A Simple Linear Ranking Algorithm Using
Query Dependent Intercept Variables

Nir Ailon
Google Research, 76 Ninth Ave, 4th Floor, New York NY 10011

Abstract. The LETOR website contains three information retrieval
datasets used as a benchmark for testing machine learning ideas for
ranking. Algorithms participating in the challenge are required to as-
sign score values to search results for a collection of queries, and are
measured using standard IR ranking measures (NDCG, precision, MAP)
that depend only the relative score-induced order of the results. Simi-
larly to many of the ideas proposed in the participating algorithms, we
train a linear classifier. In contrast with other participating algorithms,
we define an additional free variable (intercept, or benchmark) for each
query. This allows expressing the fact that results for different queries are
incomparable for the purpose of determining relevance. The cost of this
idea is the addition of relatively few nuisance parameters. Our approach
is simple, and we used a standard logistic regression library to test it.
The results beat the reported participating algorithms. Hence, it seems
promising to combine our approach with other more complex ideas.

1 Introduction

The LETOR benchmark dataset [6] http://research.microsoft.com/users/LETOR/
(version 2.0) contains three information retrieval datasets used as a benchmark

for testing machine learning ideas for ranking. Algorithms participating in the
challenge are required to assign score values to search results for a collection

of queries, and are measured using standard IR ranking measures (NDCG@n,
precision@n and MAP - see [6] for details), designed in such a way that only

the relative order of the results matters. The input to the learning problem is

a list of query-result records, where each record is a vector of standard IR fea-

tures together with a relevance label and a query id. The label is either binary
(irrelevant or relevant) or trinary (irrelevant, relevant or very relevant).

All reported algorithms used for this task on LETOR website [2,3,5,7-9]
rely on the fact that records corresponding to the same query id are in some
sense comparable to each other, and cross query records are incomparable. The
rationale is that the IR measures are computed as a sum over the queries, where
for each query a nonlinear function is computed. For example, RankSVM [5] and
RankBoost [3] use pairs of results for the same query to penalize a cost function,
but never cross-query pairs of results.

The following approach seems at first too naive compared to others: Since
the training information is given as relevance labels, why not simply train a
linear classifier to predict the relevance labels, and use prediction confidence as
score? Unfortunately this approach fares poorly. The hypothesized reason is that
judges’ relevance response may depend on the query. To check this hypothesis,

we define an additional free variable (intercept or benchmark) for each query.
This allows expressing the fact that results for different queries are incomparable
for the purpose of determining relevance. The cost of this idea is the addition of
relatively few nuisance parameters. Our approach is extremely simple, and we
used a standard logistic regression library to test it on the data. This work is
not the first to suggest query dependent ranking, but it is arguably the simplest,
most immediate way to address this dependence using linear classification before
other complicated ideas should be tested. Based on our judgment, other reported
algorithms used for the challenge are more complicated, and our solution is
overall better on the given data.

2 Theory and Experiments

Let Qi, i = 1,...,n be a sequence of queries, and for each i let R;1,..., Rim,
denote a corresponding set of retrieved results. For each i € [n] and j € [my]
let @55 = (®;;(1),...P;;(k)) € R* denote a real valued feature vector. Here, the
coordinates of @;; are standard IR features. Some of these features depend on the
result only, and some on the query-result pair, as explained in [6]. Also assume
that for each 4, j there is a judge’s response label L;; € O, where O is a finite
set of ordinals. In the TREC datasets (TD2003 and TD2004), O = {0, 1}. In the
OHSUMED dataset O = {0, 1,2}. Higher numbers represent higher relevance.
The Model. We assume the following generalized linear model for L;; given
®;; using the logit link. Other models are possible, but we chose this one for
simplicity. Assume first that the set of ordinals is binary: © = {0, 1}. There is a
hidden global weight vector w € R*. Aside from w, there is a query dependent
parameter @; € IR corresponding to each query ;. We call this parameter
a benchmark or an intercept. The intuition behind defining this parameter is
to allow for a different relevance criterion to different queries. The probability
distribution Pr,, e, (L:j|Q:, Ri;) of response to result j for query ¢ is given by

1 1

Pr (Li; = 11Q;, Rij) = wpé‘(Lij =0|Qs, Rij) = 11w, —0;

o3, TG oty

In words, the probability of result j for query i deemed relevant is ©; —w-P;;
passed through the logit link, where w - @;; is vector dot product. This process
should be thought of as a statistical comparison between the value of a search
result R;; (obtained as a linear function of its feature vector @;;) to a benchmark
©;. In our setting, both the linear coefficients w and the benchmark ©4,...,0,
are variables which can be efficiently learnt in the maximum likelihood (super-
vised) setting. Note that the total number of variables is n (number of queries)
plus k (number of features).

