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ABSTRACT
Errors in dynamic random access memory (DRAM) are a common
form of hardware failure in modern compute clusters. Failures are
costly both in terms of hardware replacement costs and service
disruption. While a large body of work exists on DRAM in labo-
ratory conditions, little has been reported on real DRAM failures
in large production clusters. In this paper, we analyze measure-
ments of memory errors in a large fleet of commodity servers over
a period of 2.5 years. The collected data covers multiple vendors,
DRAM capacities and technologies, and comprises many millions
of DIMM days.

The goal of this paper is to answer questions such as the follow-
ing: How common are memory errors in practice? What are their
statistical properties? How are they affected by external factors,
such as temperature and utilization, and by chip-specific factors,
such as chip density, memory technology and DIMM age?

We find that DRAM error behavior in the field differs in many
key aspects from commonly held assumptions. For example, we
observe DRAM error rates that are orders of magnitude higher
than previously reported, with 25,000 to 70,000 errors per billion
device hours per Mbit and more than 8% of DIMMs affected
by errors per year. We provide strong evidence that memory
errors are dominated by hard errors, rather than soft errors, which
previous work suspects to be the dominant error mode. We find
that temperature, known to strongly impact DIMM error rates in
lab conditions, has a surprisingly small effect on error behavior
in the field, when taking all other factors into account. Finally,
unlike commonly feared, we don’t observe any indication that
newer generations of DIMMs have worse error behavior.

Categories and Subject Descriptors: B.8 [Hardware]:
Performance and Reliability; C.4 [Computer Systems Orga-
nization]: Performance of Systems;

General Terms: Reliability.

Keywords: DRAM, DIMM, memory, reliability, data cor-
ruption, soft error, hard error, large-scale systems.

1. INTRODUCTION
Errors in dynamic random access memory (DRAM) de-

vices have been a concern for a long time [3, 11, 15–17, 23].
A memory error is an event that leads to the logical state
of one or multiple bits being read differently from how they
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were last written. Memory errors can be caused by elec-
trical or magnetic interference (e.g. due to cosmic rays),
can be due to problems with the hardware (e.g. a bit being
permanently damaged), or can be the result of corruption
along the data path between the memories and the process-
ing elements. Memory errors can be classified into soft er-
rors, which randomly corrupt bits but do not leave physical
damage; and hard errors, which corrupt bits in a repeatable
manner because of a physical defect.

The consequence of a memory error is system dependent.
In systems using memory without support for error correc-
tion and detection, a memory error can lead to a machine
crash or applications using corrupted data. Most memory
systems in server machines employ error correcting codes
(ECC) [5], which allow the detection and correction of one
or multiple bit errors. If an error is uncorrectable, i.e. the
number of affected bits exceed the limit of what the ECC
can correct, typically a machine shutdown is forced. In
many production environments, including ours, a single un-
correctable error is considered serious enough to replace the
dual in-line memory module (DIMM) that caused it.

Memory errors are costly in terms of the system failures
they cause and the repair costs associated with them. In pro-
duction sites running large-scale systems, memory compo-
nent replacements rank near the top of component replace-
ments [20] and memory errors are one of the most common
hardware problems to lead to machine crashes [19]. More-
over, recent work shows that memory errors can cause secu-
rity vulnerabilities [7,22]. There is also a fear that advancing
densities in DRAM technology might lead to increased mem-
ory errors, exacerbating this problem in the future [3,12,13].

Despite the practical relevance of DRAM errors, very little
is known about their prevalence in real production systems.
Existing studies are mostly based on lab experiments us-
ing accelerated testing, where DRAM is exposed to extreme
conditions (such as high temperature) to artificially induce
errors. It is not clear how such results carry over to real
production systems. The few existing studies that are based
on measurements in real systems are small in scale, such as
recent work by Li et al. [10], who report on DRAM errors
in 300 machines over a period of 3 to 7 months.

One main reason for the limited understanding of DRAM
errors in real systems is the large experimental scale required
to obtain interesting measurements. A detailed study of er-
rors requires data collection over a long time period (several
years) and thousands of machines, a scale that researchers
cannot easily replicate in their labs. Production sites, which
run large-scale systems, often do not collect and record error



data rigorously, or are reluctant to share it because of the
sensitive nature of data related to failures.

This paper provides the first large-scale study of DRAM
memory errors in the field. It is based on data collected
from Google’s server fleet over a period of more than two
years making up many millions of DIMM days. The DRAM
in our study covers multiple vendors, DRAM densities and
technologies (DDR1, DDR2, and FBDIMM).

The paper addresses the following questions: How com-
mon are memory errors in practice? What are their statis-
tical properties? How are they affected by external factors,
such as temperature, and system utilization? And how do
they vary with chip-specific factors, such as chip density,
memory technology and DIMM age?

We find that in many aspects DRAM errors in the field be-
have very differently than commonly assumed. For example,
we observe DRAM error rates that are orders of magnitude
higher than previously reported, with FIT rates (failures in
time per billion device hours) of 25,000 to 70,000 per Mbit
and more than 8% of DIMMs affected per year. We provide
strong evidence that memory errors are dominated by hard
errors, rather than soft errors, which most previous work
focuses on. We find that, out of all the factors that impact
a DIMM’s error behavior in the field, temperature has a
surprisingly small effect. Finally, unlike commonly feared,
we don’t observe any indication that per-DIMM error rates
increase with newer generations of DIMMs.

2. BACKGROUND AND METHODOLOGY

2.1 Memory errors and their handling
Most memory systems in use in servers today are pro-

tected by error detection and correction codes. The typical
arrangement is for a memory access word to be augmented
with additional bits to contain the error code. Typical error
codes in commodity server systems today fall in the single
error correct double error detect (SECDED) category. That
means they can reliably detect and correct any single-bit er-
ror, but they can only detect and not correct multiple bit
errors. More powerful codes can correct and detect more er-
ror bits in a single memory word. For example, a code family
known as chip-kill [6], can correct up to 4 adjacent bits at
once, thus being able to work around a completely broken
4-bit wide DRAM chip. We use the terms correctable error
(CE) and uncorrectable error (UE) in this paper to general-
ize away the details of the actual error codes used.

