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ABSTRACT
Decentralized search by routing queries over a network is
fast emerging as an important research problem, with po-
tential applications in social search as well as peer-to-peer
networks [17, 18]. In this paper, we introduce a novel Social
Query Model (SQM) for decentralized search, which factors
in realistic elements such as expertise levels and response
rates of nodes, and has the Pagerank model and certain
Markov Decision Processes as special cases. In the context
of the model, we establish the existence of a query routing
policy that is simultaneously optimal for all nodes, in that
no subset of nodes will jointly have any incentive to use a
different local routing policy. For computing the optimal
policy, we present an efficient distributed approximation al-
gorithm that is almost linear in the number of edges in the
network. Extensive experiments on both simulated random
graphs and real small-world networks demonstrate the po-
tential of our model and the effectiveness of the proposed
routing algorithm.

1. INTRODUCTION
Decentralized search by routing queries over a network

is fast emerging as an important research problem cutting
across several different areas, with potential applications in
social search as well as peer-to-peer networks [17, 18, 1].
Recent years have seen both theoretical [16, 17, 18] and
empirical studies [1, 32] on decentralized search, with par-
ticular emphasis on small-world networks. In its most basic
form, decentralized search considers a network where any
node can initiate a “query” for which one or more nodes in
the network have a correct “response”. The central task in
decentralized search is to efficiently route the query to one
of the nodes with the correct response, without making use
of a central index of the entire network. In peer-to-peer file
sharing networking, the query may take the form of a re-
quest for a certain audio or video file that may be present in
only a set of live nodes. In a social search setting, the query
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may be a question that gets routed in the social network
until some node in the network gives a correct response.

Existing models in decentralized search typically consider
deterministic models for the nodes, while allowing random-
ized routing policies [17]. In several practical scenarios, in-
cluding social networks as well as peer-to-peer systems, the
nodes are far from deterministic. In a social search setting
where queries are routed between actors in the network, sev-
eral nodes may have the expertise to respond correctly, but
may be too busy to respond. Further, the expertise levels
of different nodes on the topic of query may vary, at times
resulting in an incorrect response being generated.1 Peer-to-
peer networks face response rate issues for rather different
reasons, e.g., the response rate may vary because of sys-
tem/network load or when the node is down. Further, the
type/amount of files shared by the nodes vary widely, hav-
ing the same effect as expertise levels in a social network.
Existing models for decentralized search were not designed
to account for such practical factors.

In this paper, we propose a Social Query Model (SQM) for
decentralized search that takes into account practical factors
such as response rates and expertise levels of nodes. Unlike
existing models, the SQM is a probabilistic model, where
the effectiveness of a routing policy is measured in terms of
the probability of getting an answer. Further, the Pagerank
model as well as certain Markov Decision Processes (MDPs)
can be seen as special cases of the SQM. In the context of
the model, we establish the existence of a query routing
policy that is simultaneously optimal for all nodes, in that
no subset of nodes will jointly have any incentive to use a
different local routing policy. For computing the optimal
policy we present an efficient distributed approximation al-
gorithm that is almost linear in the number of edges in the
network (we describe “almost linear” clearly in Section 3).
Extensive experiments on both simulated random graphs
and real small-world networks demonstrate the potential of
our model and the proposed routing algorithm.

The rest of the paper is organized as follows. In Section 2,
we present the SQM along with its relationship with the
Pagerank model and MDPs. The existence and computation
of the optimal routing policy is discussed in Section 3. In
Section 4, we present extensive experimental results on both
simulated and real networks. We discuss related work in
Section 5 and conclude with a discussion of future work in
Section 6.

1Such considerations are important for question-answer
based social search engines, e.g., iLink (ilink.sri.com/ilink),
Yahoo! Answers (answers.yahoo.com), Yedda (yedda.com).



2. THE SOCIAL QUERY MODEL
Let S = {x1, . . . , xn} be a set of nodes in a network, and

let Ni denote the set of neighbors of xi. We are interested
in studying query routing policies of the nodes in the fol-
lowing setting: Any node xi, upon receiving a query, can
(i) drop the query, (ii) respond to the query, or (iii) for-
ward it to other nodes. The model consists of the following
components:

(i) Expertise: Each node has an expertise level ei ∈ [0, 1].
The expertise level ei indicates the probability with which xi

decides to respond to the query. With probability (1 − ei),
xi decides to forward the query to a neighbor in Ni. We
denote the n× 1 expertise vector across all nodes by e.

(ii) Correctness: When a node xi decides to respond to
a query, which happens with probability ei, let wi ∈ [0, 1]
denote the probability that the answer is correct. We denote
the n× 1 correctness probability vector by w.

(iii) Response Rate: A node xj ∈ Ni, upon receiving a
query from xi, accepts the query with a rate rij ∈ [0, 1], and
decides to drop the query with probability (1 − rij). We
denote the n× n response rate matrix by R.

(iv) Policy: Each node xi has a policy πi of forwarding
the query to any other node in Ni, i.e., πi is a probability
distribution over Ni. Given that xi decides to forward the
query, which happens with probability (1 − ei), it will be
forwarded to xj ∈ Ni, j 6= i with probability πi

j . Node
xj can then decide to accept the forward with probability
rij and ignore the question with probability (1 − rij). The
overall policy for all nodes in the network is a n× n matrix
denoted by Π, whose ith row is πi.

