasonably simulates real life scenarios. 

The ambiguity of the target, i.e., the number of objects that 
have the same letter near the target, may affect the 
performance of Gesture Avatar. We simulated the 
ambiguity by controlling the distance between objects and 
the number of letters used. Since the performance of Shift 
correlates to the size of the objects instead of the distance 
between them, we fixed the margin of objects to 5px and 
varied the size of the objects to affect both techniques. 
Three sizes were used in the study: 10px (1mm), 15px 
(1.5mm) and 20px (2mm). 

Some objects at a small size such as 1mm would become 
uncomfortable or difficult for users to read. However, many 
UI widgets in a web interface are often presented at such a 
scale. In addition, mobile users are often on the go. The 
short attention span of a mobile user as well as interacting 
in motion affects the performance of human motor control. 
These factors can greatly decrease the effective size of a 
target, such that a large target in such circumstances might 
have a much smaller effective size. 

When using Gesture Avatar to acquire the target, we 
highlighted the currently matched object with an orange 
border (see Figure 10b). Participants could tap on the avatar 
to acquire the matched object. For this comparison, we re-
implemented Shift and used the escalation time 0, 50, and 
200 milliseconds for 10, 15, and 20 pixel objects, 
respectively. 

To make the finger position more stable, we averaged the 
finger positions with a smoothing factor of 0.25 as a low 
pass filter for the finger position signals.  

While performing these techniques, participants were 
required to acquire targets with the index finger of their 
dominant hands while holding the device in their non-
dominant hands, as required in previous studies. 

Experimental Procedure 
Upon being introduced to a new technique, participants had 
a practice session where they performed the same type of 

tasks as the test sessions. They were allowed to practice 
until they felt comfortable using it. During the test period, 
participants could take a break between tasks. For each 
technique, participants performed the first 12 test sessions 
while sitting on a stool (see Figure 9a) and the second 12 
while walking on a treadmill (see Figure 9b). The walking 
speed was between 1.8 and 2 mph depending on 
participants’ preference. The 12 sessions covered all 
combinations of box sizes and numbers of unique letters. In 
each session, there were 10 tasks, with the same box size 
and same number of unique letters. They were drawn 
randomly from a pre-generated task pool (50 tasks for each 
combination). 

Independent Variables 
The independent variables were Technique (Gesture Avatar 
versus Shift), MobileState (sitting versus walking), 
TargetSize (10, 15, or 20px), and NumOfLetters (the 
number of unique letters used: 1, 4, 8, and 24). In summary, 
the experimental design was: 

12 Users × 
2 Techniques (Gesture Avatar versus Shift) × 
2 MobileState (Sitting versus Walking) × 
3 TargetSizes (5, 15, 20px) × 
4 NumOfLetters (1, 4, 8, 24) × 
10 Target Acquiring Tasks 
= 5760 tasks 

Results 
Here we discuss our findings, including time performance, 
accuracy and subjective preferences. 

Time Performance  
For performance time, we performed a within-subjects 
analysis of variance (ANOVA) for Technique × 
MobileState × TargetSize × NumOfLetters. A main effect 
was found for Technique (F1,5758=51.574, p<0.001), 
MobileState (F1,5758=18.668, p<0.001), and TargetSize 
(F2,5757=140.736, p<0.001), but not NumOfLetters. The 
significant interactions were Technique × MobileState 
(F1,5756=19.070, p<0.001), Technique × TargetSize 
(F2,5754=122.165, p<0.001), Technique × NumOfLetters 
(F3,5752=5.170, p<0.001), MobileState × TargetSize 
(F2,5754=5.760, p<0.005) and Technique × MobileState × 
TargetSize (F2,5748=9.583, p<0.001). 

Tukey’s post-hoc pair-wise comparison showed that 
Gesture Avatar was significantly slower than Shift when 
TargetSize was 20px, but significantly faster than Shift 
when TargetSize was 10px. There was no significant 
difference between two techniques when TargetSize was 
15px. Both techniques were significantly faster on larger 
target sizes. Shift with MobileState as sitting was 
significantly faster than it with MobileState as walking. For 
Gesture Avatar, there was no significant difference between 
MobileState being sitting versus walking. 

(b) 

(c) 



 

We performed the same analysis on Shift and Gesture 
Avatar separately. We found that for Gesture Avatar, there 
was no significant difference across different MobileStates 
and TargetSizes. For Shift, TargetSize=10px was 
significantly slower than larger sizes at all MobileStates, 
and sitting was significant faster than walking when the 
TargetSize is 10px. 

