QuickSuggest: Character Prediction on Web Appliances

Ullas Gargi
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94043

ullas@google.com

ABSTRACT

As traditional media and information devices integrate with
the web, they must suddenly support a vastly larger database
of relevant items. Many devices use remote controls with on-
screen keyboards which are not well suited for text entry but
are difficult to displace. We introduce a text entry method
which significantly improves text entry speed for on-screen
keyboards using the same simple Up/Down/Left /Right /Enter
interface common to remote controls and gaming devices
used to enter text. The paper describes QuickSuggest’s
novel adaptive user interface, demonstrates quantitative im-
provements from simulation results on millions of user queries
and shows ease of use and efficiency with no learning curve
in user experiments.

Categories and Subject Descriptors

H.5.2 [Information Systems]: Information Interfaces and
Presentation; H.3.3 [Information Systems|: Information
Search and Retrieval; H.3.4 [Information Systems]: Sys-
tems and Software— Performance evaluation (efficiency and
effectiveness)

General Terms

Algorithms, Human Factors, Measurement.

1. INTRODUCTION

With internet appliances there are many situations where
a standard or touch keyboard is not available — internet-
capable televisions, gaming consoles etc. Often the surro-
gate is an Up-Down-Left-Right (UDLR) keypad and an on-
screen keyboard. The difficulty of entering text restricts the
fluid dialog between the device and the person. As devices
provide more services and more content (e.g. televisions
with access to the WWW and online video content), the
suddenly vastly larger vocabulary for search exacerbates the
text-entry task.

Given a standard Up-Down-Left-Right remote control and
an on-screen keyboard such as shown in Figure 6, our goal
was to improve the experience and the time it takes to enter
text, especially considering a large vocabulary (see Figure 1
for an example). If we move the onscreen characters that
are likely to be typed to be closer each time the user types
a character [1], then we improve the mechanical entry but
increase the visual search cost — users don’t become familiar
with the layout even after repeated use. But if we do not

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.

Rich Gossweiler
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94043

rcg@google.com

adjust the layout, navigating the onscreen keyboard using a
keypress for every letter traversal can make entry arduous.
Our solution was to implement predictive text entry at
the character level and suggest four characters as a ring-
like overlay inserted around the current character with min-
imum distortion(Figure 6). This model allows the person
to rapidly get to the most likely character and, if entering
an unlikely character, only cost one extra click while not
significantly distorting the keyboard layout (Figure 1).

2. RELATED WORK

Improving the speed and ease of text input on constrained
devices has been an active research area, mostly targeted to-
ward mobile devices. The TNT system [2] uses a two-level
grid and two keypresses select a character. The popup menu
proposed by Isokoski [3] is closer to our proposed method
but assumes a stylus. The popup menu does not displace
the existing layout. The Dasher system [6] is philosophically
similar to ours in the sense of ordering next letters in the
order of probabilities. Constraining the available choices
of letters on a touchscreen soft keyboard is an approach
used by some automobile GPS navigation devices. Unlike
some previous approaches, our adaptive interface does not
require any learning on the part of the user. It evolves natu-
rally from the existing input paradigm. In addition we have
performed larger scale simulations on real user-entered text
strings than most studies.

3. MODELING AND PREDICTION

QuickSuggest’s language modeling is patterned after the
PPM family of text compressors [5]. Given a corpus of text
to train on, for every input character, we build up an array of
contexts of various lengths (up to a parameter maximum, 7
in our experiments) with their associated occurrence prob-
abilities. Optionally, we allow a popularity multiplier for
every input string. We use a compact trie to store contexts
and occurrence counts.

During prediction at runtime, the model loaded into mem-
ory is queried with the currently entered text. All context
lengths are searched for matching contexts. We can either
stop when we have sufficient predictions or aggregate proba-
bilities for all possible next letters across all context lengths
with a weight for each context. In that case the predictions
we return are:

argmax Pp(Lj|Xm) = me(lexm) * Wi, m=1...M

where P, is the predicted probability of letter L; given the
contexts Xy, Py, is the m-length—context probability of L;,
M is the maximum context length we use, Wy, is the weight

6 8 9

BR_ BRAD_

BRA,

| DEL sPC CLR | | PEL SPC CLR DEL SPC R
A B C D @ c D A B c
E F G H F G H E F G

I J K L I J K L I J K L
M N O P M N O P M N O P
Q@S T Q R S 3 Q R S T
u w X U v w X U v w Xx
Y z o 1 Yy z o 1 Y z 0o 1
2 3 4 5 2 3 a4 5 2 3 4 5
6 7 a8 a 6 7 a8 -] & 7 8 9

Figure 1: Navigating to enter “BRADY BUNCH?”
on a normal vs. QuickSuggest onscreen keyboard.

we assign to contexts of length m (longer contexts have
higher weight) and L; € V, the vocabulary.

