
Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding in
the Gold Linker

Sriraman Tallam
Google Inc.

tmsriram@google.com

Cary Coutant
Google Inc.

ccoutant@google.com

Ian Lance Taylor
Google Inc.

iant@google.com

Xinliang (David) Li
Google Inc.

davidxl@google.com

Chris Demetriou
Google Inc.

cgd@google.com

Abstract

We have found that large C++ applications and shared li-
braries tend to have many functions whose code is iden-
tical with another function. As much as 10% of the code
could theoretically be eliminated by merging such iden-
tical functions into a single copy. This optimization,
Identical Code Folding (ICF), has been implemented in
the gold [4] linker. At link time, ICF detects functions
with identical object code and merges them into a single
copy. ICF can be unsafe, however, as it can change the
run-time behaviour of code that relies on each function
having a unique address. To address this, ICF can be
used in a safe mode where it identifies and folds func-
tions whose addresses are guaranteed not to have been
used in comparison operations.

Further, profiling and debugging binaries with merged
functions can be confusing, as the PC values of merged
functions cannot be always disambiguated to point to
the correct function. To address this, we propose a new
call table format for the DWARF debugging informa-
tion to allow tools like the debugger and profiler to dis-
ambiguate PC values of merged functions correctly by
examining the call chain.

Detailed experiments on the x86 platform show that ICF
can reduce the text size of a selection of Google bina-
ries, whose average text size is 64 MB, by about 6%.
Also, the code size savings of ICF with the safe option
is almost as good as the code savings obtained without
the safe option. Further, experiments also show that the
run-time performance of the optimized binaries on the
x86 platform does not change.

1 Motivation

We have found that identical code is particularly com-
mon in C++ programs with heavy use of templates. Fig-
ure 1 shows an example. Here, the template class Foo
is instantiated with different types and each of them
gets a separate copy of the getElement function. How-
ever, since the size of the different pointer types is the
same, the bodies of the different getElement functions
are identical and can be merged into one instance. Us-
ing ICF on this example results in these functions being
merged into one function and the output of nm shows
the various getElement functions mapped to the same
address.

The rest of the paper is organized as follows. Section 2
discusses the Identical Code Folding algorithm. Sec-
tion 3 talks about the extensions to ICF to make it safe
for pointer comparisons. Section 4 is about debugging
binaries with folded functions and Section 5 contains
the experimental data showing the effectiveness of ICF
in reducing the code size of binaries. Section 6 talks
about merging identical data members and Section 7
concludes the paper.

2 The Identical Code Folding Algorithm

In this section, we discuss how ICF detects identical
functions. In order for the linker to perform ICF, the
compiler must place each function in a separate section,
which can be done in the GCC compiler with the flag
-ffunction-sections. Now, let us define identical func-
tions. From the point of view of the linker, a function
has a text section and relocations that are applied to the
text section. Two function sections are identical if and

1



Figure 1: Motivating Example.

template <typename T>

class Foo

{
...

T element;

public:

...

T getElement ()

{
return element;

}
...

};

int main ()

{
...

Foo<int ∗> p;

Foo<float ∗> q;

Foo<void ∗> r;

...

}

Output of nm :

400432 W Foo<float*>::getElement()
400432 W Foo<int*>::getElement()
400432 W Foo<void*>::getElement()

only if their text is bit-identical and their relocations
point to sections that are identical. That is, either the
relocations point to the same section or they point to dif-
ferent function sections that are determined to be identi-
cal. Figure 2 shows an example where functions foo and
bar are identical because their text is bit-identical and
their relocations, to zip and zap respectively, are identi-
cal.

In order to detect such identical functions we do the fol-
lowing. We first split the contents of each function sec-
tion into two parts, constant and variable. The constant
part refers to the contents that will not change through-
out our analysis. These are the text content and the relo-
cations that do not point to function sections that are our
folding candidates. The variable part refers to the relo-

Figure 2: Examples of identical functions - foo and bar
are identical because zip and zap are identical.

int foo ()

{
return zip ();

}

int bar ()

{
return zap ();

}

int zip ()

{
return 0;

}

int zap ()

{
return 0;

}

What the linker sees :

Disassembly of section .text._Z3foov:

0000000000000000 <_Z3foov>:
55 push %rbp
48 89 e5 mov %rsp,%rbp
e8 00 00 00 00 callq 9

R_X86_64_PC32 relocation to zip
c9 leaveq
c3 retq

Disassembly of section .text._Z3barv:

0000000000000000 <_Z3barv>:
55 push %rbp
48 89 e5 mov %rsp,%rbp
e8 00 00 00 00 callq 9

R_X86_64_PC32 relocation to zap
c9 leaveq
c3 retq

2



cations that point to function sections that will be con-
sidered for folding. Such relocations will be referred to
as variable relocations. Our analysis will form groups
of function sections such that all function sections in a
group are identical to each other. When we compute the
contents of a function, we take the constant part as is and
substitute every variable relocation with its group iden-
tifier which denotes the group of the function section
pointed to by the relocation. Then, we checksum the
contents and divide the functions into different groups
based on the checksum. Now, we repeat the same steps
using the new group identifiers and continue until con-
vergence is obtained. Notice that when we repeat these
steps only the variable relocations have to be recom-
puted. This procedure continues until the group iden-
tifier of every function section does not change from the
previous iteration. Figure 3 summarizes the steps.

