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ABSTRACT

We describe the development of a computational cognitive model that explains
navigation behavior on the World Wide Web. The model, called SNIF-ACT
(Scent-based Navigation and Information Foraging in the ACT cognitive architec-
ture), is motivated by Information Foraging Theory (IFT), which quantifies the
perceived relevance of a Web link to a user’s goal by a spreading activation mech-
anism. The model assumes that users evaluate links on a Web page sequentially
and decide to click on a link or to go back to the previous page by a Bayesian
satisficing model (BSM) that adaptively evaluates and selects actions based on a
combination of previous and current assessments of the relevance of link texts to
information goals. SNIF-ACT 1.0 utilizes the measure of utility, called information
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scent, derived from IFT to predict rankings of links on different Web pages. The
model was tested against a detailed set of protocol data collected from 8 partici-
pants as they engaged in two information-seeking tasks using the World Wide
Web. The model provided a good match to participants’ link selections. In
SNIF-ACT 2.0, we included the adaptive link selection mechanism from the
BSM that sequentially evaluates links on a Web page. The mechanism allowed
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the model to dynamically build up the aspiration levels of actions in a satisficing
process (e.g., to follow a link or leave a Web site) as it sequential assessed link texts
on a Web page. The dynamic mechanism provides an integrated account of how
and when users decide to click on a link or leave a page based on the sequential,
ongoing experiences with the link context on current and previous Web pages.
SNIF-ACT 2.0 was validated on a data set obtained from 74 subjects. Monte
Carlo simulations of the model showed that SNIF-ACT 2.0 provided better fits to
human data than SNIF-ACT 1.0 and a Position model that used position of links
on a Web page to decide which link to select. We conclude that the combination of
the IFT and the BSM provides a good description of user–Web interaction. Prac-
tical implications of the model are discussed.

1. INTRODUCTION

Most everyday problems, such as making an investment, planning travel
around traffic conditions, or finding a restaurant, are ill defined (Reitman,
1964; Simon, 1973) and require additional knowledge search (Newell, 1990)
to develop a solution. A substantial number of people now turn to the World
Wide Web in search of such knowledge.1 Consequently, the Web has become
a domain that allows the study of complex everyday human cognition. The
purpose of this article is to present a computational cognitive model that sim-
ulates how people seek information on the Web. This model is called SNIF-
ACT, which stands for Scent-based Navigation and Information Foraging in
the ACT architecture. SNIF-ACT provides an account of how people use in-
formation scent cues, such as the text associated with Web links, to make navi-
gation decisions such as judging where to go next on the Web or when to give
up on a particular path of knowledge search. SNIF-ACT is shaped by rational
analyses of the Web developed by combining the Bayesian satisficing model
(BSM; Fu, in press; Fu & Gray, 2006) with the information foraging theory
(Pirolli, 2005; Pirolli & Card, 1999), and is implemented in a modified version
of the ACT–R cognitive architecture (Anderson et al., 2004).2 In this article,
we describe the current status of the SNIF-ACT model and the results from
testing the model against two data sets from real-world human participants.
At this point, our goal is to validate the model’s predictions on unfamiliar in-
formation-seeking tasks for general users. To preview our results, our model
was successful in predicting users’ behavior in these tasks, especially in identi-
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1. Internet use is estimated to be 68.3% of the North American population
(Internet World Stats, n.d.). It is estimated that 88% of online Americans involve the
Internet in their daily activities (Fallows, 2004).

2. We modified the utility calculations of productions in the original ACT–R by a
new set of calculations presented in later sections.



fying the “attractor” pages that most users visited and when users decided to
leave a Web site.

This article reports on two versions of SNIF-ACT (versions 1.0 and 2.0)
that have been developed to model how users navigate through the Web in
search of answers to specific information-seeking tasks. SNIF-ACT 1.0 (Pirolli
& Fu, 2003) was developed to simulate a small number of users working on a
small number of tasks, whose Web navigation behavior had been previously
subjected to very detailed protocol analysis (Card et al., 2001). SNIF-ACT 1.0
establishes how information scent is used in navigation but makes the strong
assumption that all links from a Web page are attended and assessed prior to a
decision about the next navigation action. SNIF-ACT 2.0 extends the first
version of the model by incorporating the BSM (Fu, in press; Fu & Gray,
2006) in the evaluation of Web links. The process of satisficing assumes that,
instead of searching for the optimal choice, choices are often made once they
are good enough based on some estimation of the characteristics of the envi-
ronment. We also show that the user data and SNIF-ACT 2.0 Monte Carlo
data can both be fit by the Law of Surfing (Huberman, Pirolli, Pitkow, &
Lukose, 1998), a strong empirical regularity describing the distribution of
lengths of navigation paths taken by users before giving up.

One reason for developing SNIF-ACT is to further a psychological theory
of human–information foraging (Pirolli & Card, 1999) in a real-world do-
main. Real-world problems pose productive challenges for science. New the-
ory often emerges from scientific problems that reflect real phenomena in the
world. Such theories are also likely to have implications for real problems that
need to be solved. Psychological models such as SNIF-ACT are expected to
provide the theoretical foundations for cognitive engineering models and
techniques of Web usability. Following our presentation of SNIF-ACT, we
discuss the relation of the model to a semiautomated Web usability analysis
system called Bloodhound (Chi et al., 2003) and usability guidelines devel-
oped for Web designers (Nielsen, 2000; Spool, Perfetti, & Brittan, 2004).
We also compare SNIF-ACT to two existing models of user–World Wide
Web (WWW) interactions called MESA (Miller & Remington, 2004) and
CoLiDeS (Kitajima, Blackmon, & Polson, 2005) in the Discussion section.