In such a query routing setup, the central object of interest
for a node xi is the probability Pi of getting a correct answer
to a query initiated by xi. Given a policy Π, a node can get a
correct answer (i) if it decides to answer the query and knows
the correct answer, which happens with probability wiei,
or (ii) if it decides to forward the query, with probability
(1−ei), and sends the query to another expert, in particular
to xj with probability πi

j . Then, the expert xj can ignore
the query, with probability (1−rij), or accept the query and
try to get an answer, with probability rij . If xj chooses to
get a correct answer to the query, it gets the answer with
probability Pj . Hence, ∀i, we have the following recursion:

Pi = wiei + (1− ei)
n
X

j∈Ni

πi
j((1− rij)× 0 + rijPj)

= wiei + (1− ei)
n
X

j∈Ni

πi
jrijPj . (2.1)

If P is the vector of probabilities of getting a correct answer,
then we first show that, under fairly general conditions on
(w, e, R), any valid policy matrix Π uniquely determines the
probability vector P . Since self-forward is not allowed in a
valid policy, we have πi

i = 0, Further, let Ci = wiei and
aij = πi

jrij , so that C = w ◦ e and A = Π ◦ R, where ◦
denotes a Hadamard product. Further, let D = diag(1− e).
Then, in vector/matrix notation, we have

P = C + DAP ⇒ P = (I−DA)−1C .

The last expression gives a unique P if (I − DA) is non-

singular, which is true if ‖DA‖p < 1 according to some ma-
trix norm [11]. The following result establishes a sufficiency
condition for this, and hence for P to be uniquely defined.

Proposition 1 For a given (e, R, Π), the probability vector
P is uniquely determined if ∀i, ei > 0 or ∃j′, πi

j′ > 0 and
rij′ < 1.

The proof of Lemma 1, as well as all other technical proofs,
is given in the Appendix. We denote the probability vector
corresponding to a policy Π as PΠ and let λ = maxi,j(1 −
ei)rij so that λ < 1. Next, we show that the basic Pager-
ank/random walk model [8] can be seen as a special case of
the social query model.

Proposition 2 In the social query model, let ei = 0 and
∀i, ∀j,∈ Ni, rij = 1, where Ni denotes the neighbors of xi.
Then, if πi is a uniform distribution over Ni, the SQM re-
duces to the basic Pagerank/random walk model.

Finally, note that the proposed social query model has
important similarities with certain classes of Markov Deci-
sion Processes (MDPs) [6, 7, 24]. In the context of MDPs,
consider a query in SQM as an agent and the nodes in SQM
as states. With the assumption that ∀i, ei = e, ∀i, ∀j,∈
Ni, rij = 1, SQM reduces to a deterministic MDP with re-
ward Ci = wie, discount factor γ = (1 − e), value Pi and
policy πi in state xi, i.e.,

Pi = Ci + γ
X

j∈Ni

πi
jPj .

In general, SQM allows the possibility of different expertise
levels ei, and the possibility of rejection by the next state
xj with probability (1 − rij), which makes SQM somewhat
different from a standard MDP. For example, the discount
factor γ in a (deterministic) MDP is a constant across all
states and has no dependency on the policy πi, whereas in
case of SQMs, the “discount factor” depends on the state
xi forwarding the query, the state xj to which the query
is being forwarded, and the policy πi used for forwarding,
which effectively determines how the rij terms gets weighed.
However, due to the significant similarities between the two
models, we derive equally useful results for SQMs by appro-
priately extending existing arguments for MDPs [7, 24].

3. ANALYSIS AND ALGORITHMS
We establish the existence of a policy that is simultane-

ously optimal for all nodes, and give a distributed approxi-
mation algorithm for computing the optimal policy.

3.1 Existence of Optimal Policy
One can view the SQM as a multi-party game, where the

players are the nodes of the network and the payoff is PΠ,
the probability values of nodes getting answers by follow-
ing policy Π. Given any policy Π, there is another natural
question one can ask: is Π the best policy, or is it possible
to get a policy Π′ which is better than Π? The notion of
“best” needs a careful definition, since we are working with
vector-valued payoffs (PΠ is a vector of probabilities). We
introduce the following definition to quantify the goodness
of a policy:



Definition 1 A policy Π is called a Nash policy, if no single
node xi has any incentive to change its policy πi, given that
all other nodes (other than i) are following their prescribed
policy (indicated by Π−i).

The above definition exactly follows the notion of Nash equi-
librium in a multi-party game. However, since query routing
a social network setting is not an adversarial game, it will be
common for actors to collude and jointly change their poli-
cies to get higher payoffs, potentially at the cost of lowering
the payoff for other actors. Such considerations motivate a
stronger notion of goodness of a policy:

Definition 2 A policy Π is called a social policy, if no group
of actors Xh ∈ 2X has any incentive to change their poli-
cies ΠXh , given that all other actors are following their pre-
scribed policies Π−Xh .

A social policy follows the idea of social utility in welfare
economics [10, 12]. It is a significantly stronger notion of
goodness, since every possible subset of users is required to
be “happy” using this policy, and there is no incentive for
deviation for a single actor or any group of actors. Clearly,
a social policy is a Nash policy, by definition. Based on the
above definitions, two questions are natural to ask:

(i) Does a Nash policy always exist for any given SQM?

(ii) Does a social policy always exist for any given SQM?

The questions appear tricky to answer since the SQM can-
not be converted to a multi-party normal form game, for
which extensive literature exists [22]. Surprisingly, the an-
swer to both questions is a “Yes.” In particular, we can
prove the existence of a social policy for arbitrary SQMs,
and the existence of a Nash policy follow as a special case.