After the functions have been split into groups, we only
retain one candidate in each group, called the kept func-
tion, for the final binary and discard all the other copies.
We then map the symbols corresponding to the dupli-
cate functions to have the same value as the symbol of
the kept function.

2.1 Initialization step

Let us look in more detail at the third step of the algo-
rithm in Figure 3 where we initialize the group identi-
fiers of all the candidate functions. We have two initial-
ization choices :

1. Pessimistic - Each function is in a unique group (no
duplicates).

2. Optimistic - All functions are in the same group (all
functions are identical to each other).

If we conservatively initialize each function to be in a
separate group then after each iteration the decisions
made regarding functions that are identical are guaran-
teed to be correct. This has the advantage that the algo-
rithm does not necessarily have to be run until conver-
gence is obtained, although some opportunities may be
lost if it is stopped early. However, identical functions
with recursive calls or mutually recursive calls will not
be detected because of the initialization. Figure 4 shows
an example. The functions funcA and funcB are identi-
cal but will not be detected if we start by assuming that

Figure 3: The ICF Algorithm overview.

1. Process each function section. Separate contents
into constant and variable parts.

2. Pre-process and find functions that are folding can-
didates.

3. Initialize the group identifiers of all functions that
are candidates for folding.

4. For a function that is a folding candidate, replace
the variable relocations of the function with the
corresponding group identifiers.

5. Compute the function checksum.

6. Determine the new group id of the function (Look
up a hash table mapping function checksum to
group id).

7. Repeat steps 4 to 6 for every function that is a fold-
ing candidate until convergence.

8. Keep just one copy of function from each group
and discard the rest.

9. Map symbols corresponding to duplicate functions
to the appropriate kept function symbol.

all functions are unique. On the other hand, if we ag-
gressively initialize all functions to be identical, we will
capture the recursive and mutually recursive cases but
the algorithm has to be run to convergence as correct-
ness is not guaranteed if we arbitrarily stop it.

For our implementation, we have used the pessimistic
approach, that is, we initialize by placing each function
in a separate group. We handle recursive calls by de-
tecting and replacing it with a special symbol. Also, we
did not find any mutually recursive calls in the bench-
marks we used for our experiments. Further, we found
that in all of our benchmarks, this approach leads to
convergence in 3 iterations whereas with the optimistic
strategy, we needed 5 to 6 iterations. We set the default
number of iterations in our implementation to two as the
third iteration merely checks for convergence.

3



Figure 4: Mutually recursive identical functions - funcA
and funcB are identical.

int funcA (int a)

{
if (a == 1)

return 1;

return 1 + funcB(a − 1);

}

int funcB (int a)

{
if (a == 1)

return 1;

return 1 + funcA(a − 1);

}

2.2 Pre-processing for performance

We do some pre-processing to reduce the number of
function sections to be analyzed. Before we begin the
main algorithm, we find and eliminate functions which
have unique static content from being considered for
folding. Also, any group of sections found identical in
the pre-processing step that does not have any variable
relocations is finalized and not considered for further
analysis.

2.3 Merge sections

Merge sections hold read-only constants and the gold
linker treats each merge section as a list of constants,
and merges them all into a list of unique constants.
However, the ICF analysis happens before the linker has
merged identical sections. Hence, we inline the refer-
enced constant at places where it is referenced in the
function contents while computing the function check-
sum so that this opportunity is not missed.

2.4 Choice of checksumming method

Our implementation of ICF uses the crc32 algorithm [5]
to compute the function checksum. Using crc32 gives
rise to a number of hash collisions and so we use a
multi-map hash table to map the function checksum to
group id. Further, before inserting a function into a hash

Figure 5: ICF unsafe in the presence of function pointer
comparisons.

int foo ()
{
return 0;

}

int bar ()
{
return 0;

}

int main ()
{
assert (foo != bar);

}

group, we do a bit-wise comparison of the function con-
tents with that of the kept function in the group. We ex-
plored the alternative of using a more robust checksum-
ming method like md5sum [3]. However, computing
md5sums was found to be much slower than computing
crc32 checksums.