Error Rates 
For the error rate, we also performed a within-subjects 
ANOVA for Technique × MobileState × TargetSize × 
NumOfLetters. A main effect was found for Technique 
(F1,5758=674.166, p<0.001), MobileState (F1,5758=26.493, 
p<0.001), and TargetSize (F2,5757=41.057, p<0.001), but not 
NumOfLetters. The significant interactions were Technique 
× MobileState (F1,5756=18.878, p<0.001), Technique × 
TargetSize (F2,5754=41.201, p<0.001), and MobileState × 
TargetSize (F2, 5754=6.729, p<0.001). 

Tukey’s post-hoc pair-wise comparison showed that 
Gesture Avatar had lower error rates than Shift on all 
TargetSizes, while there was no significant difference for 
Gesture Avatar across different TargetSizes. 

We performed the same analysis on Shift and Gesture 
separately. We found that for Gesture Avatar, there was no 
significant difference across all MobileStates and 
TargetSizes. For Shift, TargetSize=10px when walking had 
a significantly higher error rate than any other TargetSizes 
and MobileStates. 

Subjective Preferences 
In the post-study questionnaire participants were asked 
about their preferences for the two techniques. 10 of the 12 
participants preferred Gesture Avatar, 1 Shift, and 1 both. 
All commented that Shift was more stressful especially 
while walking. 10 participants agreed that Gesture Avatar is 
useful, 1 strongly agreed and 1 neutral. 8 participants 
agreed that Gesture Avatar is easy to use, 3 strongly agreed 
and 1 neutral. 

Experiment Discussion 
Our results support hypothesis H1. Figure 11 and Figure 12 
show that Shift’s performance time increases as the target 
size decreases. However, Gesture Avatar’s performance 
time almost remains unaffected by the change of the target 
size. As a result, Gesture Avatar is slightly slower than 
Shift when the target size is 20px, but quickly catches up 
and becomes a lot faster when it is 10px. This also implies 
that Gesture Avatar scales well to small targets. 

Our results support hypothesis H2. Figure 13 and Figure 14 
show trends in error rates that are similar to those of 
performance time. However, Gesture Avatar has much 
lower error rates than Shift. Though Gesture Avatar has a 
correction stage, achieving such low error rates with little 
sacrifice in performance is still surprising. 

Our results also support hypothesis H3. By comparing 
Figure 11 to Figure 12, and Figure 13 to Figure 14, we can 

 
Figure 11: Mean performance time for Technique × 

TargetSize × NumOfLetters when participants were sitting 
on a stool. In this and all later charts, error bars represent 

95% confidence intervals. 

 
Figure 12: Mean performance time for Technique × 
TargetSize × NumOfLetters when participants were 

walking on a treadmill. 

 
Figure 13: Mean error rate for Technique × TargetSize × 
NumOfLetters when participants were sitting on a stool. 

 
Figure 14: Mean error rate for Technique × TargetSize × 

NumOfLetters when participants were walking on a 
treadmill. 



  

see that walking greatly hurt Shift both in performance 
times and error rates, but had almost no influence on 
Gesture Avatar. This indicates that Gesture Avatar is 
promising when users are on the go. 

One surprising finding is that the number of unique letters 
had no significant influence on Gesture Avatar, as we 
thought that more content ambiguity would decrease the 
effectiveness of the gesture recognizer, and therefore 
decrease the overall performance. However, in our study, 
we observed that the participants tended to draw smaller 
gestures when there was more ambiguity and as a result the 
matched objects were often either the targets or very close 
to the targets. We also observed that all participants quickly 
converged to “flicking” [9] towards the targets as their 
correction strokes, which was very efficient. 

DISCUSSION 

Accelerating for One-Shot Interactions 
As we have discussed in the previous sections, Gesture 
Avatar offers unique advantages for manipulating small 
targets beyond target acquisition. As a result, it can address 
many common interaction behaviors that prior techniques 
cannot support, e.g., adjusting a slider, drag-and-drop, 
double tapping, and long pressing. 

However, for a target that only accepts one-shot interaction, 
e.g., the only valid interaction for a button is to be clicked, 
it might be unnecessary to show the avatar when the match 
is highly unambiguous. For example, a user can simply 
draw a gesture near a target (such as a hyperlink) and if the 
ambiguity is low, the target should be triggered 
immediately, instead of having to display an avatar for the 
user’s confirmation. In such case, Gesture Avatar supports a 
one-shot interaction as prior techniques did, although 
Gesture Avatar still has the advantage of allowing casual 
interactions. 