If done well, the handling of correctable memory errors is
largely invisible to application software. Correction of the
error and logging of the event can be performed in hardware
for a minimal performance impact. However, depending on
how much of the error handling is pushed into software, the
impact can be more severe, with high error rates causing a
significant degradation of overall system performance.

Uncorrectable errors typically lead to a catastrophic fail-
ure of some sort. Either there is an explicit failure action in
response to the memory error (such as a machine reboot),
or there is risk of a data-corruption-induced failure such as a
kernel panic. In the systems we study, all uncorrectable er-
rors are considered serious enough to shut down the machine
and replace the DIMM at fault.

Memory errors can be classified into soft errors, which ran-
domly corrupt bits, but do not leave any physical damage;
and hard errors, which corrupt bits in a repeatable manner
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Figure 1: Collection, storage, and analysis architec-

ture.

because of a physical defect (e.g. “stuck bits”). Our mea-
surement infrastructure captures both hard and soft errors,
but does not allow us to reliably distinguish these types of
errors. All our numbers include both hard and soft errors.

Single-bit soft errors in the memory array can accumu-
late over time and turn into multi-bit errors. In order to
avoid this accumulation of single-bit errors, memory systems
can employ a hardware scrubber [14] that scans through the
memory, while the memory is otherwise idle. Any memory
words with single-bit errors are written back after correction,
thus eliminating the single-bit error if it was soft. Three of
the six hardware platforms (Platforms C, D and F) we con-
sider make use of memory scrubbers. The typical scrubbing
rate in those systems is 1GB every 45 minutes. In the other
three hardware platforms (Platforms A, B, and E) errors are
only detected on access.

2.2 The systems
Our data covers the majority of machines in Google’s fleet

and spans nearly 2.5 years, from January 2006 to June 2008.
Each machine comprises a motherboard with some proces-
sors and memory DIMMs. We study 6 different hardware
platforms, where a platform is defined by the motherboard
and memory generation.

The memory in these systems covers a wide variety of the
most commonly used types of DRAM. The DIMMs come
from multiple manufacturers and models, with three differ-
ent capacities (1GB, 2GB, 4GB), and cover the three most
common DRAM technologies: Double Data Rate (DDR1),
Double Data Rate 2 (DDR2) and Fully-Buffered (FBDIMM).
DDR1 and DDR2 have a similar interface, except that DDR2
provides twice the per-data-pin throughput (400 Mbit/s and
800 Mbit/s respectively). FBDIMM is a buffering interface
around what is essentially a DDR2 technology inside.

2.3 The measurement methodology
Our collection infrastructure (see Figure 1) consists of lo-

cally recording events every time they happen. The logged
events of interest to us are correctable errors, uncorrectable
errors, CPU utilization, temperature, and memory allocated.
These events (”breadcrumbs”) remain in the host machine



and are collected periodically (every 10 minutes) and archived
in a Bigtable [4] for later processing. This collection happens
continuously in the background.

The scale of the system and the data being collected make
the analysis non-trivial. Each one of many ten-thousands of
machines in the fleet logs every ten minutes hundreds of pa-
rameters, adding up to many TBytes. It is therefore imprac-
tical to download the data to a single machine and analyze it
with standard tools. We solve this problem by using a paral-
lel pre-processing step (implemented in Sawzall [18]), which
runs on several hundred nodes simultaneously and performs
basic data clean-up and filtering. We then perform the re-
mainder of our analysis using standard analysis tools.

2.4 Analytical methodology
The metrics we consider are the rate and probability of

errors over a given time period. For uncorrectable errors,
we focus solely on probabilities, since a DIMM is expected
to be removed after experiencing an uncorrectable error.

As part of this study, we investigate the impact of temper-
ature and utilization (as measured by CPU utilization and
amount of memory allocated) on memory errors. The ex-
act temperature and utilization levels at which our systems
operate are sensitive information. Instead of giving abso-
lute numbers for temperature, we therefore report tempera-
ture values “normalized” by the smallest observed tempera-
ture. That is a reported temperature value of x, means the
temperate was x degrees higher than the smallest observed
temperature. The same approach does not work for CPU
utilization, since the range of utilization levels is obvious
(ranging from 0-100%). Instead, we report CPU utilization
as multiples of the average utilization, i.e. a utilization of
x, corresponds to a utilization level that is x times higher
than the average utilization. We follow the same approach
for allocated memory.

When studying the effect of various factors on memory
errors, we often want to see how much higher or lower the
monthly rate of errors is compared to an average month (in-
dependent of the factor under consideration). We therefore
often report “normalized” rates and probabilities, i.e. we
give rates and probabilities as multiples of the average. For
example, when we say the normalized probability of an un-
correctable error is 1.5 for a given month, that means the
uncorrectable error probability is 1.5 times higher than in
an average month. This has the additional advantage that
we can plot results for platforms with very different error
probabilities in the same graph.

Finally, when studying the effect of factors, such as tem-
perature, we report error rates as a function of percentiles
of the observed factor. For example, we might report that
the monthly correctable error rate is x if the temperature
lies in the first temperature decile (i.e. the temperature is
in the range of the lowest 10% of reported temperature mea-
surements). This has the advantage that the error rates for
each temperature range that we report on are based on the
same number of data samples. Since error rates tend to be
highly variable, it is important to compare data points that
are based on a similar number of samples.

3. BASELINE STATISTICS
We start our study with the basic question of how common

memory errors are in the field. Since a single uncorrectable
error in a machine leads to the shut down of the entire ma-

Table 1: Memory errors per year:

Platf. Tech.
Per machine

CE CE CE CE UE
Incid. Rate Rate Median Incid.

(%) Mean C.V. Affct. (%)
A DDR1 45.4 19,509 3.5 611 0.17
B DDR1 46.2 23,243 3.4 366 –
C DDR1 22.3 27,500 17.7 100 2.15
D DDR2 12.3 20,501 19.0 63 1.21
E FBD – – – – 0.27
F DDR2 26.9 48,621 16.1 25 4.15

Overall – 32.2 22,696 14.0 277 1.29

Platf. Tech.
Per DIMM

CE CE CE CE UE
Incid. Rate Rate Median Incid.