Let MD be the set of all deterministic policies, which in-
volve forwarding the query to one agent deterministically.
Let PD be the space of payoff vectors generated by Π ∈MD.
Since, one can define only a partial order among elements in
PD, we uniquely define P ∗

D = supΠ∈MD
PΠ as a pointwise

supremum, noting that P ∗
D may not be achievable by any

Π ∈MD. Further, for any P , let

LP = sup
Π∈MD

{C + DAΠP} ,

where AΠ = Π◦R. Let MR be the set of randomized policies,
which involve forwarding the query to one of the neighbor-
ing agents following a distribution. Let P ∗

R = supΠ∈MR
PΠ.

Then, the following Lemma shows that the best determinis-
tic policy is as good as the best randomized policy.

Lemma 1 For all P , we have

sup
Π∈MD

{C + DAΠP} = sup
Π∈MR

{C + DAΠP} .

Hence, P ∗
D = P ∗

R = supΠ∈MR
PΠ.

For convenience, we denote the optimal payoff correspond-
ing to the social policy as P ∗ so that P ∗ = P ∗

D = P ∗
R. Next,

we focus on a characterization of the optimal payoff P ∗ cor-
responding to the social policy. In particular, we present
the following key result that shows that if there is a achiev-
able payoff P that cannot be increased by any deterministic
policy, then P is the optimal payoff P ∗.

Theorem 1 If ∃P ∈ PD such that P = LP , then P = P ∗.

Theorem 1 effectively shows that the optimal payoff, if it
exists, will be the fixed point of the operator L. In the
following theorem, we show that L indeed has a fixed point,
and the corresponding optimal payoff vector P ∗ determines
the deterministic social policy.

Theorem 2 There exists P0 ∈ PD such that LP0 = P0.
Further, P0 = P ∗ is the optimal payoff, and the correspond-
ing Π0 is the social policy.

Thus, we have established the existence of a deterministic
social policy that corresponds to the optimal payoff vector
P ∗, which can be alternatively characterized as the fixed
point of the operator L.

3.2 Computing the Optimal Policy
We focus on efficient algorithms for computing the op-

timal policy. One can always construct a naive algorithm
that runs as follows: start with an arbitrary deterministic
policy Π0 with corresponding probability vector P0, and go
iteratively over all individual policies to check if making any
changes leads to an improvement in P . Such an approach
is akin to the greedy strategy used by the KMeans family
of algorithm [5], as well as policy iteration algorithms in the
MDP literature [19]. Unfortunately, such an approach re-
quires that PΠ be evaluated at every step, which in itself is
an expensive operation, and it is not clear how many itera-
tions are needed for such an algorithm to converge. Instead,
we give a distributed algorithm that efficiently computes a
good approximation to the optimal policy.

We start by presenting a simple observation on the struc-
ture of deterministic routing paths emanating from any node,
assuming infinitely many hops. Let σi denote the path
xi, u1, . . . , uk, v1, . . . , vl, v1, where each node is unique until
the first repetition of a node. Clearly, k ≤ (n − 1) as there
are n unique nodes in the network. Let xiūv̄ denote the path
σi without the repeating node v1, and let σ∞

i = xiūv̄v̄ · · ·
denote the infinite path that goes through xiū and infinitely
loops through v̄. The following result shows that the paths
corresponding to all deterministic policies are of the form of
σ∞

i .

Proposition 3 For any deterministic policy Π, the infinite
path of a query initiated by xi will be of the form of σ∞

i .

The structure of the deterministic paths is quite straight-
forward, and it is apparent that a provably polynomial time
algorithm can be designed to get the optimal routing pol-
icy.2 However, the following two considerations about the
practical applicability of the model motivate us to design a
fast distributed approximation algorithm:

1. Any optimal algorithm will involve all-pairs-shortest
path style computations [23, 13], leading to cubic or
higher-order polynomial complexity. Real-world graphs,
e.g., social networks, are often very large so that run-
ning such algorithms can be computationally prohibitive.

2The interested reader is referred to [19, 23, 13, 20] for ideas
on designing the optimal algorithm.



2. In practice, because of computational, storage, as well
as privacy constraints, it is highly desirable that the
algorithm be run in a purely distributed fashion, where
each node in the graph can perform local computations
based on its own neighborhood.

Let Π∗ be an optimal deterministic policy with probability
vector P ∗. Let Π∗

T be the optimal deterministic policy when
the query is allowed to be forwarded for at most T hops, and
let P ∗

T be the corresponding probability vector. Note that
limT→∞ Π∗

T = Π∗ and limT→∞ P ∗
T = P ∗. Now, consider

using the policy Π∗
T in the general case, where the query

is allowed to be forwarded an unbounded number of times.
Clearly, the corresponding probability vector PΠ∗

T
≤ P ∗,

since P ∗ is optimal in the general case. However, as the
following result shows, PΠ∗

T
approaches P ∗ exponentially

fast with T .