Overview of this Article. In the next section, we briefly review the theo-
ries behind the SNIF-ACT model. We focus on the underlying theories gov-
erning how the model measures information scent and consequently selects
the appropriate actions based on the currently attended information content.
Based on the theories, we discuss the details of the model and the user-tracing
architecture that we used to analyze the human and model data. We then
present two versions of the model. First, we describe the details of SNIF-ACT
1.0, which was tested against a data set collected by Card et al. (2001) in a con-
trolled experiment involving a small number of participants. The purpose of
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that experiment was to provide detailed data on moment-to-moment user–
Web interactions including keystroke data, eye-movement data, and concur-
rent verbal reports. This detailed set of protocols allowed us to directly test and
fine-tune the basic parameters and mechanisms of SNIF-ACT 1.0. We also
compared the SNIF-ACT 1.0 to a Position model that decides which link to se-
lect based solely on the position of links on a Web page. Although SNIF-ACT
1.0 provides a better fit to the data than the Position model, we also found that
link selections seem to depend on the dynamic interaction between informa-
tion scent and the position of the link on a Web page. We therefore extended
the model to include a Bayesian satisficing mechanism that dynamically de-
cides which link to follow and when to leave a Web page as the model sequen-
tially evaluates link texts on a Web page. SNIF-ACT 2.0 is therefore more flexi-
ble and adaptive to the dynamic interactions between the user and different
Web sites. The flexibility and adaptiveness of SNIF-ACT 2.0 make it suitable to
explain aggregate user behavior across different Web sites. Indeed, Monte
Carlo simulations of the SNIF-ACT 2.0 model showed good fits to a data set
collected by Chi et al. (2003) in a controlled study involving 74 users working
on tasks in realistic settings.

2. THEORY

SNIF-ACT is a model developed within information foraging theory
(Pirolli & Card, 1999), which employs the rational analysis method (e.g., An-
derson, 1990). Pirolli’s (2005) rational analyses of information foraging on the
Web focused on some of the problems posed by the general task environment
of Web users and the structure and constraints of the information environ-
ment on the Web. SNIF-ACT provides a mechanistic implementation that
approximates the rational analysis model. In developing the SNIF-ACT
computational cognitive model, additional constraints coming from the cog-
nitive architecture must be addressed. In particular, SNIF-ACT must employ
satisficing (suffices to satisfy a particular aspiration level without maximizing;
see Simon, 1955) and learning from experience. These mechanisms arise as
solutions to limits on computational resources and amount of available infor-
mation that are not necessarily considered constraints in rational analyses. In
this section, we provide a summary of information foraging theory, the ratio-
nal analysis of Web foraging, and the spreading activation model of informa-
tion scent that is implemented in SNIF-ACT.

2.1. Information Foraging Theory

Information foraging theory (Pirolli & Card, 1999) assumes that people
develop information-seeking strategies that optimize the utility of informa-
tion gained in relation to the cost of interaction. This approach shares much
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with the rational analysis methodology initiated by Anderson and his col-
leagues (Anderson, 1990; Oaksford & Chater, 1994, 1996). The rational
analysis approach involves a kind of reverse engineering in which the theo-
rist asks (a) what environmental problem is being solved, (b) why is a given
behavioral strategy a good solution to the problem, and (c) how is that solu-
tion realized by cognitive mechanisms. The products of this approach in-
clude (a) characterizations of the relevant goals and environment, (b) math-
ematical rational choice models (e.g., optimization models) of idealized
behavioral strategies for achieving those goals in that environment, and (c)
computational cognitive models. Rational analysis is a variant form of an
approach called methodological adaptationism that has also shaped research
programs in behavioral ecology (e.g., Stephens & Krebs, 1986), anthropol-
ogy (e.g., Winterhalder & Smith, 1992), and neuroscience (e.g., Glimcher,
2003).

Pirolli’s (2005) rational analysis of information foraging on the Web fo-
cused on the problems of (a) the choice of the most cost-effective and useful
browsing actions to take based on the relation of the navigation cues (infor-
mation scent) to a user’s information need and (b) the decision of whether to
continue at a Web site or leave based on ongoing assessments of the site’s po-
tential usefulness and costs. Rational choice models, and specifically ap-
proaches borrowed and modified from optimal foraging theory (Stephens &
Krebs, 1986) and microeconomics (McFadden, 1974), were used to predict ra-
tional behavioral solutions to these problems. Pirolli (2005) argued that the
cost–benefit assessments involved in the solution to these problems facing the
Web user could be grounded in a rational utility model implemented as a
spreading activation process. Activation from representations of information
scent cues spreads to the user’s information goal. The amount of activation re-
ceived by the user’s goal reflects the expected utility of choosing navigation
actions associated with those cues. This spreading activation model is dis-
cussed in the next subsection.