(%) Mean C.V. Affct. (%)
A DDR1 21.2 4530 6.7 167 0.05
B DDR1 19.6 4086 7.4 76 –
C DDR1 3.7 3351 46.5 59 0.28
D DDR2 2.8 3918 42.4 45 0.25
E FBD – – – – 0.08
F DDR2 2.9 3408 51.9 15 0.39

Overall – 8.2 3751 36.3 64 0.22

chine, we begin by looking at the frequency of memory errors
per machine. We then focus on the frequency of memory er-
rors for individual DIMMs.

3.1 Errors per machine
Table 1 (top) presents high-level statistics on the frequency

of correctable errors and uncorrectable errors per machine
per year of operation, broken down by the type of hardware
platform. Blank lines indicate lack of sufficient data.

Our first observation is that memory errors are not rare
events. About a third of all machines in the fleet experience
at least one memory error per year (see column CE Incid.
%) and the average number of correctable errors per year
is over 22,000. These numbers vary across platforms, with
some platforms (e.g. Platform A and B) seeing nearly 50% of
their machines affected by correctable errors, while in others
only 12–27% are affected. The median number of errors per
year for those machines that experience at least one error
ranges from 25 to 611.

Interestingly, for those platforms with a lower percentage
of machines affected by correctable errors, the average num-
ber of correctable errors per machine per year is the same
or even higher than for the other platforms. We will take
a closer look at the differences between platforms and tech-
nologies in Section 3.2.

We observe that for all platforms the number of errors
per machine is highly variable with coefficients of variation
between 3.4 and 20 1. Some machines develop a very large
number of correctable errors compared to others. We find
that for all platforms, 20% of the machines with errors make
up more than 90% of all observed errors for that platform.
One explanation for the high variability might be correla-
tions between errors. A closer look at the data confirms
this hypothesis: in more than 93% of the cases a machine
that sees a correctable error experiences at least one more
correctable error in the same year.

1These are high C.V. values compared, for example, to an
exponential distribution, which has a C.V. of 1, or a Poisson
distribution, which has a C.V. of 1/mean.
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Figure 2: The distribution of correctable errors over

DIMMs: The graph plots the fraction Y of all errors in a
platform that is made up by the fraction X of DIMMs with
the largest number of errors.

While correctable errors typically do not have an immedi-
ate impact on a machine, uncorrectable errors usually result
in a machine shutdown. Table 1 shows, that while uncor-
rectable errors are less common than correctable errors, they
do happen at a significant rate. Across the entire fleet, 1.3%
of machines are affected by uncorrectable errors per year,
with some platforms seeing as many as 2-4% affected.

3.2 Errors per DIMM
Since machines vary in the numbers of DRAM DIMMs

and total DRAM capacity, we next consider per-DIMM statis-
tics (Table 1 (bottom)).

Not surprisingly, the per-DIMM numbers are lower than
the per-machine numbers. Across the entire fleet, 8.2% of
all DIMMs are affected by correctable errors and an average
DIMM experiences nearly 4000 correctable errors per year.
These numbers vary greatly by platform. Around 20% of
DIMMs in Platform A and B are affected by correctable
errors per year, compared to less than 4% of DIMMs in
Platform C and D. Only 0.05–0.08% of the DIMMs in Plat-
form A and Platform E see an uncorrectable error per year,
compared to nearly 0.3% of the DIMMs in Platform C and
Platform D. The mean number of correctable errors per
DIMM are more comparable, ranging from 3351–4530 cor-
rectable errors per year.

The differences between different platforms bring up the
question of how chip-hardware specific factors impact the
frequency of memory errors. We observe that there are two
groups of platforms with members of each group sharing
similar error behavior: there are Platform A , B, and E on
one side, and Platform C , D and F on the other. While both
groups have mean correctable error rates that are on the
same order of magnitude, the first group has a much higher
fraction of DIMMs affected by correctable errors, and the
second group has a much higher fraction of DIMMs affected
by uncorrectable errors.

We investigated a number of external factors that might
explain the difference in memory rates across platforms, in-
cluding temperature, utilization, DIMM age and capacity.
While we will see (in Section 5) that all these affect the
frequency of errors, they are not sufficient to explain the
differences we observe between platforms.

Table 2: Errors per DIMM by DIMM

type/manufacturer

Incid. Incid. Mean C.V. CEs/
Pf Mfg GB CE UE CE CE GB

(%) (%) rate

A

1 1 20.6 0.03 4242 6.9 4242
1 2 19.7 0.07 4487 5.9 2244
2 1 6.6 1496 11.9 1469
3 1 27.1 0.04 5821 6.2 5821
4 1 5.3 0.03 1128 13.8 1128

B
1

1 20.3 – 3980 7.5 3980
2 18.4 – 5098 6.8 2549

2
1 7.9 – 1841 11.0 1841
2 18.1 – 2835 8.9 1418

C
1 1 3.6 0.21 2516 69.7 2516
4 1 2.6 0.43 2461 57.2 2461
5 2 4.7 0.22 10226 12.0 5113

D 6
2 2.7 0.24 3666 39.4 1833
4 5.7 0.24 12999 23.0 3250

E

1
2 – 0 – – –
4 – 0.13 – – –

2
2 – 0.05 – – –
4 – 0.27 – – –

5
2 – 0.06 – – –
4 – 0.14 – – –

F 1
2 2.8 0.20 2213 53.0 1107
4 4.0 1.09 4714 42.8 1179

A closer look at the data also lets us rule out memory
technology (DDR1, DDR2, or FBDIMM) as the main factor
responsible for the difference. Some platforms within the
same group use different memory technology (e.g. DDR1
versus DDR2 in Platform C and D, respectively), while there
are platforms in different groups using the same memory
technology (e.g. Platform A , B and C all use DDR1). There
is not one memory technology that is clearly superior to the
others when it comes to error behavior.