Another design alternative is to show the avatar at the end 
of gesturing, but before the user lifts her finger, which gives 
the user an opportunity to confirm the match. If the match is 
incorrect, the user can either continue gesturing, or dwell 
the finger, e.g., for a half second, on the touch screen to 
bring up the avatar. She can then adjust the matching using 
directional gestures. This design would require us to detect 
the potential ending of a gesture stroke being drawn. 

Acquiring Moving Targets 
Prior work on target acquisition often assumes fixed 
locations for targets, which is not always the case. As we 
have seen in the previous media player example (Figure 1), 
the knob of the progress bar moves towards the right end 
while the media player is playing. As another example, in a 
real-time location information application, objects such as 
cars can move quickly on a map. 

Moving targets make a technique that requires high 
precision difficult to use since acquiring these targets 
require intensive visual tracking and more challenging 

motor control. As a result, many existing techniques are 
inefficient in acquiring moving targets. In Shift, the target 
can move out of the callout view during the interaction, and 
in Escape, the target can move to items with the same or 
similar directions. In contrast, for Gesture Avatar, moving 
targets are not a challenge. Since the target matching 
algorithm works on a static state of the user interface, all 
the claims in this paper should still hold for moving targets. 
We do need to update the avatar view constantly in order to 
attach the avatar to the moving targets. 

Avatar Representations 
We explored various representations for gesture avatars. 
We focused on two representations in our iterative design 
process: stroke and lens representations (see Figure 15). We 
employ the stroke representation in the current design, i.e., 
an avatar is shown as the gesture stroke with a translucent 
background. The lens representation is to show a magnified 
version of the matched target and has been explored in 
literature [19]. Both representations highlight the bounding 
box of the original target. We chose the stroke over the lens 
representation for the following reasons. 

First, a lens often affords different interaction behaviors 
that are inconsistent with the avatar metaphor that we 
intended to support. For example, dragging lens would be 
naturally interpreted as shifting the view rather than moving 
the magnified object. Secondly, a magnified view often has 
a more complicated appearance than a gesture stroke. As a 
result, the lens representation is more likely to obscure the 
underlying user interface and adds visual complexity. In 
contrast, the stroke representation is more lightweight. 

Mode Switching Issues 
Similar to many other gesture-based techniques, mode 
switching [15] is also an issue in integrating Gesture Avatar 
into existing user interfaces. For example, when gesturing 
on a map, it is necessary to distinguish the initial gesturing 
for creating an avatar from actions such as panning. 

In our implementation of Gesture Avatar, a user gestures by 
first pressing and holding a holding finger, and then 
drawing gestures with a different finger, the gesturing 
finger. If the holding finger moves, it is considered as a 
regular touch-based interaction, e.g., panning or pinching to 

   
(a)                                     (b) 

Figure 15: Two different representations we explored 
for Gesture Avatar: (a) the stroke and (b) the lens 

representation. 



 

zoom. Similar asymmetric dependent two-handed 
techniques have been studied in [13]. 

Integrating with Existing Systems 
Gesture Avatar needs to be aware of the objects available 
on the user interface being operated, although it does not 
require these objects to be in a specific presentation. The 
more Gesture Avatar knows about the underlying user 
interface, the better it can perform. The ideal situation is 
that we can access the structure of the underlying user 
interface. For example, the structure of a webpage can be 
accessed via its DOM tree [8]. However, this information 
can be inaccessible to Gesture Avatar (e.g., in a Flash 
application embedded in a webpage). One possible solution 
is to reverse engineer the underlying user interface from its 
pixels as previously explored in Prefab [7]. The limitation 
of this kind of approach is that it only works for known UI 
widgets. To make Gesture Avatar a general technique and 
avoid the effort for implementing it for every user interface, 
we designed Gesture Avatar as an interaction layer that can 
be easily used to wrap around a specific interface via a 
simple API. We implemented a toolkit based on the 
Android platform and all the examples demonstrated in the 
paper were implemented using the toolkit. 

CONCLUSION AND FUTURE WORK 
This paper presents Gesture Avatar, a gesture-based 
interaction technique for operating mobile interface that 
supports casual interaction of the existing mobile interfaces. 
We discussed the interaction design of Gesture Avatar. We 
showed how Gesture Avatar can improve user experience 
on mobile devices via four example applications. A 
controlled user study and the range of interactions that are 
supported indicate that Gesture Avatar outperforms its 
peers in many ways.  
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