SNIF-ACT employs a spreading activation mechanism to assess the util-
ity of navigational choices. Spreading activation is assumed to operate on a
large associative network that represents the Web user’s linguistic knowl-
edge. These spreading activation networks are central to SNIF-ACT, and
one would prefer that they be predictive in the sense that they are (a) general
over the universe of tasks and (b) not estimated from the behavioral data of
the users being modeled. SNIF-ACT assumes that the spreading activation
networks have computational properties that reflect the statistical properties
of the linguistic environment (Anderson & Schooler, 1991; Landauer &
Dumais, 1997). These networks can be constructed using statistical esti-
mates obtained from appropriately large and representative samples of the
linguistic environment. Consequently, SNIF-ACT predictions for Web us-
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ers with particular goals can be made using spreading activation networks
that are constructed a priori with no free parameters to be estimated from user
data.

Figure 1 presents a schematic example of the information scent assessment
subtask facing a Web user. It assumes that a user has the goal of finding infor-
mation about “medical treatments for cancer” and encounters a Web link la-
beled with the text that includes cell, patient, dose, and beam. The user’s cogni-
tive task is to predict the likelihood that a distal source of content contains
desired information based on the proximal information scent cues available
in the Web link labels. Pirolli (2005) presented a rational analysis (in terms of
a Bayesian analysis) of the assessment problem exemplified in Figure 1, which
arrives at a spreading activation model.

The spreading activation model of information scent in SNIF-ACT as-
sumes that activation spreads from a set of cognitive structures that are the
current focus of attention through associations to other cognitive structures in
memory. Using ACT-R terminology, these cognitive structures are called
chunks (Anderson & Lebiere, 1998). Chunks representing information scent
cues are presented on the right side of Figure 1, chunks representing the
user’s information need are presented on the left side, and associations are
represented by lines. The associations among chunks come from past expe-
rience. The strength of associations reflects the degree to which proximal
information scent cues predict the occurrence of unobserved features. For
instance, the words medical and patient co-occur quite frequently, and they
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Figure 1. A schematic example of the information scent assessment subtask facing a Web
user. The arrows represent associations between the words.



would have a high strength of association. Greater strength of association
produces greater amounts of activation flow from one chunk to another.

Expressing the spreading activation model in the context of a user evaluat-
ing the utility of a link L on a Web page to his or her information goal G, the
activation of a chunk i in the information goal is Ai, where

In this activation equation, Bi is the base-level activation of chunk i, Sji is
the association strength between chunk j representing a cue in the link L and
the goal chunk i, and Wj reflects the attentional weight the model puts on
chunk j. As noted in Pirolli (2005), Sji is a very near approximation of what is
known as Pointwise Mutual Information (PMI) in the information retrieval and
statistical natural language literature (e.g., Manning & Schuetze, 1999). The
activation equation is interpreted as a Bayesian prediction of the relevance of
chunk i in the context of the chunks in the link on a Web page to which the
model is currently attending (Pirolli & Card, 1999). Bi reflects the log prior
odds of chunk i occurring in the world, and Sji reflects the log likelihood ratio
of chunk j occurring in the context of word i. The information scent of the link
L is simply the sum of activations of all chunks in the information goal G

For tasks in which the information goal remains constant throughout the
task—such as the tasks modeled in this article—the base-level activations Bi

can be ignored. This is because the goal chunks i remain the same throughout
the task. Consequently, the base-level activations of the goal, Bi, of goal
chunks do not change regardless of the link chunks j. Consequently, in the
SNIF-ACT model we set Bi to zero.

The model also must deal with the case in which a link chunk j is the same
as goal chunk i (e.g., if a person were looking for “medical information” and
saw the word medical on a link). In cases of direct overlap between the infor-
mation goal of the user and the information scent cues of the link (i.e., when
Sji = Sii), Sji reflects the log prior odds of the goal chunk i. This has the effect of
making the activation equation especially sensitive to direct overlaps between
information goals and information scent cues.
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The model also requires the specification of the attentional weight parame-
ter Wj. We have simply assumed that the attention paid to an individual infor-
mation scent cue decays exponentially as the total number of cues increases.
Specifically, we set

Wi = W e–dn, (3: Attentional weight equation)

where n is the number of words in the link, W is a scaling parameter, and d is a
rate of decay parameter. The exponential decay function is used to ensure
that the activation will not increase without bounds with the number of words
in a link. Specifically, as the number, n, of words on a link gets larger, the total
summed amount of attention grows to an asymptote

Exploration of the parameters suggested that we use W = 0.1 and d = 0.2
throughout the simulations. Using these parameters, we get a growth function
for ΣWi that shows no substantial change (less than 1%) after n = 20 words
(Spool et al., 2004).