We also considered the possibility that DIMMs from dif-
ferent manufacturers might exhibit different error behav-
ior. Table 2 shows the error rates broken down by the
most common DIMM types, where DIMM type is defined
by the combinations of platform and manufacturer. We note
that, DIMMs within the same platform exhibit similar er-
ror behavior, even if they are from different manufacturers.
Moreover, we observe that DIMMs from some manufacturers
(Mfg1 , Mfg4 ) are used in a number of different platforms
with very different error behavior. These observations show
two things: the differences between platforms are not mainly
due to differences between manufacturers and we do not see
manufacturers that are consistently good or bad.

While we cannot be certain about the cause of the differ-
ences between platforms, we hypothesize that the observed
differences in correctable errors are largely due to board and
DIMM design differences. We suspect that the differences
in uncorrectable errors are due to differences in the error
correction codes in use. In particular, Platforms C and D
are the only platforms that do not use a form of chip-kill [6].
Chip-kill is a more powerful code, that can correct certain
types of multiple bit errors, while the codes in Platforms C
and D can only correct single-bit errors.

We observe that for all platforms the number of correctable
errors per DIMM per year is highly variable, with coefficients
of variation ranging from 6 to 46. One might suspect that
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Figure 3: Correlations between correctable errors in the same DIMM: The left graph shows the probability of seeing
a CE in a given month, depending on whether there were other CEs observed in the same month and the previous month.
The numbers on top of each bar show the factor increase in probability compared to the CE probability in a random month
(three left-most bars) and compared to the CE probability when there was no CE in the previous month (three right-most
bars). The middle graph shows the expected number of CEs in a month as a function of the number of CEs in the previous
month. The right graph shows the autocorrelation function for the number of CEs observed per month in a DIMM.

this is because the majority of the DIMMs see zero errors,
while those affected see a large number of them. It turns out
that even when focusing on only those DIMMs that have ex-
perienced errors, the variability is still high (not shown in
table). The C.V. values range from 3–7 and there are large
differences between the mean and the median number of
correctable errors: the mean ranges from 20, 000− 140, 000,
while the median numbers are between 42 − 167.

Figure 2 presents a view of the distribution of correctable
errors over DIMMs. It plots the fraction of errors made up
by the top x percent of DIMMs with errors. For all plat-
forms, the top 20% of DIMMs with errors make up over
94% of all observed errors. For Platform C and D, the dis-
tribution is even more skewed, with the top 20% of DIMMs
comprising more than 99.6% of all errors. Note that the
graph in Figure 2 is plotted on a log-log scale and that the
lines for all platforms appear almost straight indicating a
power-law distribution.

To a first order, the above results illustrate that errors in
DRAM are a valid concern in practice. This motivates us
to further study the statistical properties of errors (Section
4) and how errors are affected by various factors, such as
environmental conditions (Section 5).

4. A CLOSER LOOK AT CORRELATIONS
In this section, we study correlations between correctable

errors within a DIMM, correlations between correctable and
uncorrectable errors in a DIMM, and correlations between
errors in different DIMMs in the same machine.

Understanding correlations between errors might help iden-
tify when a DIMM is likely to produce a large number of
errors in the future and replace it before it starts to cause
serious problems.

4.1 Correlations between correctable errors
Figure 3 (left) shows the probability of seeing a correctable

error in a given month, depending on whether there were cor-
rectable errors in the same month or the previous month. As
the graph shows, for each platform the monthly correctable
error probability increases dramatically in the presence of
prior errors. In more than 85% of the cases a correctable

error is followed by at least one more correctable error in
the same month. Depending on the platform, this corre-
sponds to an increase in probability between 13X to more
than 90X, compared to an average month. Also seeing cor-
rectable errors in the previous month significantly increases
the probability of seeing a correctable error: The probability
increases by factors of 35X to more than 200X, compared to
the case when the previous month had no correctable errors.

Seeing errors in the previous month not only affects the
probability, but also the expected number of correctable er-
rors in a month. Figure 3 (middle) shows the expected
number of correctable errors in a month, as a function of
the number of correctable errors observed in the previous
month. As the graph indicates, the expected number of cor-
rectable errors in a month increases continuously with the
number of correctable errors in the previous month.

Figure 3 (middle) also shows that the expected number of
errors in a month is significantly larger than the observed
number of errors in the previous month. For example, in
the case of Platform D , if the number of correctable errors
in the previous month exceeds 100, the expected number of
correctable errors in this month is more than 1,000. This is
a 100X increase compared to the correctable error rate for
a random month.

We also consider correlations over time periods longer
than from one month to the next. Figure 3 (right) shows the
autocorrelation function for the number of errors observed
per DIMM per month, at lags up to 12 months. We observe
that even at lags of several months the level of correlation
is still significant.

4.2 Correlations between correctable and un-
correctable errors

Since uncorrectable errors are simply multiple bit corrup-
tions (too many for the ECC to correct), one might won-
der whether the presence of correctable errors increases the
probability of seeing an uncorrectable error as well. This is
the question we focus on next.

The three left-most bars in Figure 4 (left) show how the
probability of experiencing an uncorrectable error in a given
month increases if there are correctable errors in the same
month. The graph indicates that for all platforms, the prob-
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Figure 4: Correlations between correctable and uncorrectable errors in the same DIMM: The left graph shows
the UE probability in a month depending on whether there were CEs in the same month or in the previous month. The
numbers on top of the bars give the increase in UE probability compared to a month without CEs (three left-most bars) and
the case where there were no CEs in the previous month (three right-most bars). The middle graph shows how often a UE
was preceded by a CE in the same/previous month. The right graph shows the factor increase in the probability of observing
an UE as a function of the number of CEs in the same month.

ability of an uncorrectable error is significantly larger in a
month with correctable errors compared to a month with-
out correctable errors. The increase in the probability of an
uncorrectable error ranges from a factor of 27X (for Plat-
form A ) to more than 400X (for Platform D ). While not
quite as strong, the presence of correctable errors in the pre-
ceding month also affects the probability of uncorrectable er-
rors. The three right-most bars in Figure 4 (left) show that
the probability of seeing a uncorrectable error in a month fol-
lowing a month with at least one correctable errors is larger
by a factor of 9X to 47X than if the previous month had no
correctable errors.