Theorem 3 If PΠ∗

T
is the probability vector corresponding

to Π∗
T in the general setting of potentially infinitely many

forwards, then, with c = log(1/λ) > 0,

‖PΠ∗

T
− P ∗‖ ≤ exp(−cT ) ,

where ‖ · ‖ denotes the sup-norm,

In particular, for T = n, we note that PΠ∗

n
will be within

ǫ′ ≤ exp(−cn) of the optimal probability vector P ∗. The
result gives a strong justification for developing a fast al-
gorithm for getting an approximation to Π∗

n, which will be
provably close to the optimal solution. We propose the fol-
lowing value iteration style algorithm for obtaining such a
policy, where the superscript (t) for any variable represents
it’s value at iteration t:

1. Let v
(0)
i ← ei, [i]

n
1

2. For t = 1, . . . , n

(a) j∗i ← argmaxj∈Ni
rijv

(t−1)
j , [i]n1

(b) v
(t)
i ← wiei + (1− ei)rij∗

i
v
(t−1)
j∗
i

3. ∀i, set πi
j∗
i

= 1, and πi
j = 0 for j 6= j∗i

The following result shows that the algorithm returns ǫ-
optimal policy in almost linear time.

Theorem 4 Let mz be the maximum number of neighbors
that any node has in the SQM. Then, the distributed algo-
rithm returns ǫ-optimal policy in O(nmz) time, where ǫ ≤
4λ

1−λ
exp(−cn) with c = log(1/λ) > 0.

Finally, we explain why the algorithm runs in “almost lin-
ear” time. Let E denote the number of edges in the network.
If the degree distribution of the network is not very skewed,
then E is Θ(nmz). In such cases, the runtime complexity
of the algorithm will be O(E), i.e., linear in the number of
edges in the network. If the degree distribution is skewed,
nmz > E, then the algorithm is super-linear, with a worst-
case factor of O(n2/E) over a linear algorithm.

4. EXPERIMENTS
We performed detailed experiments on both simulated

and real world networks to demonstrate that optimal routing
of messages using the SQM model is better (as quantified by
different metrics) than other routing policies, e.g., random
policy, degree-based policy [1].

4.1 Datasets
We ran our experiments on four types of networks, two

simulated and two real-world.

1. Simulated networks: We generated networks using two
popular random graph models.

(i) ER model: This is a random graph model popular-
ized by Erdos and Renyi [9], where one starts with n nodes
and adds edges between each pair of nodes independently
following a fixed probability p.

(ii) BA model: Barabasi and Albert [2] proposed a ran-
dom graph model where a graph is grown according to the
preferential attachment principle: when a new node joins
the graph, it links to an existing node with a probability
proportional to the existing in-degree of a node. The BA
model is considered to be a more realistic model (compared
to ER) of real-world networks, since it has some properties
of small-world graphs, e.g. scale-free structure [16].

2. Real networks: We ran experiments on two real-world
networks from the Internet domain that exhibit power-law
degree distribution and small-world connectivity.3

(i) California query network (CA): The CA network com-
prises the top 10,000 webpages that are returned as a match
to the search engine query “California”, using a 2001 snap-
shot of the Internet. The webpages correspond to the nodes,
and the hyperlinks in between the webpages are the links.
After removing some dead links, the network comprises 9664
nodes with an edge density of 0.034% (i.e., the average num-
ber of neighbors per node is 3.28).

(ii) Autonomous System (AS) network: The AS network
consists of AS-level connectivities from Oregon route-views
of the Internet in 2002. Nodes correspond to autonomous
peers, and links in the network signify direct peering rela-
tions between the nodes. There are 26,590 nodes, with an
edge density of 0.0075% (i.e., the average number of neigh-
bors per node is 1.99).

4.2 Methodology
As outlined in Section 2, the SQM model has three param-

eters that can be modified—expertise, response rate, and
policy. In our experiments, we used different variants of
these parameters.

1. Expertise: We consider two variants for expertise levels.

(i) Random: Expertise ei, for the ith node xi, is sampled
uniformly at random from [0,1].

(ii) Degree-based: Expertise ei is proportional (up to a
small random perturbation) to the in-degree of node xi.
This models the phenomenon that the expertise of a node
in a real social network is often judged by how many other
nodes link to it.

2. Response: We consider two variants for response rates.

(i) Random: Response rate rij of node xj to node xi is
distributed uniformly in [0,1]. The response rate matrix R
has the same sparsity structure as the graph G, implying
that node xj responds only to nodes that are linked to it
in the underlying connection graph. The assumption can
be useful in modeling scenarios where the response rates of

3http://www.cs.cornell.edu/courses/cs685/2002fa/



nodes in the network are not related to the expertise distri-
bution of the nodes, e.g., some members in an organization
have a higher propensity to prompt replying that may be
unrelated to their expertise or that of the query originator.

(ii) Degree-based: Response rate rij is considered to be
sigmoid(ei/ej), to model the phenomenon that the probabil-
ity of node xj responding to node xi is directly proportional
to the expertise ei of node xi (people tend not to ignore
requests from experts), and inversely proportional to the
expertise ej of node xj (experts tend to be often too busy
to respond). A small random perturbation is added to the
sigmoid function, and it is scaled to ensure that rij ∈ [0,1].

3. Policy: We consider three types of policies.

(i) Random: Policy πi
j , of node xi forwarding to node

xj , is distributed uniformly in [0,1], while ensuring that the
self-forwarding probability πi

i for each node xi is 0, and the
probability of xi forwarding a message to its neighbors sums
to 1. The policy matrix R has the same sparsity structure
as the graph G.

(ii) Degree-based: Policy πi
j is proportional to the exper-

tise ej of node xj (up to a small random perturbation), re-
flecting the phenomenon that node xi would tend to forward
messages to its neighbors in a social network with probabil-
ity proportional to their relative expertise.