Observation: For any weight vector w, benchmark variable @; correspond-
ing to query @; and two result incides j, k,

w,&; w,o&;

This last observation means that for the purpose of ranking candidate results for
a specific query); in decreasing order of relevance likelihood, the benchmark
parameter ©; is not needed. Indeed, in our experiments below the benchmark

variables will be used only in conjunction with the training data. In testing, this
variable will neither be known nor necessary.

The Trinay Case. As stated above, the labels for the OHSUMED case are
trinary: O = {0, 1,2}. We chose the following model to extend the binary case.
Instead of one benchmark parameter for each query @Q; there are two such pa-
rameters, ©F , ©F (High/ Low) with ©f > ©F. Giver a candidate result R;; to
query @; and the parameters, the probability distribution on the three possible
ordinals is: 1

(1+e“”4’ij*@iH) (1+ew’4’ij7@iL) X=0

1 _
B | G [Coe e B
P 1 _
(Lreo? =70 X =2
In words, the result R;; is statistically compared against benchmark O T1fit
is deemed higher than the benchmark, the label 2 (”very relevant”) is outputted
as response. Otherwise, the result is statistically compared against benchmark
OF, and the resulting comparison is either 0 (irrelevant) or 1 (relevant).’ The
model is inspired by Ailon and Mohri’s QuickSort algorithm, proposed as a
learning method in their recent paper [1]: Pivot elements (or, benchmarks) are
used to iteratively refine the ranking of data.

Experiments. We used an out of the box implementation of logistic regres-
sion in R to test the above ideas. Each one of the three datasets includes 5
folds of data, each fold consisting of training, validation (not used) and test-
ing data. From each training dataset, the variables w and ©; (or w,0 6OF in
the OHSUMED case) were recovered in the maximum likelihood sense (using
logistic regression). Note that the constraint @7 > OF was not enforced, but
was obtained as a byproduct. The weight vector w was then used to score the
test data. The scores were passed through an evaluation tool provided by the
LETOR website.

Results. The results for OHSUMED are summarized in Tables 1, 2, and 7. The
results for TD2003 are summarized in Tables 3, 4, and 7. The results for TD2004
are summarized in Tables 5, 6, and 7. The significance of each score separately
is quite small (as can be seen by the standard deviations), but it is clear that
overall our method outperforms the others. For convenience, the winning average
score (over 5 folds) is marked in red for each table column.

Conclusions and further ideas e In this work we showed that a simple out-of-
the-box generalized linear model using logistic regression performs as least as well
the state of the art in learning ranking algorithms if a separate intercept variable
(benchmark) is defined for each query e In a more eleborate IR system, a separate
intercept variable could be attached to each pair of query x judge (indeed, in
LETOR the separate judges’ responses were aggregated somehow, but in general

1 A natural alternative to this model is the following: Statistically compare against
OF to decide of the result is irrelevant. If it is not irrelevant, compare against ©F
to decide between relevant and very relevant. In practice, the model proposed above
gave better results.

@2 @4 Q6 @8 @10
This 0.491 £ 0.086|0.480 £ 0.058{0.458 4+ 0.055[0.448 + 0.054|0.447 £ 0.047
RankBoost 0.483 + 0.079(0.461 4+ 0.063(0.442 + 0.058|0.436 + 0.044|0.436 + 0.042
RankSVM 0.476 +0.091{0.459 + 0.059(0.455 + 0.054|0.445 + 0.057|0.441 £ 0.055
FRank 0.510 +0.074(0.478 + 0.060(0.457 + 0.062|0.445 + 0.054|0.442 £ 0.055
ListNet 0.497 4+ 0.062|0.468 + 0.065|0.451 + 0.056(0.451 4+ 0.050|0.449 + 0.040
AdaRank.MAP (0.496 4+ 0.100{0.471 + 0.075|0.448 + 0.070{0.443 + 0.058/|0.438 £+ 0.057
AdaRank.NDCG|0.474 £ 0.091|0.456 £ 0.057|0.442 4+ 0.055(0.441 4+ 0.048]0.437 + 0.046