Figure 4 (right) shows that not only the presence, but also
the rate of observed correctable errors in the same month af-
fects the probability of an uncorrectable error. Higher rates
of correctable errors translate to a higher probability of un-
correctable errors. We see similar, albeit somewhat weaker
trends when plotting the probability of uncorrectable errors
as a function of the number of correctable errors in the pre-
vious month (not shown in figure). The uncorrectable error
probabilities are about 8X lower than if the same number
of correctable errors had happened in the same month, but
still significantly higher than in a random month.

Given the above observations, one might want to use cor-
rectable errors as an early warning sign for impending uncor-
rectable errors. Another interesting view is therefore what
fraction of uncorrectable errors are actually preceded by a
correctable error, either in the same month or the previ-
ous month. Figure 4 (middle) shows that 65-80% of uncor-
rectable errors are preceded by a correctable error in the
same month. Nearly 20-40% of uncorrectable errors are pre-
ceded by a correctable error in the previous month. Note
that these probabilities are significantly higher than seeing
a correctable error in an average month.

The above observations lead to the idea of early replace-
ment policies, where a DIMM is replaced once it experi-
ences a significant number of correctable errors, rather than
waiting for the first uncorrectable error. However, while
uncorrectable error probabilities are greatly increased after
observing correctable errors, the absolute probabilities of an
uncorrectable error are still relatively low (e.g. 1.7–2.3% in
the case of Platform C and Platform D , see Figure 4 (left)).

We also experimented with more sophisticated methods
for predicting uncorrectable errors, for example by building
CART (Classification and regression trees) models based on
parameters such as the number of CEs in the same and pre-
vious month, CEs and UEs in other DIMMs in the machine,
DIMM capacity and model, but were not able to achieve
significantly better prediction accuracy. Hence, replacing
DIMMs solely based on correctable errors might be worth
the price only in environments where the cost of downtime
is high enough to outweigh the cost of the relatively high
rate of false positives.

The observed correlations between correctable errors and
uncorrectable errors will be very useful in the remainder of
this study, when trying to understand the impact of var-
ious factors (such as temperature, age, utilization) on the
frequency of memory errors. Since the frequency of cor-
rectable errors is orders of magnitudes higher than that of
uncorrectable errors, it is easier to obtain conclusive results
for correctable errors than uncorrectable errors. For the re-
mainder of this study we focus mostly on correctable errors
and how they are affected by various factors. We assume
that those factors that increase correctable error rates, are
likely to also increase the probability of experiencing an un-
correctable error.

4.3 Correlations between DIMMs in the same
machine

So far we have focused on correlations between errors
within the same DIMM. If those correlations are mostly due
to external factors (such as temperature or workload inten-
sity), we should also be able to observe correlations between
errors in different DIMMs in the same machine, since these
are largely subject to the same external factors.

Figure 5 shows the monthly probability of correctable and
uncorrectable errors, as a function of whether there was an
error in another DIMM in the same machine. We observe
significantly increased error probabilities, compared to an
average month, indicating a correlation between errors in
different DIMMs in the same machine. However, the ob-
served probabilities are lower as when an error was previ-
ously seen in the same DIMM (compare with Figure 3 (left)
and Figure 4 (left)).
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Figure 5: Correlations between errors in different DIMMs in the same machine: The graphs show the monthly
CE probability (left) and UE probability (right) as a function of whether there was a CE or a UE in another DIMM in the
same machine in the same month.

The fact that correlations between errors in different DIMMs
are significantly lower than those between errors in the same
DIMM might indicate that there are strong factors in addi-
tion to environmental factors that affect error behavior.

5. THE ROLE OF EXTERNAL FACTORS
In this section, we study the effect of various factors on

correctable and uncorrectable error rates, including DIMM
capacity, temperature, utilization, and age. We consider
all platforms, except for Platform F , for which we do not
have enough data to allow for a fine-grained analysis, and
Platform E , for which we do not have data on CEs.

5.1 DIMM Capacity and chip size
Since the amount of memory used in typical server systems

keeps growing from generation to generation, a commonly
asked question when projecting for future systems, is how an
increase in memory affects the frequency of memory errors.
In this section, we focus on one aspect of this question. We
ask how error rates change, when increasing the capacity of
individual DIMMs.

To answer this question we consider all DIMM types (type
being defined by the combination of platform and manufac-
turer) that exist in our systems in two different capacities.
Typically, the capacities of these DIMM pairs are either 1GB
and 2GB, or 2GB and 4GB (recall Table 2). Figure 6 shows
for each of these pairs the factor by which the monthly prob-
ability of correctable errors, the correctable error rate and
the probability of uncorrectable errors changes, when dou-
bling capacity2.

Figure 6 indicates a trend towards worse error behavior
for increased capacities, although this trend is not consis-
tent. While in some cases the doubling of capacity has a
clear negative effect (factors larger than 1 in the graph),
in others it has hardly any effect (factor close to 1 in the
graph). For example, for Platform A -Mfg1 and Platform F -
Mfg1 doubling the capacity increases uncorrectable errors,
but not correctable errors. Conversely, for Platform D -
Mfg6 doubling the capacity affects correctable errors, but
not uncorrectable error.

The difference in how scaling capacity affects errors might
be due to differences in how larger DIMM capacities are

2Some bars are omitted, as we do not have data on UEs for
Platform B and data on CEs for Platform E .
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Figure 6: Memory errors and DIMM capacity: The
graph shows for different Platform-Manufacturer pairs the
factor increase in CE rates, CE probabilities and UE prob-
abilities, when doubling the capacity of a DIMM.

built, since a given DIMM capacity can be achieved in mul-
tiple ways. For example, a one gigabyte DIMM with ECC
can be manufactured with 36 256-megabit chips, or 18 512-
megabit chips or with 9 one-gigabit chips.