4. ADAPTIVE TEXT INPUT INTERFACE

Given a function that accepts a string prefix and returns
an ordered list of next-occurring characters by probability,
we developed a prediction-ring user interface. The goal was
to move the most likely characters closer (reducing physical
effort) without introducing significantly greater cognitive or
visual search effort. Consider the navigation path required
to enter the term "BRADY BUNCH” on an alphabetic on-
screen keyboard. It takes 57 clicks for the 11 character term,
as shown in Figure 1. With the predictive ring overlay, the
click count was reduced to 25 clicks (the minimum possible
is 2 clicks per character, 22 clicks). Figure 1 shows this in
operation for the last 3 characters in “BRADY”.

5. EXPERIMENTSAND RESULTS

We conducted two experiments to measure the utility of
QuickSuggest. In both experiments we compared entering
text on a non-predictive layout versus inserting the Quick-
Suggest predictive ring model. We chose the TiVo DVR
layout as a baseline, which lays out the keys in a standard
alphabetical pattern. Of course, QuickSuggest can be over-
laid on any keyboard layout. The first experiment simulates
millions of queries from actual users using lines from query
logs or lines from entire datasets as input strings. This al-
lowed us to test a very large vocabulary range with a very
large sample set. The second study was an informal, within-
subject user study with 10 people. This allowed us to see
how the human element reacts to the new method. This
was with a small population and over a small set of terms,
so we view this as an informal, initial observation of how
real people react to the new method.

5.1 Simulator Experiment and Results

5.1.1 Experimental setup

We trained a model on one of several corpora and tested

the model on different sets of possible user inputs. The test-
ing system works by passing the set of user input strings
through a simulator. The simulator implements both the
the baseline system (the default onscreen keyboard layout
without prediction) and our prediction-augmented Quick-
Suggest keyboard.

Our metric is the number of keyclicks or button presses
required to enter a string. For the default onscreen keyboard
without prediction (the baseline) we have a static measure
of the keypress distance between letters (this is the cityblock
distance between them). The cost to enter a string with n
letters L; ¢ = 0...n — 1 is:

Cnopred - Z d(Lz7 Li+1) 1=0..n—2

where L; is the current letter, L;1+1 is the next letter, and
d(Li, Li+1) is the number of key clicks needed to move from
letter L; to letter L;11 on the onscreen keyboard. For exam-
ple, in the alphabetical layout we used shown in Figure 6,
d('F'T') = 5. For our proposed system, we predict the
next letter for every letter in the input string and see if the
actual next letter is in our predictions or not. The estimated
cost in clicks to enter a string with n letters using Quick-
Suggest is the sum of costs when we are right and when we
are wrong:

tght
Cpred _ Crzg + Cw'rong

pred pred
These costs are:

Criaht _ ZPT(L¢+1|L0-~LZ'): i=0.n—-1

pred

C;A:;odng = Z Pw(L1+1|L0Ll) X (1 + d(L,7 Li+1)), 1 =0..n—1
7

where P, is the probability that L;;;1 is a right prediction
(i.e. one of our top (4) predictions) incurring a cost of 1,
and P, is the probablity that all our predictions are wrong,
necessitating the default cost to move from L; to Li+1
imposed by the keyboard layout plus a penalty of 1 to skip
over our prediction ring. Note that an extra click to select
the letter is always required.

To evaluate the amount of improvement or worsening we
used the gain (loss), defined as the ratio of the decrease (in-
crease) in the number of clicks needed with prediction for a
particular string, to that without prediction for that same
string. Another widely-used metric is Key Strokes Per Char-
acter metric (KSPC) [4] which we also measured in our large-
scale experiments. We did not measure words-per-minute
rate. The number of keypresses required is a good indicator
of the motor load. The experiments varied in the train-
ing and testing data sets used. The datasets we used were:
TV corpus (US TV show names and metadata), YouTube
Titles (we sampled from approximately 3.7 million popu-
lar YouTube video titles), YouTube Queries (a set of com-
pletely anonymized user search queries on YouTube.com),
and Google Queries (a set of completely anonymized user
search queries on google.com.