To calculate the information scent of a link on a Web page given the infor-
mation goal of the user, we need to estimate Sji. As discussed in Pirolli and
Card (1999), it is possible to automatically construct large spreading activa-
tion networks from online text corpora and calculate the estimates of Sji for
different words and information goals. Specifically, base-rate frequencies of
all words and pairwise co-occurrence frequencies of words that occur within
some distance of one another can be computed from large text corpora to esti-
mate Sii and Sji. For SNIF-ACT 1.0 we obtained these estimates from a local
Tipster document corpus (Harman, 1993) with a back-off to search engine
queries of the Web to obtain statistics about words not contained in the Tip-
ster collection. In SNIF-ACT 2.0 we employed estimates from locally stored
samples of Web documents plus a back-off technique that queried the Web for
statistics about words not present in the local Web collection (Farahat, Pirolli,
& Markova, 2004). This general method of using a local sample of documents
for most estimates plus queries to the Web as a back-off technique combines
efficiency (most of the encountered words will be in the local store and statis-
tics can be rapidly computed) with coverage (low-frequency words can typi-
cally be found on the Web). Practically, PMI scores can be calculated effi-
ciently (Farahat et al., 2004), and theoretically, Farahat et al. showed that PMI
scores were as least as good or better than latent semantic analysis (LSA) in
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providing good fits to human word similarity judgments in a variety of tasks
(see also Turney, 2001). All “stop words” such as the and a as listed in Callan,
Croft, and Harding (1992) were removed from all processing.

2.2. Utility Calculations

SNIF-ACT uses spreading activation to calculate the information scent
provided by words associated with links on a Web page, according to the
equations just specified. These information scent values are used to evaluate
the utility of actions including attending to links, selection of links, going back
to a previous page within a Web site, and leaving a Web site. The specific util-
ity calculations used in SNIF-ACT 1.0 were developed on the basis of ran-
dom utility models in economics (McFadden, 1974) and stochastic models of
search in optimal foraging theory (McNamara, 1982). These utility calcula-
tions were refined in SNIF-ACT 2.0 to implement satisficing (Simon, 1955,
1956). The details of these utility calculations are discussed separately next in
the context of each model.

3. SNIF-ACT

A model called SNIF-ACT (Pirolli & Fu, 2003) was developed based on
the theory of information scent previously described (this earlier presenta-
tion of the model covered parts of SNIF-ACT 1.0). In this article we pres-
ent old and new data and the newest version of the model. The basic struc-
ture of the model is shown in Figure 2. Similar to ACT–R models,
SNIF-ACT has two memory components: the declarative memory compo-
nent and the procedural memory component. Elements in the declarative
memory component can be contemplated or reflected upon, whereas ele-
ments in the procedural memory component are tacit and directly embod-
ied in physical or cognitive activity. Next, we discuss each of the memory
components separately and give an example showing the flow of the model
as shown in Figure 2.

3.1. Declarative Knowledge

Declarative knowledge corresponds to “facts about the world,” which are of-
ten verbalizable. In the current context, declarative knowledge consists of the
contentofWeblinksor the functionalityofbrowserbuttonsandthecurrentgoal
of the users (e.g., evaluating a link, choosing a link, etc.). Because the current
goal of SNIF-ACT is not to model how users learn to use the browser, we as-
sume that the model has all the knowledge necessary to use the browser, such as
clicking on a link, or clicking on the Back button to go back to the previous Web
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page. We also assume that users have perfect knowledge of the addresses of
most popular Web search engines. Declarative knowledge is predefined in the
model inall thesimulationsanddoesnotchange throughout thesimulations.

3.2. Procedural Knowledge

Procedural knowledge corresponds to “how to do it” knowledge. In con-
trast to declarative knowledge, procedural knowledge is often not verbal-
izable. As in ACT–R, procedural knowledge is represented as production
rules, which are represented as condition-action pairs. Figure 3 shows the set
of production rules in SNIF-ACT, presented in their English-equivalent
forms. A production rule has a condition (IF) side and an action (THEN) side.
When all the conditions on the condition side are matched, the production
may be fired, and when it does, the actions on the action side of the produc-
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Figure 2. The structure of SNIF-ACT 1.0 and the User-Tracer.
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Start-Process-Page:
IF the goal is Goal*Start-Next-Patch
& there is a task description
& there is a browser
& the browser is on an unprocessed page
THEN Set & push a subgoal Goal*Process-Page to the goal stack

Process-Links-on-Page:
IF the goal is Goal* Process-Page
& there is a task description
& there is a browser
& there is an unprocessed link
THEN Set and push a subgoal Goal*Process-Link to the goal stack

Attend-to-Link:
IF the goal is Goal* Process-Link
& there is a task description
& there is a browser
& there is an unattended link
THEN Choose an unattended link and attend to it

Read-and-Evaluate-Link:
IF the goal is Goal* Process-Link
& there is a task description
& there is a browser
& the current attention is on a link
THEN Read and Evaluate the link

Click-Link:
IF the goal is Goal* Process-Link
& there is a task description
& there is a browser
& there is an evaluated link
& the link has the highest activation
THEN Click on the link

Leave-Site:
IF the goal is Goal* Process-Link
& there is a task description
& there is a browser
& there is an evaluated link
& the mean activation on page is low
THEN Leave the site & pop the goal from the goal stack

Backup-a-Page:
IF the goal is Goal* Process-Link
& there is a task description
& there is a browser
& there is an evaluated link
& the mean activation on page is low
THEN Go back to the previous page

Figure 3. Productions in SNIF-ACT 1.0 in their English equivalent forms



tion will be executed. At any point in time, only a single production can fire.
When there is more than one match, the matching productions form a “con-
flict set.” One production is then selected from the conflict set based on the
Random Utility Model (RUM; details later), with the measure of information
scent as the major variable controlling the likelihoods of selecting any one of
the productions in the conflict set.