(iii) Optimal: Policy πi is the optimal policy for the SQM
model, calculated using the value iteration algorithm (de-
scribed in Section 3).

4.3 Results
The main set of experiments, referred to as Expt1, com-

pared the random, degree-based, and optimal policies for
message routing on different combinations of expertise and
referral rate parameters, on all four types of networks.

For the simulated networks, we created graphs with 10,000
nodes using the ER and the BA graph growth models, where
each node was connected on an average to 10 neighbors. For
every network, we simulated 10,000 queries being routed
through the network for different settings of the expertise,
response and policy parameters. The probability wi of the
ith node responding correctly to a message was set to 0.9.

Figures 4.1-4.9 show some of the results of Expt1. In each
plot, the x-axis shows buckets of probability values P of
getting correct answers to a query, and the y-axis is the
number of nodes in the network with probability P lying
in that bucket. These plots show results on some combina-
tions of expertise and response parameters from the choices
mentioned above – the results on all the choice combina-
tions could not be shown because of lack of space, but the
omitted figures showed similar trends. The histogram in
Figure 4.1 demonstrates that on the ER graph with random
expertise and response rates, using the optimal policy gives
much better probability values P , of nodes getting correct
answers to their queries, than the other policies (random
and degree-based). Similar improvement of the optimal pol-
icy over other policies is shown in small-world graphs, as
demonstrated by Figures 4.2 and 4.3 for BA, Figures 4.4
and 4.5 for AS, and Figures 4.6 and 4.7 for CA.

In our experiments on simulated BA graphs with degree-
based expertise and random response, we observed an inter-
esting phenomenon—a large proportion of the nodes in the
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Figure 4.1: Histograms for ER in Expt1 with ran-
dom expertise and random response. The x-axis is
the buckets of probability values of getting correct
answers to a query, while the y-axis is the number
of nodes in the network with probabilities in each
bucket.
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Figure 4.2: Histograms for BA in Expt1 with degree-
based expertise and degree-based response.
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Figure 4.3: Histograms for BA in Expt1 with degree-
based expertise and random response



0 0.2 0.4 0.6 0.8 1
0

2000

4000

Probability of Getting answer (random policy)

H
is

to
gr

am
 c

ou
nt

Histograms for Graph:AS, Expertise:degree, Response:degree

0 0.2 0.4 0.6 0.8 1
0

2000

4000

Probability of Getting answer (degree policy)

H
is

to
gr

am
 c

ou
nt

0 0.2 0.4 0.6 0.8 1
0

2000

Probability of Getting answer (optimal policy)

H
is

to
gr

am
 c

ou
nt

Figure 4.4: Histograms for AS in Expt1 with degree-
based expertise and degree-based response
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Figure 4.5: Histograms for AS in Expt1 with degree-
based expertise and random response
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Figure 4.6: Histograms for CA in Expt1 with degree-
based expertise and degree-based response
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Figure 4.7: Histograms for CA in Expt1 with degree-
based expertise and random response
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Figure 4.8: Bar-graphs for real networks (AS, CA)
in Expt1 with degree-based expertise and degree-
based response
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Figure 4.9: Bar-graphs for simulated networks (ER,
BA) in Expt1 with degree-based expertise and ran-
dom response



network had a probability value of getting correct answers
to their questions very close to 1 (Figure 4.3), much bet-
ter than for the degree-based response (Figure 4.2). On the
real network datasets, AS and CA, the improvement of op-
timal policy over the other policies was again more marked
for random response rather than degree-based response, for
degree-based expertise distribution—the mode of the prob-
ability histogram for the network was at 1 in both graphs
(compare Figure 4.5 to Figure 4.4, Figure 4.7 to Figure 4.6).

We present one possible explanation of this phenomenon.
BA, AS and CA are small-world graphs, and with degree-
based expertise distribution most nodes are non-experts, i.e.,
have low expertise (in the long tail of the degree distribu-
tion). When the response rate is degree-based, the non-
experts will get (i) low response rate from experts, since
experts have a low probability of responding to non-experts
in the degree-based response rate model; (ii) higher response
rate from non-experts, but they will have a low probability of
giving a correct response to the query, since their expertise is
low. In both the cases, the probability of obtaining a correct
response will be lower for non-experts, but this accounts for
most of the nodes in the small-world networks. Therefore,
the probability histogram shifts toward lower values for the
degree-based response policy. Note that for networks that
do not have a small-world structure and where the expertise
is not degree-based, this effect of random response is not
that pronounced (Figure 4.1).

As seen in Figures 4.8 and 4.9, the number of correct an-
swers obtained by the optimal policy is also higher than that
of the degree-based or random policies. This comes at a cost
of higher number of hops in the network, which is not sur-
prising since the policy is optimized to increase the number
of questions answered correctly, but it does not explicitly
decrease the number of hops. However, as seen from the
bar plots, the average number of correct answers per hop
(scaled by the network size, for the purpose of visualiza-
tion) is in most cases best for the optimal policy. Note that
the degree-based policy in most cases did not perform much
better than random policy when evaluated using the prob-
ability histograms, an observation that is consistent with
related previously reported results [1]. However, the degree-
based policy gave better performance than random policy
when compared along number of correct answers per hop,
as shown in Figures 4.8 and 4.9. Due to lack of space, we
could not show further analysis, e.g., showing the distribu-
tion of correct and incorrect answers as the expertise value
is changed, number of queries dropped/ignored, etc.