We studied the effect of chip sizes on correctable and un-
correctable errors, controlling for capacity, platform (dimm
technology), and age. The results are mixed. When two chip
configurations were available within the same platform, ca-
pacity and manufacturer, we sometimes observed an increase
in average correctable error rates and sometimes a decrease.
This either indicates that chip size does not play a dom-
inant role in influencing CEs or there are other, stronger
confounders in our data that we did not control for.

In addition to a correlation of chip size with error rates,
we also looked for correlations of chip size with incidence of
correctable and uncorrectable errors. Again we observe no
clear trends. We also repeated the study of chip size effect
without taking information on the manufacturer and/or age
into account, again without any clear trends emerging.

The best we can conclude therefore is that any chip size ef-
fect is unlikely to dominate error rates given that the trends
are not consistent across various other confounders such as
age and manufacturer.
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Figure 7: The effect of temperature: The left graph shows the normalized monthly rate of experiencing a correctable
error as a function of the monthly average temperature, in deciles. The middle and right graph show the monthly rate of
experiencing a correctable error as a function of memory usage and CPU utilization, respectively, depending on whether
the temperature was high (above median temperature) or low (below median temperature). We observe that when isolating
temperature by controlling for utilization, it has much less of an effect.

5.2 Temperature
Temperature is considered to (negatively) affect the re-

liability of many hardware components due to the strong
physical changes on materials that it causes. In the case
of memory chips, high temperature is expected to increase
leakage current [2, 8] which in turn leads to a higher likeli-
hood of flipped bits in the memory array.

In the context of large-scale production systems, under-
standing the exact impact of temperature on system reli-
ability is important, since cooling is a major cost factor.
There is a trade-off to be made between increased cooling
costs and increased downtime and maintenance costs due to
higher failure rates.

Our temperature measurements stem from a temperature
sensor on the motherboard of each machine. For each plat-
form, the physical location of this sensor varies relative to
the position of the DIMMs, hence our temperature measure-
ments are only an approximation of the actual temperature
of the DIMMs.

To investigate the effect of temperature on memory er-
rors we turn to Figure 7 (left), which shows the normalized
monthly correctable error rate for each platform, as a func-
tion of temperature deciles (recall Section 2.4 for the reason
of using deciles and the definition of normalized probabili-
ties). That is the first data point (x1, y1) shows the monthly
correctable error rate y1, if the temperature is less than the
first temperature decile (temperature x1). The second data
point (x2, y2) shows the correctable error rate y2, if the tem-
perature is between the first and second decile (between x1

and x2), and so on.
Figure 7 (left) shows that for all platforms higher temper-

atures are correlated with higher correctable error rates. In
fact, for most platforms the correctable error rate increases
by a factor of 3 or more when moving from the lowest to the
highest temperature decile (corresponding to an increase in
temperature by around 20C for Platforms B, C and D and
an increase by slightly more than 10C for Platform A ).

It is not clear whether this correlation indicates a causal
relationship, i.e. higher temperatures inducing higher error
rates. Higher temperatures might just be a proxy for higher
system utilization, i.e. the utilization increases leading inde-
pendently to higher error rates and higher temperatures. In

Figure 7 (middle) and (right) we therefore isolate the effects
of temperature from the effects of utilization. We divide
the utilization measurements (CPU utilization and allocated
memory, respectively) into deciles and report for each decile
the observed error rate when temperature was “high” (above
median temperature) or “low” (below median temperature).
We observe that when controlling for utilization, the effects
of temperature are significantly smaller. We also repeated
these experiments with higher differences in temperature,
e.g. by comparing the effect of temperatures above the 9th
decile to temperatures below the 1st decile. In all cases, for
the same utilization levels the error rates for high versus low
temperature are very similar.

5.3 Utilization
The observations in the previous subsection point to sys-

tem utilization as a major contributing factor in memory
error rates. Ideally, we would like to study specifically the
impact of memory utilization (i.e. number of memory ac-
cesses). Unfortunately, obtaining data on memory utiliza-
tion requires the use of hardware counters, which our mea-
surement infrastructure does not collect. Instead, we study
two signals that we believe provide indirect indication of
memory activity: CPU utilization and memory allocated.

CPU utilization is the load activity on the CPU(s) mea-
sured instantaneously as a percentage of total CPU cycles
used out of the total CPU cycles available and are averaged
per machine for each month.

Memory allocated is the total amount of memory marked
as used by the operating system on behalf of processes. It
is a value in bytes and it changes as the tasks request and
release memory. The allocated values are averaged per ma-
chine over each month.

Figure 8 (left) and (right) show the normalized monthly
rate of correctable errors as a function of CPU utilization
and memory allocated, respectively. We observe clear trends
of increasing correctable error rates with increasing CPU
utilization and allocated memory. Averaging across all plat-
forms, it seems that correctable error rates grow roughly
logarithmically as a function of utilization levels (based on
the roughly linear increase of error rates in the graphs, which
have log scales on the X-axis).
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Figure 8: The effect of utilization: The normalized monthly CE rate as a function of CPU utilization (left) and memory
allocated (right).
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Figure 9: Isolating the effect of utilization: The normalized monthly CE rate as a function of CPU utilization (left)
and memory allocated (right), while controlling for temperature.

One might ask whether utilization is just a proxy for tem-
perature, where higher utilization leads to higher system
temperatures, which then cause higher error rates. In Fig-
ure 9, we therefore isolate the effects of utilization from those
of temperature. We divide the observed temperature values
into deciles and report for each range the observed error
rates when utilization was ”high” or “low”. High utilization
means the utilization (CPU utilization and allocated mem-
ory, respectively) is above median and low means the utiliza-
tion was below median. We observe that even when keeping
temperature fixed and focusing on one particular tempera-
ture decile, there is still a huge difference in the error rates,
depending on the utilization. For all temperature levels, the
correctable error rates are by a factor of 2–3 higher for high
utilization compared to low utilization.