3.3. Selection of Actions

Actions of the models are represented as production rules as shown in Fig-
ure 3. An example trace of the model is shown in Figure 4, which shows the
sequential execution of productions in the model. The model always starts
with the goal of going to a particular Web site (usually a search engine) on the
Internet. There are two ways the model could go to a Web page: It could type
the URL address, or it could use the “bookmark” pull-down menu in the
browser. Because the major predictions of the model were on behavior con-
tingent on the links displayed on a Web page, we are agnostic about the first
Web sites users preferred (which are selected based on their prior knowledge
rather than influenced by the information displayed on a Web page) and how
they reached the Web sites of their choices to start their tasks. We therefore
force the model to match users’ choices (details of this procedure are dis-
cussed in the next section). There were three major productions that com-
peted against each other when the model was processing a Web page: At-
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Productions Descriptions

Use-Search-Engine fired Model started, decided to use a search engine.
Go-To-Search-Engine fired Retrieved address of search engine from

memory.
Go-To-Site-By-Typing fired Typed address of search engine on browser.
Start-Process-Page fired Moved attention to new Web page.
Search-Site-using-Search-Box
fired

Typed search terms in search box

Process-Links-on-Page fired Prepared to move attention to a link on page.
Attend-to-Link fired Moved attention to the link.
Read-and-Evaluate-Link fired Read and evaluated the link.
Attend-to-Link fired Moved attention to next link.
Read-and-Evaluate-Link fired Read and evaluated the link.
Attend-to-Link fired Moved attention to next link.
Read-and-Evaluate-Link fired Read and evaluated the link.
li0Click-Link fired Clicked on the link.
Click Link Clicked on the link.
Finish fired Target found.

Figure 4. An example trace of the SNIF-ACT model



tend-to-Link, Click-Link, and Leave-Site.3 Each of these productions has a
utility value, which is calculated based on the measures of information scent
of the links on the Web page. At any moment, the choice of these productions
depended on their utility values. We describe the calculations of the utility
values with each model.

3.4. User-Tracing Architecture

User trace data consists of several kinds of data recorded and analyzed by
our instrumentation package (Pirolli, Fu, Reeder, & Card, 2002). Perfor-
mance on the tasks was recorded using an instrumentation package that in-
cluded (a) WebLogger (Reeder, Pirolli, & Card, 2001), which is a program that
tracks user keystrokes, mouse movements, button use, and browser actions;
(b) an eye tracker; and (c) video recordings that focused on the screen display.
Details of the instrumentation used are given in Card et al. (2001). WebLogger
also saves the actual Web content (i.e. the text, images, scripts, etc.) that a user
looked at during a browsing session. It does this by saving a cache of all pages
and associated content that was viewed by the user. Eye movements are han-
dled by our WebEyeMapper system, which maps fixations to individual Web
elements (e.g., a link text) and stores the mapping in a database. Videotapes of
users thinking aloud provide additional data about users’ goals and subgoals,
attention, and information representation (Ericsson & Simon, 1984). The
video plus WebLogger and WebEyeMapper data are used to produce a Web
Protocol Transcript. The Web Protocol Transcript includes interactions re-
corded by the WebLogger, transcribed audio/video data, and model coding of
the inferred cognitive action that is associated with the data. The protocol anal-
ysis provides data that are not available from WebLogger and WebEyeMapper,
especially the users’ reading and evaluation of content and links.

Figure 2 shows how the User Tracer controls the SNIF-ACT simulation
model and matches the simulation behavior to the user trace data (each step is
indicated by a circle in Figure 2):

1. Parse the Interface Objects, Coded Protocol, and Event Log to deter-
mine the next display state and the next user action that occurs at that
display state.

2. If the display state has changed, then indicate this to the SNIF-ACT
system. SNIF-ACT contains production rules that actively perceive the
display state and update declarative memory to contain chunks that
represent the perceived portions of the display.
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3. Because participants stayed in the same Web site throughout the whole task in
Experiment 2, the Leave-Site was used only in Experiment 1.



3. Run SNIF-ACT so that it runs spreading activation to identify the ac-
tive portion of declarative memory and matches productions against
working memory to select a conflict set of production rules.

4. SNIF-ACT evaluates the productions in the conflict set using the infor-
mation scent computations. At the end of this step, one of the rules in
the conflict set will be identified as the production to execute.

5. Compare the production just selected by SNIF-ACT to the next user
action and record any statistics (notably whether or not the production
and action matched). If there is a match, then execute the production
selected by SNIF-ACT. If there is a mismatch, then select and execute
the production that matches the user action.

6. Repeat Steps 1 to 5 until there are no more user actions.

The User-Tracing architecture was used to compare and evaluate the
SNIF-ACT models. However, because there were significant differences be-
tween the two versions of SNIF-ACT, the evaluation methods were also dif-
ferent and are discussed in the next sections.