Table 1. OHSUMED: Mean + Stdev for NDCG over 5 folds

@2 @4 Q6 @8 @10
This 0.610 4 0.092{0.598 + 0.082]0.560 + 0.090{0.526 + 0.092|0.511 + 0.081
RankBoost |0.595 + 0.090{0.562 4 0.081(0.525 4 0.093|0.505 + 0.072{0.495 + 0.081
RankSVM 0.619 4 0.096|0.579 £ 0.072|0.558 + 0.077|0.525 4 0.088|0.507 £ 0.096
FRank 0.619 4+ 0.051{0.581 + 0.079(0.534 £ 0.098|0.501 £ 0.091|0.485 £ 0.097
ListNet 0.629 + 0.080(0.577 + 0.097]0.544 4+ 0.098]0.520 + 0.098]0.510 + 0.085
AdaRank.MAP [0.605 4+ 0.102(0.567 4+ 0.087|0.528 + 0.102|0.502 + 0.087|0.491 + 0.091
AdaRank.NDCG|0.605 £ 0.099|0.562 £ 0.063|0.529 4+ 0.073(0.506 + 0.073]0.491 + 0.082

Table 2. OHSUMED: Mean + Stdev for precision over 5 folds

@2 @4 @6 @8 Q@10
This 0.430 + 0.179]0.398 + 0.146]0.375 4+ 0.125|0.369 + 0.113]0.360 + 0.105
RankBoost [0.280 4+ 0.097(0.272 + 0.086|0.280 + 0.071|0.282 + 0.074|0.285 + 0.064
RankSVM 0.370 +0.130{0.363 + 0.132]0.341 + 0.118|0.345 £+ 0.117|0.341 £ 0.115
FRank 0.390 4+ 0.143]0.342 + 0.107|0.330 + 0.087(0.332 4+ 0.079|0.336 + 0.074
ListNet 0.430 £+ 0.160|0.386 4+ 0.125[0.386 4+ 0.106{0.373 + 0.104|0.374 + 0.094
AdaRank.MAP (0.320 4+ 0.104(0.268 + 0.120(0.229 + 0.104|0.206 £ 0.093|0.194 £ 0.086
AdaRank.NDCG|0.410 £ 0.207|0.347 4 0.195|0.309 4 0.181|0.286 4+ 0.171|0.270 + 0.161

Table 3. TD2003: Mean + Stdev for NDCG over 5 folds

@2 @4 @6 @8 Q10
This 0.420 £+ 0.192|0.340 4+ 0.161{0.283 4+ 0.131{0.253 + 0.115|0.222 + 0.106
RankBoost |0.270 £ 0.104|0.230 £+ 0.112{0.210 4+ 0.080{0.193 + 0.071{0.178 + 0.053
RankSVM 0.350 4+ 0.132]0.300 + 0.137|0.243 4+ 0.100{0.233 4+ 0.091|0.206 + 0.082
FRank 0.370 4 0.148(0.260 + 0.082(0.223 + 0.043|0.210 + 0.045|0.186 =+ 0.049
ListNet 0.420 £+ 0.164/|0.310 £ 0.129(0.283 4+ 0.090(0.240 4+ 0.075|0.222 + 0.061
AdaRank.MAP |0.310 £ 0.096{0.230 + 0.105|0.163 4+ 0.081|0.125 4+ 0.064|0.102 + 0.050
AdaRank.NDCG|0.400 + 0.203|0.305 4 0.183(0.237 4+ 0.161{0.190 4+ 0.140(0.156 + 0.120

Table 4. TD2003: Mean + Stdev for precision over 5 folds

@2 @4 @6 @8 @10
This 0.473 £ 0.132|0.454 £+ 0.075[0.450 4+ 0.059{0.459 + 0.050{0.472 + 0.043
RankBoost [0.473 4+ 0.055(0.439 + 0.057]0.448 + 0.052|0.461 + 0.036|0.472 £ 0.034
RankSVM 0.433 £ 0.094|0.406 + 0.086{0.397 + 0.082(0.410 4 0.074|0.420 £ 0.067
FRank 0.467 4 0.113]0.435 £ 0.088|0.445 + 0.078(0.455 4 0.055|0.471 £ 0.057
ListNet 0.427 4+ 0.080{0.422 + 0.049(0.418 + 0.057|0.449 + 0.041|0.458 £ 0.036
AdaRank.MAP [0.393 + 0.060(0.387 + 0.086|0.399 + 0.085|0.400 + 0.086|0.406 + 0.083
AdaRank.NDCG|0.360 £+ 0.161|0.377 £ 0.123|0.378 + 0.117(0.380 4+ 0.102|0.388 + 0.093