4.4 Multicast Query Routing in SQM
While the analysis in Section 3 gives a near optimal policy

for unicast forwarding, i.e., when every node can forward to
only one other node, in practice, one may be interested in
multicast forwarding, where any node is allowed to forward
to k ≥ 1 nodes. For a given k, one can derive a simple
greedy strategy for multicast routing based on the optimal
policy for unicast routing as follows:

1. Let G1 be the given network. For h = 1, . . . , k

(a) Let Πh ← the optimal unicast policy.

(b) Let Gh+1 ← Gh\ all edges that participate in Πh.

2. Multicast policy is {Π1, . . . , Πk}.
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Figure 4.10: Bar-graphs for simulated networks
(ER, BA) in Expt2 with random expertise and
degree-based response. X-axis is the type of routing
policy, Y-axis is the number of questions correctly
answered by the network.

Thus, the strategy is to simply find the next-best policy in
each round. Such a multicast policy need not have any prov-
able optimal policies. We performed another experiment,
Expt2, where we compared the performance of this greedy
multicast algorithm for different parameters of expertise, re-
ferral, and policy on the networks considered in Expt1. For
the multicast scenario, we tested the greedy strategy for
routing messages to as many as four neighbors.

Figure 4.10 show the result on simulated graphs for Expt2.
The bar plots show the progressive increase in the number of
questions correctly answered by the network, as the number
of multicasts from each node is increased from one to four.
A notable phenomenon is the diminishing returns from in-
creasing the number of multicasts from each node, whereby
the number of additional correct responses received with
an increasing number of multicasts starts to progressively
decrease (especially for the optimal policy). The multicast
algorithm is a simple greedy strategy that gives good results
in this experiment but is not guaranteed to give optimal re-
sults in all cases. Designing a multicast routing strategy for
the SQM, which would have near optimal properties like the
unicast case, is an interesting area of future research.

5. APPLICATIONS AND RELATED WORK
A very promising area of application and further develop-

ment of SQM is social networks analysis, where the problem
of searching in a social network has generated significant
interest [29, 1], with particular attention to navigation in
complex networks [17], as well as game theoretic incentive
mechanisms for efficient query routing [18]. Another impor-
tant emerging application of SQM-style models is in the do-
main of distributed resource discovery in desktop grids [14,
21]. In a distributed computing setting, a job inserted into
the system by a node has to be routed to a node meet-
ing the minimum requirements for processing the job, while
doing load balancing at the same time [14, 15]. Another po-
tential application area of SQM-style probabilistic models
is in peer-to-peer search [28, 4]. While P2P indexing and
search has been widely studied using distributed hash ta-
bles (DHT), resulting in several successful models, such as



CAN [25], Pastry [26], Chord [27], etc., most existing models
do not have a natural way to handle uncertainties, and are
not secure against attacks by malicious nodes. Since SQM
has no restriction on the underlying graph on which it per-
forms routing, it can be applied to the overlay network for
a P2P service, where the greedy key-based routing will be
replaced by the routing policy recommended by the SQM.
Further, the social network structure provided by SQM can
be leveraged to develop more secure services [31].

6. CONCLUSIONS AND FUTURE WORK
We have discussed a novel Social Query Model (SQM)

for decentralized search by query routing, modeling realis-
tic elements such as expertise levels and response rates of
nodes, and has the Pagerank model and Markov decision
processes as special cases. We introduce the notion of a
social policy that follows the idea of social utility and gener-
alizes the Nash policy, in which no subset of nodes have an
incentive to use a different local routing policy. We demon-
strate that an SQM always has a unique social policy, and
we propose an efficient distributed algorithm for approxi-
mately computing this optimal query routing policy. De-
tailed experiments, on both simulated random graphs and
real small-world networks, demonstrate the effectiveness of
our model and the proposed routing algorithm, using differ-
ent performance metrics.

Several extensions to SQM are of significant interest. The
basic model assumes that the expertise and the response
rate of any node can be effectively represented by single
numbers. In practice, a node can have different expertise
levels and response rates depending on the “topic” of the
query. In the social network setting, extension of the model
to add topics (e.g., topic-based response rates, expertise) or
tags (e.g., tagged forwarding of messages) will be of prac-
tical interest. A known graphical correspondence structure
between network nodes can be used to extend the model
in different ways, e.g., using graphical game-theoretic cost-
benefit analysis to decide if/when a node should attempt
to establish a connection to a new node, performing explo-
ration/exploitation tradeoff calculations (like in reinforce-
ment learning) to decide whether to route a message to an
existing neighbor or a new neighbor. In general, the routing
policy has to be query dependent, which provides a strong
motivation to merge the SQM formalism, which can natu-
rally handle uncertainty, with DHT based systems, which
are good at content driven routing. Another assumption of
our current treatment is that the parameters, e.g., exper-
tise level, response rates, etc., stay constant over time. In
general, the parameters will change over time, e.g., exper-
tise will gradually grow over time, response rate will vary
depending on current load, etc. As a result, it will be neces-
sary to develop an online version of SQM, where one tracks
the optimal policy based on system dynamics. Further, since
multicast routing is an option in certain application settings,
it will be important to design such an algorithm for general
SQMs with near-optimal properties like the unicast algo-
rithm presented in the paper. Finally, since none of the
existing routing approaches, including SQM, has an explicit
safeguard against malicious nodes, it will be important to
try to develop secure routing methods, possibly taking ad-
vantage of network reputation systems [31].
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APPENDIX
Proof of Proposition 1
Let si denote the sum of the elements in the ith row of DA.
Since πi is a probability distribution over the neighbors of
xi, we have

si = (1− ei)Eπi [ri·] = (1− ei)

n
X

j=1

πi
jrij .