4. SNIF-ACT 1.04

SNIF-ACT 1.0 was tested against detailed data from a small set of partici-
pants studied in Card et al. (2001). These data allowed us to test and adjust pa-
rameters of our model to provide descriptions of user behavior. The main
goal of developing SNIF-ACT 1.0 was to test the basic predictions about navi-
gation choice behavior based on the theory of information scent previously
discussed. SNIF-ACT 1.0 assumes that users assess all the links on a page be-
fore making a navigation choice. To preview our results, we found that selec-
tion of links seem to be sensitive to their position on the Web page. The results
led us to refine our model to SNIF-ACT 2.0, in which we incorporated mech-
anisms from the BSM (Fu, in press; Fu & Gray, 2006) that combine the mea-
sure of information scent and the position of links on the Web page into a
satisficing process that determines which link to select.

4.1. Tasks and Users

Tasks for the Card et al. (2001) study were modified versions of tasks com-
piled in a survey of 2188 Web users (Morrison, Pirolli, & Card, 2001). There
were two tasks analyzed in detail:
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Antz Task: After installing a state of the art entertainment center in your
den and replacing the furniture and carpeting, your redecorating is almost
complete. All that remains to be done is to purchase a set of movie posters to
hang on the walls. Find a site where you can purchase the set of four Antz
movie posters depicting the princess, the hero, the best friend, and the gen-
eral.

City Task: You are the Chair of Comedic events for Louisiana State Uni-
versity in Baton Rouge, LA. Your computer has just crashed and you have lost
several advertisements for upcoming events. You know that The Second City
tour is coming to your theater in the spring, but you do not know the precise
date. Find the date the comedy troupe is playing on your campus. Also find a
photograph of the group to put on the advertisement.

Four users were solicited from Palo Alto Research Center (PARC) and
Stanford. Users were encouraged to perform both tasks as they would typi-
cally, but they were also instructed to think out loud (Ericsson & Simon, 1984)
as they performed their tasks. Data from the users and tasks analyzed by Card
et al. (2001) were simulated by SNIF-ACT 1.0 to produce the model fits dis-
cussed next. All stop words were removed from the description of the user
tasks to calculate information scent of link texts.

Figure 5 shows examples of behavior extracted from the two tasks per-
formed by one of the four study participants. The behavior is plotted as a Web
Behavior Graph (WBG), which is a version of a problem behavior graph
(Newell & Simon, 1972). Each box in the diagram represents a state in a prob-
lem space. Each arrow depicts the execution of an operator, moving the state
to a new state. Double vertical arrows indicate the return to a previous state,
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Figure 5. Web Behavior Graphs for one study participant working on the Antz task (left)
and City task (right) in Experiment 1.



augmented by the experience of having explored the consequences of some
possible moves. Thus time in the diagram proceeds left to right and top to bot-
tom. Different shades surrounding the boxes in Figure 5 represent different
Web sites. An X following a node indicates that the user exceeded the time
limits for the task and that it was therefore a failure. The WBG in Figure 5, and
the WBGs for the remaining study participants and users, is presented in
greater detail elsewhere (Card et al., 2001). The WBG is particularly good at
showing the structure of the search. One may characterize task difficulty in
terms of the branchiness of the WBGs, with more branches indicating that
search paths were abandoned and the user returned to a prior state. Another
way of characterizing task difficulty is by the number of states visited by users.
From Figure 5 it is evident that the Antz task is more difficult than the City
task. This was true for all four users. The goal of SNIF-ACT 1.0 is to assess
how much of the variability of the Web behavior, such as that depicted in Fig-
ure 5, is predictable from the measure of information scent.

The predictions made by the SNIF-ACT 1.0 model were tested against the
log files of all data sets. The model predicts two major kinds of actions: which
links on a Web page people will click on, and when people decide to leave a
site. These two actions were therefore extracted from the log files and com-
pared to the predictions made by the model. We call the first kind of actions
link selections, which were logged whenever a participant clicked on a link on a
Web page. The second kind of actions was called site-leaving actions, which
were logged whenever a participant left a Web site (and went to a different
search engine or Web site). The two kinds of actions made up 72% (48% for
link-following and 24% for site-leaving actions) of all the 189 actions extracted
from the log files. The rest of the actions consisted of, for example, typing in
the URL to go to a particular Web site or going to a predefined bookmark.
These actions were excluded as they were more influenced by prior knowl-
edge of the users rather than information displayed on the screen.

4.2. Utility Calculations

As previously discussed, the spreading activation theory calculation of in-
formation scent reflects the likelihood that the link (a proximal cue) will even-
tually lead to the information goal (distal information). SNIF-ACT 1.0 as-
sumes that all links on a page are sequentially processed by a user and that
production instantiations for selecting each processed link (the Click-Link
production in Figure 3) compete with one another. The utility of these
Click-Link instantiations is calculated using the information scent equation (2)
previously presented. The probability that a particular Click-Link production
is selected and executed is calculated using a kind of RUM (McFadden, 1974,
and see Appendix A). Consider the case in which the model is faced with a
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conflict set C of k Click-Link productions. The information scent for the nth
link is calculated by IS(G,n) specified in the definition of information scent
(because the goal stays the same in all our tasks, we simply refer the informa-
tion scent as IS(n) from now on). Assuming that the noise parameters, å, are
independent random variables following a Gumbel distribution, the proba-
bility that link n will be chosen can be represented as a conditional probablity
Pr(n|C), where

and where = √2 å is a scaling parameter and the summation is for all j pro-
duction instantiations in the conflict set C.