The higher error rate for higher utilization levels might
simply be due to a higher detection rate of errors, not an
increased incidence of errors. For Platforms A and B, which
do not employ a memory scrubber, this might be the case.
However, we note that for Platforms C and D, which do use
memory scrubbing, the number of reported soft errors should
be the same, independent of utilization levels, since errors
that are not found by a memory access, will be detected
by the scrubber. The higher incidence of memory errors at
higher utilizations must therefore be due to a different error
mechanism, such as hard errors or errors induced on the
datapath, either in the DIMMs or on the motherboard.

5.4 Aging
Age is one of the most important factors in analyzing

the reliability of hardware components, since increased er-
ror rates due to early aging/wear-out limit the lifetime of a
device. As such, we look at changes in error behavior over
time for our DRAM population, breaking it down by age,
platform, technology, correctable and uncorrectable errors.

5.4.1 Age and Correctable Errors
Figure 10 shows normalized correctable error rates as a

function of age for all platforms (left) and for four of the most
common DIMM configurations (platform, manufacturer and
capacity). We observe that age clearly affects the correctable
error rates for all platforms.

For a more fine-grained view of the effects of aging, we
consider the mean cumulative function (MCF) of errors. In-
tuitively, the MCF value for a given age x represents the
expected number of errors a DIMM will have seen by age x.
That is, for each age point, we compute the number of
DIMMs with errors divided by the total number of DIMMs
at risk at that age and add this number to the previous
running sum, hence the term cumulative. The use of a cu-
mulative mean function helps visualizing trends, as it allows
us to plot points at discrete rates. A regular age versus rate
plot would be very noisy if plotted at such a fine-granularity.

The left-most graph in Figure 11 shows the MCF for all
DIMMs in our population that were in production in Jan-
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Figure 10: The effect of age: The normalized monthly rate of experiencing a CE as a function of age by platform (left)
and for four common DIMM configurations (right). We consider only DIMMs manufactured after July 2005, to exclude very
old platforms (due to a rapidly decreasing population).

uary 2007 and had a correctable error. We see that the
correctable error rate starts to increase quickly as the pop-
ulation ages beyond 10 months up until around 20 months.
After around 20 months, the correctable error incidence re-
mains constant (flat slope).

The flat slope means that the error incidence rates reach a
constant level, implying that older DIMMs continue to have
correctable errors (even at an increased pace as shown by
Figure 10), but there is not a significant increase in the in-
cidence of correctable error for other DIMMs. Interestingly,
this may indicate that older DIMMs that did not have cor-
rectable errors in the past, possibly will not develop them
later on.

Since looking at the MCF for the entire population might
confound many other factors, such as platform and DRAM
technology, we isolate the aging effect by focusing on one in-
dividual platform. The second graph from the left in Figure
11 shows the MCF for correctable errors for Platform C ,
which uses only DDR1 RAM. We see a pattern very similar
to that for the entire population. While not shown, due to
lack of space, the shape of the MCF is similar for all other
platforms. The only difference between platforms is the age
when the MCF begins to steepen.

We also note the lack of infant mortality for almost all
populations: none of the MCF figures shows a steep incline
near very low ages. We attribute this behavior to the weed-
ing out of bad DIMMs that happens during the burn-in of
DIMMs prior to putting them into production.

In summary, our results indicate that age severely affects
correctable error rates: one should expect an increasing in-
cidence of errors as DIMMs get older, but only up to a cer-
tain point, when the incidence becomes almost constant (few
DIMMs start to have correctable errors at very old ages).
The age when errors first start to increase and the steepness
of the increase vary per platform, manufacturer and DRAM
technology, but is generally in the 10–18 month range.

5.4.2 Age and Uncorrectable Errors
We now turn to uncorrectable errors and aging effects.

The two right-most graphs in Figure 11 show the mean cu-
mulative function for uncorrectable errors for the entire pop-
ulation of DIMMs that were in production in January 2007,
and for all DIMMs in Platform C , respectively. In these

figures, we see a sharp increase in correctable errors at early
ages (3-5 months) and then a subsequent flattening of error
incidence. This flattening is due to our policy of replacing
DIMMs that experience uncorrectable errors, and hence the
incidence of uncorrectable errors at very old ages is very low
(flat slope in the figures).

In summary, uncorrectable errors are strongly influenced
by age with slightly different behaviors depending on the
exact demographics of the DIMMs (platform, manufacturer,
DIMM technology). Our replacement policy enforces the
survival of the fittest.

6. RELATED WORK
Much work has been done in understanding the behav-

ior of DRAM in the laboratory. One of the earliest pub-
lished work comes from May and Woods [11] and explains
the physical mechanisms in which alpha-particles (presum-
ably from cosmic rays) cause soft errors in DRAM. Since
then, other studies have shown that radiation and errors
happens at ground level [16], how soft error rates vary with
altitude and shielding [23], and how device technology and
scaling [3,9] impact reliability of DRAM components. Bau-
mann [3] shows that per-bit soft-error rates are going down
with new generations, but that the reliability of the system-
level memory ensemble has remained fairly constant.

All the above work differs from ours in that it is limited to
laboratory studies and focused on only soft errors. Very few
studies have examined DRAM errors in the field, in large
populations. One such study is the work by Li et al. which
reports soft-error rates for clusters of up to 300 machines.
Our work differs from Li’s in the scale of the DIMM-days ob-
served by several orders of magnitude. Moreover, our work
reports on uncorrectable as well as correctable errors, and
includes analysis of covariates commonly thought to be cor-
related with memory errors, such as age, temperature, and
workload intensity.

We observe much higher error rates than previous work.
Li et al cite error rates in the 200–5000 FIT per Mbit range
from previous lab studies, and themselves found error rates
of < 1 FIT per Mbit. In comparison, we observe mean
correctable error rates of 2000–6000 per GB per year, which
translate to 25,000–75,000 FIT per Mbit. Furthermore, for
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Figure 11: The effect of age: The two graphs on the left show the mean cumulative function for CEs for all DIMMs in
production in January 2007 until November 2008, and for Platform C , respectively. The two graphs on the right show for
the same two populations the mean cumulative function for UEs.