3 Safe Identical Code Folding

ICF in general can be unsafe if the binary uses the func-
tion pointers of merged functions in comparison oper-
ations. Figure 5 shows an example to illustrate this.
Function foo and bar are identical and folded and the
assertion in function main no longer holds. We found a
real example in one of our benchmarks which was doing
function pointer comparisons and its execution crashed,
fortunately, when it was linked using ICF. This helped
us in notice the problem and be able to develop a solu-
tion.

In order to guarantee run-time safety, we have imple-
mented a safety option to detect functions whose point-
ers are accessed and prevent them from being folded.
This is done as follows. Usually, the relocation type
for a function call differs from that of a function ad-
dress access. Our method inspects the relocation type
to identify the functions whose addresses are accessed
and marks such functions as not foldable. Although not
all function address accesses are used in comparisons,
we conservatively assume the worst in order to ensure

4



correctness. Depending on the build combinations, the
target architecture and to some extent on the compiler
used to generate the code, the relocation types may vary
and we account for all cases. In the cases where are not
sure, we conservatively assume that the function pointer
is accessed. As an example, the following are the differ-
ent cases when linking for 32-bit x86.

1. For executables and shared libraries built with non-
pic and non-pie objects, a function call relocation
type is always R_386_PC32 and a function address
access relocation is always of type R_386_32.

2. For executables and shared libraries built with pie
objects, a function call relocation type is always
R_386_PC32 and a function address access reloca-
tion is always of type R_386_GOTOFF.

3. For executables and shared libraries built with pic
objects, a function call relocation type is always
R_386_PLT32 and a function address access relo-
cation is always of type R_386_GOT32.

3.1 Always fold constructors and destructors

In C++, accessing function pointers of constructors and
destructors is forbidden. Hence, Safe ICF will always
consider any function that is a constructor or a destructor
as a folding candidate.

3.2 Vtable accesses

Function pointers of virtual functions are accessed for
vtable purposes and we ignore such accesses as they are
not used in a comparison operation that will affect the
run-time behaviour. Relocations corresponding to func-
tion pointer accesses for the vtable occur in specially
named sections, for example, sections with prefix .ro-
data._ZTV. These are detected by our implementation
and ignored.

4 Unwinding across merged functions

For binaries optimized with ICF, a PC value can no
longer be unambiguously mapped to a particular func-
tion. This can be expected to cause mysterious behavior
when profiling and debugging an application that has
been built with this optimization. We address this prob-
lem by adding a new table to the DWARF debugging
information to allow the debugger and other tools to dis-
ambiguate such PC values by examining the call chain.

4.1 Overview

When the PC is inside a merged function, we attempt to
disambiguate the function by examining the function’s
return pointer (i.e., the point of call that invoked the
merged function). There are four cases.

1. Direct call: The point of call is a direct call to the
merged function. In this case, we can look up the
address of the call site in a direct-call table that
provides, for each direct call site in the program,
a pointer to the debug information entry for the
called function.

2. Virtual call: The point of call is a C++ virtual
function call. In this case, we can look up the ad-
dress of the call site in a virtual-call table that pro-
vides, for each virtual call site in the program, the
index of the vtable slot used for the call. Given
the vtable address, which can be obtained from the
this pointer in the callee, the debug information en-
try for the corresponding class can be identified,
and the function being called can be determined
by matching the slot index to the virtual function
members of that class. If the callee’s this pointer
cannot be determined (e.g., due to optimization of
the routine), the vtable slot index might still be
used to eliminate some candidate functions.

3. Other indirect call: The point of call is an indirect
call, but not a virtual function call. This case is not
relevant with Safe ICF as this function is not folded
since its address has been accessed.

4. Tail call: The point of call may have led to an in-
termediate procedure that made a tail call to reach
the current callee. In this case we will not be able
to disambiguate the PC.

In order to perform the disambiguation we construct
two additional debug information tables in the final exe-
cutable: a direct-call table and a virtual-call table. Each
of these will be generated by the compiler and placed in
a new debug section in the relocatable object files. The
linker will combine these sections as it normally does to
produce a single combined section for each table. For
functions that will not be merged together, entries in the
direct call table are not needed, and would represent a
significant waste of space. At compile time, unfortu-
nately, all functions are candidates for merging and the

5



Table 1: Code size reduction with ICF.