There are a number of points to make about the conflict resolution equa-
tion. First, as with other well-known choice equations in psychology (e.g.,
Luce, 1959; Thurstone, 1927), the choice of a particular link n is conditional
on the utilities of other links. This means that a particular link with a particular
information scent score (which determines the numerator of the conflict reso-
lution equation) will have a probability of selection that can be high or low de-
pending on the information scent of competing links (which determine the
denominator of the same equation). Second, the size of the conflict set (the
number of competing links) will affect the selection of any particular link for
similar reasons. Third, as τ decreases, the model is more likely to choose the
link with the highest information scent. This is because τ is related to the vari-
ance of the noise parameter in the information scent equation. We set τ = 1.0
throughout the simulations, which is the default value for most models devel-
oped in the ACT architecture.

4.3. Results

Link Selections

The SNIF-ACT 1.0 model was matched to the link selections extracted
from 8 sets of data (2 tasks × 4 participants). The user trace comparator was
used to compare each action from each participant to the action chosen by the
model. Whenever a link selection was encountered, the SNIF-ACT 1.0
model ranked all links on the Web page according to the information scent of
the links. We then compared the links chosen by the participants to the pre-
dicted link rankings of the SNIF-ACT 1.0 model. If there were a purely deter-
ministic relationship between predicted information scent and link choice,
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then all users would be predicted to choose the link with the smallest rank
number. However, as discussed earlier, we assume that the scent-based utili-
ties are stochastic and subject to some amount of variability because of users
and context. Consequently we expect the probability of link choice to be
highest for the links ranked with the greatest amount of scent-based utility and
that link choice probability is expected to decrease for links with higher rank
number as determined on the basis of their scent-based utility values.

To highlight the importance of the information scent measure in the
model, the ranks produced by SNIF-ACT 1.0 were compared to those pro-
duced by an alternative model that selects links based solely on their positions
on the page. This model was motivated by recent findings that people tend to
scan a Web page from top to bottom and was found to be biased in selecting
links at the top of a page containing Web search results (e.g., Joachims,
Granka, Pang, Hembrooke, & Gay, 2005, although they looked only at the re-
sult page returned from a search engine, but our results were aggregated from
all Web pages). In this alternative model, the rank of a link is simply deter-
mined by its position on the Web page, so that a link at the top of the page will
be ranked 1, and the rank number increases as the model goes down from top
to bottom of the Web page. We call this model the “Position” model. Figure 6
shows the frequency distribution of the 91 link-following actions by the partic-
ipants plotted against the ranks of the links calculated by the SNIF-ACT 1.0
and the Position model. For SNIF-ACT 1.0, links that had a low rank number
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Figure 6. The links chosen by participants and ranked by SNIF-ACT 1.0 and the Position
model. The lower the rank, the more likely that the model will choose the links.



(i.e., high on scent-based utilities) tended to be chosen over links that had a
higher rank number, indicating that link choice is strongly related to scent-
based utility values. For example, Figure 6 shows that the link with the highest
information scent as calculated by SNIF-ACT 1.0 was select 19 times by the
participants, and the link with the next highest score was selected 15 times by
the participants. The predictive value of the model lies on the high frequen-
cies of links on the left side of Figure 6, which slope down and level off to the
right side of the figure. This result replicates a similar analysis made by Pirolli
and Card (1999) concerning the ACT-IF model prediction of cluster selection
in the Scatter/Gather browser, in which the rankings made by the model
(which were also based on the same scent-based utilities) correlated well with
the selection by the users.

For the Position model, the ranks in Figure 6 indicated the positions of the
links on the Web page. Links on the top of a page will have a smaller rank
number than those at the bottom; in cases where there were more than two
links on the same line, links on the left will have a lower rank number than
those on the right. By this method, we found that the first link on the Web
page was selected two times by the participants, and the second link on the
Web page was selected three times by the participants. The frequencies of link
choices increased with rank number (i.e., position on the Web page) and
peaked at approximately the fourth link, but after that they decreased slowly
for links farther down the page. The results indicated that although partici-
pants did not simply choose the first link on a Web page, there was still a
higher tendency to choose links at the top of the page than those toward the
bottom. Indeed, for both SNIF-ACT 1.0 and the Position model, the down-
ward trends across ranks were significant (slope = –0.32 and –0.20), t(28) =
4.61 and 6.84, respectively, suggesting that both models successfully pre-
dicted the general link-selection trends. In other words, both information
scent and position on a Web page have some predictive power of link selec-
tion; however, the significantly more negative slope by SNIF-ACT 1.0 indi-
cated that the measure of information scent has more predictive power than
position on a Web page, χ2(30) = 53.59, p < .005. On the other hand, previous
research on the predictive power of link location have focused on Web search
results, and our results showed that the predictive power is still significant
even in general Web pages.

Site-Leaving Actions

To test how well information scent predicts when people will leave a site,
site-leaving actions were extracted from the log files and analyzed. Site-leav-
ing actions were defined as actions other than link-clicking that led to a differ-
ent site (e.g., when the participants used a different search engine by typing in
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the URL or using an existing bookmark). The results were plotted in Figure 7. It
shows the mean information scent of the four Web pages the participants vis-
ited before they left the site (i.e., Last-3, Last-2, Last-1, and Leave-Site in Figure
7). It shows that initially the mean information scent of the Web page was high,
and right before the participants left the site, the mean information scent
dropped. However, given the small number of site-leaving actions that we re-
corded, the difference did not reach statistical significance, t(11) = 0.61, p = .56.