DIMMs with errors we observe median CE rates from 15 –
167 per month, translating to a FIT range of 778 – 25,000
per Mbit. A possible reason for our wider range of errors
might be that our work includes both hard and soft errors.

7. SUMMARY AND DISCUSSION
This paper studied the incidence and characteristics of

DRAM errors in a large fleet of commodity servers. Our
study is based on data collected over more than 2 years and
covers DIMMs of multiple vendors, generations, technolo-
gies, and capacities. All DIMMs were equipped with error
correcting logic (ECC) to correct at least single bit errors.

Our study includes both correctable errors (CE) and un-
correctable errors (UE). Correctable errors can be handled
by the ECC and are largely transparent to the application.
Uncorrectable errors have more severe consequences, and in
our systems lead to a machine shut-down and replacement of
the affected DIMM. The error rates we report include both
soft errors, which are randomly corrupted bits that can be
corrected without leaving permanent damage, and hard er-
rors, which are due to a physical defect and are permanent.
Below we briefly summarize our results and discuss their im-
plications.

Conclusion 1: We found the incidence of memory errors
and the range of error rates across different DIMMs to be
much higher than previously reported.

About a third of machines and over 8% of DIMMs in
our fleet saw at least one correctable error per year. Our
per-DIMM rates of correctable errors translate to an aver-
age of 25,000–75,000 FIT (failures in time per billion hours
of operation) per Mbit and a median FIT range of 778 –
25,000 per Mbit (median for DIMMs with errors), while pre-
vious studies report 200-5,000 FIT per Mbit. The number of
correctable errors per DIMM is highly variable, with some
DIMMs experiencing a huge number of errors, compared to
others. The annual incidence of uncorrectable errors was
1.3% per machine and 0.22% per DIMM.

The conclusion we draw is that error correcting codes are
crucial for reducing the large number of memory errors to
a manageable number of uncorrectable errors. In fact, we
found that platforms with more powerful error codes (chip-
kill versus SECDED) were able to reduce uncorrectable er-
ror rates by a factor of 4–10 over the less powerful codes.
Nonetheless, the remaining incidence of 0.22% per DIMM

per year makes a crash-tolerant application layer indispens-
able for large-scale server farms.

Conclusion 2: Memory errors are strongly correlated.

We observe strong correlations among correctable errors
within the same DIMM. A DIMM that sees a correctable
error is 13–228 times more likely to see another correctable
error in the same month, compared to a DIMM that has not
seen errors. There are also correlations between errors at
time scales longer than a month. The autocorrelation func-
tion of the number of correctable errors per month shows
significant levels of correlation up to 7 months.

We also observe strong correlations between correctable
errors and uncorrectable errors. In 70-80% of the cases an
uncorrectable error is preceded by a correctable error in the
same month or the previous month, and the presence of
a correctable error increases the probability of an uncor-
rectable error by factors between 9–400. Still, the absolute
probabilities of observing an uncorrectable error following a
correctable error are relatively small, between 0.1–2.3% per
month, so replacing a DIMM solely based on the presence of
correctable errors would be attractive only in environments
where the cost of downtime is high enough to outweigh the
cost of the expected high rate of false positives.

Conclusion 3: The incidence of CEs increases with age,
while the incidence of UEs decreases with age (due to re-
placements).

Given that DRAM DIMMs are devices without any me-
chanical components, unlike for example hard drives, we see
a surprisingly strong and early effect of age on error rates.
For all DIMM types we studied, aging in the form of in-
creased CE rates sets in after only 10–18 months in the field.
On the other hand, the rate of incidence of uncorrectable
errors continuously declines starting at an early age, most
likely because DIMMs with UEs are replaced (survival of
the fittest).

Conclusion 4: There is no evidence that newer genera-
tion DIMMs have worse error behavior.

There has been much concern that advancing densities in
DRAM technology will lead to higher rates of memory er-
rors in future generations of DIMMs. We study DIMMs in
six different platforms, which were introduced over a period
of several years, and observe no evidence that CE rates in-
crease with newer generations. In fact, the DIMMs used in



the three most recent platforms exhibit lower CE rates, than
the two older platforms, despite generally higher DIMM ca-
pacities. This indicates that improvements in technology are
able to keep up with adversarial trends in DIMM scaling.

Conclusion 5: Within the range of temperatures our
production systems experience in the field, temperature has
a surprisingly low effect on memory errors.

Temperature is well known to increase error rates. In
fact, artificially increasing the temperature is a commonly
used tool for accelerating error rates in lab studies. Interest-
ingly, we find that differences in temperature in the range
they arise naturally in our fleet’s operation (a difference of
around 20C between the 1st and 9th temperature decile)
seem to have a marginal impact on the incidence of memory
errors, when controlling for other factors, such as utilization.

Conclusion 6: Error rates are strongly correlated with
utilization.

Conclusion 7: Error rates are unlikely to be dominated
by soft errors.

We observe that CE rates are highly correlated with sys-
tem utilization, even when isolating utilization effects from
the effects of temperature. In systems that do not use mem-
ory scrubbers this observation might simply reflect a higher
detection rate of errors. In systems with memory scrubbers,
this observation leads us to the conclusion that a significant
fraction of errors is likely due to mechanism other than soft
errors, such as hard errors or errors induced on the datap-
ath. The reason is that in systems with memory scrubbers
the reported rate of soft errors should not depend on uti-
lization levels in the system. Each soft error will eventually
be detected (either when the bit is accessed by an applica-
tion or by the scrubber), corrected and reported. Another
observation that supports Conclusion 7 is the strong corre-
lation between errors in the same DIMM. Events that cause
soft errors, such as cosmic radiation, are expected to happen
randomly over time and not in correlation.

Conclusion 7 is an interesting observation, since much pre-
vious work has assumed that soft errors are the dominating
error mode in DRAM. Some earlier work estimates hard
errors to be orders of magnitude less common than soft er-
rors [21] and to make up about 2% of all errors [1]. Con-
clusion 7 might also explain the significantly higher rates of
memory errors we observe compared to previous studies.
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