Since each rij ≤ 1, Eπi [ri·] ≤ 1. Now, if ei > 0, (1 − ei) <
1⇒ si < 1. On the other hand, if ∃j′, with πi

j′ > 0, rij′ < 1,
then Eπi [ri·] < 1 ⇒ si < 1. Thus, si < 1 if the conditions
are satisfied. Then, we have

‖DA‖∞ = max
1≤i≤n

n
X

j=1

(1− ei)π
i
jrij = max

1≤i≤n
si < 1 .

Hence, (I−DA) is non-singular [11], and P = (I−DA)−1C
is uniquely determined.

Proof of Proposition 2
By definition, we have P = C + DAP . if e = 0, then C = 0
and D = I. Further, ∀i, j, rij = 1 implies A = Π. Hence,
we get P = ΠP , so that P is the primary eigenvector of
Π. In particular, since the policy πi is uniform over Ni, the
corresponding random walk makes equally likely transitions
to one of the neighbors. Thus P is the Pagerank of the
directed graph with sparsity structure as Π.

Proof of Lemma 1
Since MD ⊂ MR, it is sufficient to show that the left-hand
side is at least as big as the right-hand side. Now, for any

ΠR ∈MR, and each component i, we have

sup
j

rijPj ≥ Ej∼π(i) [rijPj ]

sup
j

{Ci + (1− ei)rijPj} ≥ Ci + (1− ei)Ej∼π(i) [rijPj ]

sup
Π∈MD

{C + DAP} ≥ C + DARP ,

where A = Π ◦ R, AR = ΠR ◦ R. Observing that the in-
equality holds for all P and for arbitrary Π ∈ MR on the
right-hand side completes the proof.

Proof of Theorem 1
The statement follows if one can show that (i) if ∃P ∈ PD

such that P ≥ LP , then P ≥ P ∗, and (ii) if ∃P ∈ PD such
that P ≤ LP , then P ≤ P ∗. First, we prove (i). Consider a
policy Π = (d1, d2, . . .) ∈MD. Then, P ≥ LP implies

P ≥ sup
Π∈MD

{C + DAΠP}

⇒ P ≥ C1 + D1A1P

≥ C1 + D1A1(C2 + D2A2P )

= C1 + D1A1C2 + D1A1D2A2P .

After T steps, the inequality can be compactly written as

P ≥ C1 +

T−1
X

τ=1

 

τ
Y

t=1

(DtAt)

!

Cτ+1 +

 

T
Y

t=1

(DtAt)

!

P .

The payoff corresponding to the policy Π ∈MD is given by

PΠ = C + DAPΠ

= C1 + D1A1C2 + D1A1D2A2C3 + . . .

= C1 +
∞
X

τ=1

 

τ
Y

t=1

(DtAt)

!

Cτ+1 .

Then, we have

P−PΠ ≥

 

T
Y

t=1

(DtAt)

!

P−

∞
X

τ=T

 

τ
Y

t=1

(DtAt)

!

Cτ+1 = E1−E2 ,

where E1 and E2 are the two terms in the expression. Next,
we show that as T → ∞, E1 − E2 → 0 so that P ≥ PΠ.
First, note that E1 ≥ 0 and E2 ≥ 0. Let λ = max(1 − ei)
so that with Dλ = diag(λ), D − Dλ ≤ 0 so that DtAt ≤
DλAt = λAt. Since ei > 0,4, λ < 1, and we have

E2 =
∞
X

τ=T

 

τ
Y

t=1

(DtAt)

!

Cτ+1 ≤
∞
X

τ=T

λτ

 

τ
Y

t=1

(At)

!

Cτ+1

Now, note that since 1 ≥ ΠtCτ+1 ≥ Πt′ΠtCτ+1 for any t, t′,
by repeated use of the argument

1 ≥

 

τ
Y

t=1

Πt

!

Cτ+1 =

 

τ
Y

t=1

(Πt ◦Rt + Πt ◦ (1−Rt))

!

Cτ+1

=

 

τ
Y

t=1

(At + Πt ◦ (1−Rt))

!

Cτ+1 ≥

 

τ
Y

t=1

(At)

!

Cτ+1 .

Then,

E2 ≤
∞
X

τ=T

λτ1 =
λT

1− λ
1 .

4Such a condition is easy to ensure by treating non-experts,
i.e., ei = 0, as non-neighbors.



Hence E1 − E2 ≥ 0− λT

1−λ
1 = − λT

1−λ
1→ 0− as T →∞. As

a result,

P ≥ PΠ − lim
T→∞

λT

1− λ
1 = PΠ + 0− .

Since Π ∈MD was an arbitrary policy, we have P ≥ supΠ∈MD
PΠ

so that P ≥ P ∗. That completes the proof of (i). Next, we
prove (ii). If P ≤ LP = supΠ∈MD

{C + DAP}, then there
exists Π ∈ MD for which P ≤ C + DAP so that, by recur-
sively expanding the inequality for P to an infinite series,
we have P ≤ (I−DA)−1C = PΠ. Hence P ≤ supΠ∈MD

PΠ.
Combining (i) and (ii) gives the proof of the main result.