Table 5. TD2004: Mean + Stdev for NDCG over 5 folds
it is likely that different judges would have different benchmarks as well) e The
simplicity of our approach is also its main limitation. However, it can easily be
implemented in conjunction with other ranking ideas. For example, recent work
by Geng et al. [4] (not evaluated on LETOR) proposes query dependent ranking,

@2 @4 @6 @8 @10

This 0.447 £ 0.146/|0.370 £ 0.095[0.316 4+ 0.076{0.288 + 0.076|0.264 + 0.062
RankBoost [0.447 4 0.056{0.347 4 0.083|0.304 £ 0.079|0.277 £ 0.070|0.253 £ 0.067
RankSVM 0.407 £ 0.098(0.327 = 0.089|0.273 £ 0.083|0.247 £ 0.082|0.225 £ 0.072
FRank 0.433 +0.115(0.340 4+ 0.098]0.311 + 0.082|0.273 + 0.071|0.256 £ 0.071
ListNet 0.407 4+ 0.086{0.357 = 0.087(0.307 £ 0.084|0.287 £ 0.069|0.257 £ 0.059
AdaRank.MAP (0.353 4+ 0.045[0.300 + 0.086|0.282 + 0.068|0.242 + 0.063|0.216 + 0.064
AdaRank.NDCG|0.320 £ 0.139|0.300 £ 0.082(0.262 4+ 0.092(0.232 4+ 0.086|0.207 &+ 0.082

Table 6. TD2004: Mean + Stdev for precision over 5 folds

OHSUMED TD2003 TD2004

This 0.445 4+ 0.065(0.248 4+ 0.075(0.379 + 0.051

RankBoost 0.440 &+ 0.062{0.212 4 0.047]0.384 4 0.043

RankSVM 0.447 4+ 0.067{0.256 + 0.083]0.350 + 0.072

FRank 0.446 4+ 0.062{0.245 4+ 0.065|0.381 + 0.069

ListNet 0.450 + 0.063]0.273 4+ 0.068]0.372 4 0.046

AdaRank.MAP (0.442 4+ 0.061{0.137 4+ 0.063|0.331 + 0.089

AdaRank.NDCG|0.442 + 0.058/0.185 4 0.105(0.299 + 0.088

Table 7. Mean + Stdev for MAP over 5 folds

where the category of a query is determined using a k-Nearest Neighbor method.
It is immediate to apply the ideas here within each category.

References

1.

2.

Nir Ailon and Mehryar Mohri. An efficient reduction of ranking to classification. In
COLT, 2008.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank:
from pairwise approach to listwise approach. In ICML ’07: Proceedings of the 24th
international conference on Machine learning, pages 129-136, New York, NY, USA,
2007. ACM.

Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting
algorithm for combining preferences. J. Mach. Learn. Res., 4:933-969, 2003.
Xiubo Geng, Tie-Tan Liu, Tao Qin, Hang Li, and Heung-Yeung Shum. Query-
dependent ranking with knn. In SIGIR, 2008.

R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for ordinal
regression. In ICANN, 1999.

Tie-Yan Liu, Tau Qin, Jun Xu, Wenying Xiong, and Hang Li. Letor: Benchmark
dataset for research on learning to rank for information retrieval. In LR4IR2007,
in Conjunction with SIGIR, 2007.

. Tao Qin, Xu-Dong Zhang, De-Sheng Wang, Tie-Yan Liu, Wei Lai, and Hang Li.

Ranking with multiple hyperplanes. In SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 279-286, New York, NY, USA, 2007. ACM.

. Ming-Feng Tsai, Tie-Yan Liu, Tao Qin, Hsin-Hsi Chen, and Wei-Ying Ma. Frank:

a ranking method with fidelity loss. In SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 383-390, New York, NY, USA, 2007. ACM.

. Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval. In

SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 391-398, New York, NY,
USA, 2007. ACM.