5.1.2 TV corpustrain, TV corpustest

In this experiment we trained a language prediction model
on the TV corpus and also tested it on input strings (2-14
characters) from the same corpus. This was useful to mea-
sure the system performance on a somewhat narrow target
domain where user queries are likely to be drawn from the
same set.

Table 1: Prediction Impact By Corpus.

Impact TV YouTube Google
Count % Count % Count %
Positive | 62283 | 82% 67M 78% 536K 53%
Negative | 9036 11% 16M 19% | 400K 39%
Neutral | 4375 7% 3M 3% TTK 8%
Total 75694 | 100% | 86M | 100% | 1015K | 100%
For positively-impacted inputs, distribution of gain ratio
12,000
10,000
8,000
5,000
4,000 I I I
2,000
0 ‘c. N n- 6;- .
Q@"’Q CaCE ﬁ:@'&y& Q@'“n’ Qnsr"% Q@"’% Q&x"% s &

For negatively-impacted inputs, distribution of loss ratio

S & D b oD
IR S
SO, R, %

—

O o S “ Q
QD Ql? Q(l') Qb Q‘b

& © & ¢ & ¢

M Q M Qr QF o 7 N Q M M <

3,000
2500
2000
1,500
1,000

50

=1

0
2]
o

Figure 2: Distribution of gain and loss for
positively— and negatively—impacted TV corpus in-
puts.

Table 1 lists the proportions of input strings which were
improved, worsened or unchanged by using QuickSuggest.
For the inputs which were positively (negatively) impacted,
the gain (loss) had the distribution shown in Figure 2. It
can be seen that the gain for positively—impacted inputs is
substantially greater than the loss for negatively-impacted
inputs. Choosing a sample of 3,072 8-character strings, we
counted the cumulative cost to enter letters at each of the
8 positions (Figure 3). The graph without prediction shows
a linear relationship as expected. With prediction however,
we pay an initial penalty when our predictions are wrong
for short contexts and the curve is above the baseline; then
as we have greater context, the curve improves to below the
baseline; finally, it saturates up to a length of 7 and then
becomes linear again. This is because our maximum context
length is 7 and for strings longer than that we lose some
predictive power. The overall KSPC without prediction was

4.438. Using nrediction. it dronned to 4.157. The minimum
80,000

70,000
__ 80,000

3 50,000
M QuickSuggest
M Baseline

ive cost (cicks)

S 40,000
£ 30,000
E

5

© 20,000
10,000

1 2 3 4 5 6 7
String pasition

Figure 3: Cumulative cost (clicks) for a sample of
8-character strings in the TV corpus.

Gain distribution for improved youtube queries
15,000,000

10,000,000

Loss distribution for worsened youtube queries
6,000,000

5,000,000
4,000,000
3.000,000
2,000,000
1,000,000
0 & & = 5 & &

Figure 4: Distribution of gain for positively— and
negatively—impacted YouTube queries.

theoretically possible KSPC is 2. Automatically moving the
cursor to the top prediction dropped the KSPC to 1.605.

5.1.3 YouTubeTitlestrain, YouTube Queriestest

We used a model trained on 1 million popular YouTube
video titles. We improved 78% of the queries and made 19%
of the queries worse (Table 1). Gains on positively—impacted
queries were larger than losses on negatively—-impacted queries,
as before (Figure 4) The KSPC metrics were 4.49, 4.10,
and 1.58, for baseline, QuickSuggest, and QuickSuggest’s
top prediction auto-selection, respectively.

5.1.4 TV corpustrain, Google Queries test

Even with a model not optimized for the domain, Quick-
Suggest shows significant improvement although not as marked
as in our other experiments. The KSPC improved from 4.46
for the baseline system to 4.43 for QuickSuggest and 1.68
when auto-selecting the top prediction.

5.1.5 Discussion of simulator experiment results

In all three experiments, over large sets of user input text,
the number of key presses required was decreased by using
QuickSuggest. Even when text entry was made worse, the
loss was less than the gain in those inputs that were im-
proved. QuickSuggest initially incurs a penalty for short
strings where there are too many possibilities for the short
context; but then offers an improvement for longer strings.
One possible modification is to turn on QuickSuggest only
when sufficient text has been input. Automatically moving
the cursor to the top predicted letter also lowered the KSPC
substantially. Training the language model on the same do-
main as the expected user input was also shown to have an
impact on performance.