Benchmark Text size of binaries in MB
Improvement over Baseline Improvement over Linker GC

Orig. With ICF With SafeICF GC With ICF With SafeICF
Index search 96.06 89.73 (6.59%) 89.77 (6.55%) 68.35 66.25 (3.07%) 66.34 (2.95%)

Database 61.91 57.59 (6.97%) 57.72 (6.77%) 47.10 45.39 (3.61%) 45.38 (3.64%)
Ads 121.02 111.99 (7.46%) 112.14 (7.34%) 85.44 82.53 (3.40%) 82.46 (3.49%)

Image Processing - I 77.84 73.96 (4.99%) 74.09 (4.82%) 55.67 54.33 (2.41%) 54.38 (2.31%)
Image Processing - II 43.72 41.14 (5.89%) 41.19 (5.78%) 26.93 26.16 (2.87%) 26.18 (2.81%)

File system 21.11 19.79 (6.23%) 19.83 (6.04%) 15.47 14.99 (3.12%) 14.99 (3.11%)
Web search 106.61 99.79 (6.39%) 99.85 (6.34%) 80.86 78.31 (3.15%) 78.46 (2.96%)

NLP 145.41 137.01 (5.77%) 137.34 (5.55%) 115.31 112.13 (2.76%) 112.35 (2.57%)
Text detection 25.10 23.67 (5.68%) 23.71 (5.55%) 16.74 16.29 (2.72%) 16.31 (2.58%)
Serialization 60.13 55.46 (7.76%) 55.49 (7.72%) 42.15 40.36 (4.24%) 40.36 (4.25%)
Clustering 42.49 40.39 (4.95%) 40.44 (4.83%) 30.12 29.45 (2.22%) 29.50 (2.06%)

Map reduce 93.59 87.47 (6.54%) 87.53 (6.47%) 71.30 69.12 (3.06%) 69.25 (2.87%)
Geo. Mean 64.10 60.08 (6.27%) 60.15 (6.16%) 46.02 44.61 (3.06%) 44.65 (2.98%)

duplicate functions have not yet been identified, so the
compiler must generate call table entries for all direct
and virtual calls. In order to reduce the total size of the
direct call table, therefore, the linker can discard any
call table entry that refers to a function that has not been
merged with another.

For more details, please refer to the description in the
dwarf wiki [2].

5 Experimental Evaluation

We have implemented ICF in the gold linker. It is avail-
able with linker option –icf=all. Safe ICF can be turned
on with option –icf=safe. We conducted experiments to
measure the code size reductions obtained with ICF and
Safe ICF. We have used a set of benchmarks represen-
tative of Google work loads. In particular, we measured
the effectiveness of ICF in reducing the text size of the
binaries. Table 1 shows the results of our experiments.
The mean text size of binaries we considered is about
64 MB. We first measured the effectiveness of ICF and
Safe ICF in reducing the text size of the original binary.
We then measured the effectiveness of ICF and Safe ICF
when applied along with linker garbage collection (GC),
which shrinks the binaries by removing functions that
are not referenced.

Our experiments show that ICF can reduce the code size
of the original binaries from 4.95% to 7.76%. Also, ICF

can further reduce the code size of binaries from 2.22%
to 4.24% over linker garbage collection. Further, our
experiments show that Safe ICF is almost as effective as
ICF, about 97%, in reducing the code size of binaries.

Finally, our experiments showed that ICF has no mea-
surable impact on the run-time performance of these bi-
naries on the x86 platform, both 32 and 64-bit.

6 Detecting identical read-only data sections

We could get even more code size savings by extending
this work to also detect and fold identical read-only data
sections. Gold already supports merging of read-only
string constants and folding other sections is in progress.

7 Related work

Microsoft’s Visual Studio product [1] offers a compiler
option, /Gy, that directs the compiler to place the ob-
ject code for each function in a separate COMDAT sec-
tion. This can be used with a linker option, /OPT:ICF
("Identical COMDAT Folding"), that directs the linker
to detect duplicate instances of identical COMDAT sec-
tions and remove the redundant copies. All the original
function symbols are then set to the address of the one
remaining copy. Microsoft advises users to not use this
feature if the execution of the program depends on the

6



addresses of the functions and data members being dif-
ferent. Microsoft also advises its users not to use this
option when profiling or debugging an application, as
there is no support for disambiguating a PC value that
may belong to any of several different functions that
were folded into one copy.

8 Conclusion

We have described the implementation of Identical Code
Folding in the gold linker and have shown that it can
be very effective in reducing the code size of binaries.
Also, our implementation can guarantee execution cor-
rectness in the presence of function pointer comparisons
and also allow unwinding across merged functions for
tools like debuggers and profilers.

9 Acknowledgements.

We would like to thank the compiler team at Google for
their contributions towards the successful completion of
this work.

References

[1] Microsoft visual studio 2010, 2010.
http://msdn.microsoft.com/en-us/
library/bxwfs976.aspx.

[2] Cary Coutant. Dwarf extensions for unwinding
across merged functions, 2009. http://wiki.
dwarfstd.org/index.php?title=ICF.

[3] R. Rivest. The md5 message-digest algorithm,
1992. http:
//tools.ietf.org/html/rfc1321.

[4] Ian Lance Taylor. A New ELF Linker. In
Proceedings of the GCC Developers Summit, pages
129–136, Ottawa, Canada, June 2008.

[5] Ross N. Williams. A painless guide to crc error
detection algorithms, 1993. http://www.
ross.net/crc/download/crc_v3.txt.

7