Proof of Theorem 2
First, we show that L is a contraction mapping on PD, i.e.,
for any P1, P2 ∈ PD, ‖LP1 − PP2‖ ≤ λ‖P1 − P2‖, where
λ ∈ (0, 1) and ‖ ·‖ denotes the sup-norm. Let P1, P2 be such
that LP1(i) ≥ LP2(i). Further, let

j∗1 = argmax
j∈Ni

{Ci + (1− ei)rijP1(j)} .

Then,

0 ≤ LP1(i)− LP2(i)

≤ Ci + (1− ei)rij∗1
P1(j

∗
1 )− (Ci + (1− ei)rij∗1

P2(j
∗
1 ))

= (1− ei)rij∗1
(P1(j

∗
1 )− P2(j

∗
1 ))

≤ (1− ei)rij∗1
‖P1 − P2‖ .

Conversely, if P1, P2 be such that LP1(i) ≤ P2(i) a similar
argument can be used to show that

0 ≤ LP2(i)− LP1(i) ≤ (1− ei)rij∗2
‖P1 − P2‖ ,

where

j∗2 = argmax
j∈Ni

{Ci + (1− ei)rijP2(j)} .

If λ = max((1− ei)rij∗1
, (1− ei)rij∗2

), then λ < 1 and

‖LP1 − LP2‖ = sup
i

|LP1(i)− LP2(i)| ≤ λ‖P1 − P2‖ .

Hence, L is a contraction operator on PD. Then, from Ba-
nach’s fixed point theorem [3], it follows that ∃P0 ∈ PD

such that LP0 = P0. Since P0 satisfies the condition of The-
orem 1, it follows that P0 = P ∗, the optimal payoff. Since
P0 ∈ PD, there is a Π0 ∈ MD that has P0 as its payoff. Π0

is the optimal social policy, completing the proof.

Proof of Proposition 3
Any infinite path on the graph will always have a first rep-
etition of a node. For σi, that node is v1. If the path is
generated following a deterministic policy Π, the path can
go to only one node from v1. In particular, that node will
always be v2. Following the exact same argument for v2 and
all subsequent nodes, it follows that v̄ will keep repeating,
and the path will be of the form σ∞

i .

Proof of Theorem 3
For any deterministic policy Π, we have

PΠ = C1 +

∞
X

τ=1

 

τ
Y

t=1

(DtAt)

!

Cτ+1 .

If αt = (1 − et)rt(t+1), where the transitions are following
the policy, any component of the probability vector can be
written as

PΠ(i) = C1(i) + α1(C2(i) + α2(C3(i) + α4(C4(i) + · · · )))

= C1(i) +
∞
X

τ=1

 

τ
Y

t=1

αt

!

Cτ+1(i)

=

 

C1(i) +
T
X

τ=1

 

τ
Y

t=1

αt

!

Cτ+1(i)

!

+

T+1
Y

s=1

αs

 

∞
X

τ=0

 

τ
Y

t=1

αt+T+1

!

Cτ+T+2(i)

!

Considering a path that starts from xT+2, it follows that
 

∞
X

τ=0

 

τ
Y

t=1

αt+T+1

!

Cτ+T+2(i)

!

< 1 .

Further, λ = maxi,j ((1− ei)rij) < 1 is the maximum pos-
sible value of α, so that

T+1
Y

s=1

αs

 

∞
X

τ=0

 

τ
Y

t=1

αt+T+1

!

Cτ+T+2(i)

!

≤ λT .

Instantiating the infinite series for PΠ using Π = Π∗
T and

Π = Π∗, letting P T
Π denote the probability accumulated by

Π in the first T hops, and taking the difference while using
the fact the residual terms in the infinite summation from
(T + 1) lie in [0, λT ], we have

PΠ∗(i)− PΠ∗

T
(i) ≤ (P T

Π∗(i)− P T
Π∗

T
(i)) + λT

≤ exp(−cT ) ,

since Π∗
T is the optimal T -step policy implying that (P T

Π∗(i)−
P T

Π∗

T

(i)) < 0, and where c = log(1/λ) > 0 since λ < 1. Since

Π∗ is the optimal policy, ∀i, PΠ∗(i) ≥ PΠ∗

T
(i), so that

|PΠ∗(i)− PΠ∗

T
(i)| ≤ exp(−cT ) .

Noting that the inequality holds for all i completes the proof.

Proof of Theorem 4
In the algorithm, the value v

(t)
i is the maximum probability

of getting an answer when a query initiates from node xi

and is allowed to be forwarded for at most t hops. Then,
from Theorem 3 we have ‖v(n) − P ∗‖ ≤ exp(−cn), so that
the residual error

‖v(n+1)−v(n)‖ ≤ ‖v(n+1)−P ∗‖+‖P ∗−v(n)‖ ≤ 2 exp(−cn) .

Then, by a direct extension of a result in [30], it follows that
the policy extracted by value iteration will be within ǫ of the
optimal, where ǫ = 2λ

1−λ
‖v(n+1) − v(n)‖ ≤ 4λ

1−λ
exp(−cn).

Now, note the algorithm is fully distributed since at any
iteration every node can do its computations based on the
values of the neighboring nodes in the previous iteration, but
independent of the computations of any node in the current
iteration. Each iteration involves computing a maximum
over its neighbors, which takes O(mz) time. Since there are
n iterations, the policy is computed in O(nmz) time.