5.2 Informal User Study Method and Results

The goal of this experiment was to obtain initial, informal
results from people using the system. Ten subjects, five
males and five females were asked to participate in a simple
within-subject experiment. Half of the subjects owned a

Gain distribution for improved google.com quseries
120,000

100.000

80.000
60,000
40.000

20,000

Loss distribution for worsened google.com queries
100,000

80,000
60,000
40,000

20,000

Figure 5: Distribution of gain and loss for
positively— and negatively—impacted Google queries.

Please ente: BRADY BUNCH

(e}
2
Py

A
=
I
M
[e}
u
Y
2
6

N oW N <Nz < T
® A O S OO X0 O
© o0 = X 4 V- I O

Figure 6: Remote control and on screen display used
in the user study.

DVR. The subjects were given a remote control and sat in
front of a 23-inch LCD screen. Half were asked to enter five
shows using the standard TiVo layout and then the same five
terms using the predictive ring layout and the other half did
the predictive model first. We timed their button click rate,
overall term entry speed and interviewed them about the
two methods. The experiment presented a show term (e.g.
?LOST”) and an onscreen keypad that they could navigate
with the remote control. They were asked to enter the show.
When they completed the show, they pressed ”OK” on the
remote and then went on to the next term. We presented the
following shows: LOST, BRADY BUNCH, ENTOURAGE,
FAMILY GUY, and HOUSE. The first show, LOST, was a
practice term and was discarded.

When the person was done, we asked them three questions
to elicit feedback: Did they own a DVR? What were their
thoughts on the two methods? Which would they prefer to
have?

5.2.1 Results and Observations

As Figure 7 implies, the predictive model generally re-
duces the term-entry time. Our results also revealed that
while the predictive ring reduced the number of clicks to
get to a letter, it did increase the time per click since the
person had to scan the ring. The non-predictive click time
was approximatey 0.5 seconds while the predictive time was

Comparison of Navigation Times

a5 00

30.00

25.00
24.09 2375
20.00 20.54
=TIVl
12.75 mRing
1500

Time (seconds)

1213

10.00

BRADY BUNCH ENTOURAGE FAMILY GUY HOUSE
17.3% improvement -9.8% improvement 25.5% improvement 40.9% improvemen "

Figure 7: Comparison of navigation times for novice
users.

approximately 0.9 seconds. Nine of the ten people strongly
prefered the predictive model while one preferred the non-
predictive layout. One person commented that “It seemed
like it predicted the next letter as the 'up’ [position on the
ring] and so it was really easy to just go up up up.” One
person did not like it and commented that the ring was dis-
tracting and got in the way.

Several people commented that when they selected an
item on the ring, they really liked that it automatically
jumped to that letter’s position on the keypad. We believe
this helped ground them, making the keypad consistent and
the ring feel as if it were a short-cut.

6. CONCLUSIONS

Based on both the informal user studies and large-scale
statistical experiments on real user queries, QuickSuggest’s
predictive model shows merit as a light-weight ”short cut”
mechanism for character based entry when using web-enabled
devices. Many appliances may want to have a simple input
device rather than a full keyboard but still provide access to
a large corpus of content. The predictive ring model helps
balance visual search costs while reducing the distance to
the target to reduce physical effort (Fitt’s law).

7. REFERENCES

[1] T. Bellman and I. S. MacKenzie. A probabilistic
character layout strategy for mobile text entry. In
Graphics Interface 98, 1998.

[2] M. Ingmarsson, D. Dinka, , and S. Zhai. TNT - a
numeric keypad based text input method. In Human
Factors in Computing Systems (CHI), pages 639-646.
ACM, 2004.

[3] P. Isokoski. Performance of menu-augmented soft
keyboards. In Human Factors in Computing Systems
(CHI), pages 423-430. ACM, 2004.

[4] 1. S. MacKenzie. KSPC (keystrokes per character) as a
characteristic of text entry techniques. In Fourth
International Symposium on Human-Computer
Interaction with Mobile Devices, pages 195-210, 2002.

[5] A. Moffat. Implementing the PPM data compression
scheme. IFEE Transactions on communications,
38(11), Nov 1990.

[6] D.J. Ward, A. F. Blackwell, and D. J. C. MacKay.
Dasher - a data entry interface using continuous
gestures and language models. In UIST, 2000.