Figure 7 also shows the mean information scent of the Web pages right
after the participants left the site (the dotted line in Figure 7). It shows that
the mean information scent on the page right after they left the site tended
to be higher than the mean information scent before they left the site. This
is consistent with the information foraging theory, which states that people
may switch to another “information patch” when the expected gain of
searching in the current patch is lower than the expected gain of searching
for a new information patch. In fact, from the verbal protocols, we often
found utterances like “it seems that I don’t have much luck with this site” or
“maybe I should try another search engine” right before participants switch
to another site. It suggests that the drop in information scent on the Web
page could be the factor that triggered participants’ decision to switch to an-
other site.
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Figure 7. The mean scent scores before participants left a Web site. The dashed line rep-
resents the overall mean scent scores of all Web pages visited by the participants.



Summary of Results

We show that links chosen by the participants were largely predicted (as re-
flected by the low rank numbers) by SNIF-ACT 1.0. The good match be-
tween the predictions of SNIF-ACT and the data shows the predictive power
of information scent in link selections. Information scent was also shown to be
sensitive to when people will decide to switch to a different Web site, although
the effect is not statistically significant. When participants left a site, the aver-
age information scent of the site tended to be decreasing. The results are con-
sistent with the notion that as people go through a sequence of Web pages,
they are building up an expectation of how likely they can find the target in-
formation on the Web sites.

The results for the Position model also show that there is a weak trend for
people to select links at the top of the page over those at the bottom of the
page. It is, however, likely that there is a high correlation between informa-
tion scent of links and their position on a Web page. This is especially likely in
situations where participants are evaluating a list of links returned from a Web
search engine, as links at the top of the returned list of links tended to be more
relevant to the search terms than those farther down the list. Indeed we found
that this correlation was high (r = .64), t(15) = 1.92, p < .05. However, the poor
match to human data suggests that people did not simply pick the one that
was ranked high by a search engine. Because SNIF-ACT 1.0 simply picks the
link with the highest information scent value regardless of its position on the
Web page, link selections by the model are not sensitive to the position of
links. To take into account the fact that both information scent and positions
influence link selection, we refine our model in SNIF-ACT 2.0 so that the
model will dynamically build up an aspiration level on how likely the target
information can be found as it processes each link on a Web page sequentially.
To preview our results, we found that this dynamic mechanism provides a
much better match to link selections than either the Position or the SNIF-
ACT 1.0 model.

5. SNIF-ACT 2.0

Results from the test of SNIF-ACT 1.0 show that the measure of informa-
tion scent provides good prediction of link selections in naturalistic user–Web
interactions. We also found that the simple information of link position on a
Web page also seems to predict link selections. The results are consistent with
the idea that the link selection process involves a dynamic evaluation process
that operates on both information scent and the position or sequential order
of links. In SNIF-ACT 2.0, we hypothesize that during the link selection pro-
cess, current and previous experiences with different link texts and Web sites
interact dynamically and influence the final selection. The learning mecha-
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nism allows the model to adapt to the specific experiences of users as they in-
teract with different Web pages.

SNIF-ACT 2.0 has an adaptive action evaluation and selection mechanism
that dynamically chooses actions based on current and previous experiences
with the link texts on the Web sites. To evaluate SNIF-ACT 2.0, we expanded
our data sets to include more participants and more tasks (Chi et al., 2003).
We intend to understand how the predictions of the model can be applied to
explain the dynamic user–Web interactions across different Web sites and us-
ers in realistic settings. In this section, we first discuss the tasks in the data set
by Chi et al., followed by a description of the new learning mechanism in
SNIF-ACT 2.0. We then show the results from Monte Carlo simulations of
the model and how well they matched the human data.

5.1. Tasks and Users

Chi et al. (2003) were interested in validating the predictions of an auto-
mated Web usability testing system called Bloodhound. Chi et al. used a remote
version of a usability data collection tool based on WebLogger (Reeder et al..,
2001). Participants in the Chi et al. study downloaded this testing apparatus and
went through the test at their leisure in a place of their choosing. Users were pre-
sented with specific information-seeking tasks to perform at specific Web sites.
Wediscovered that itwasdifficult to inferusernavigationatWebsites that relied
heavily on the dynamic generation of Web pages in this data set as we could not
reproduce exactly what was on these dynamic Web pages. Consequently, we
chose to simulate data from tasks performed at two Web sites in the Chi et al.
data set: (1) help.yahoo.com (the help system section of Yahoo!) and (2)
parcweb.parc.com (an intranet of company internal information). We refer to
these sites as “Yahoo” and “ParcWeb” respectively for the rest of the article.

Both the Yahoo and ParcWeb sites had been tested with a set of eight tasks,
for a total of 8 × 2 = 16 tasks. For each site, the 8 tasks were grouped into four
categories of similar types. For each task, the user was given an information
goal in the form of a question. The tasks developed by Chi et al. (2003) were
designed to be representative of the tasks normally performed by users of the
site. The tasks are presented in Figure 8.

The Yahoo and ParcWeb data sets come from 74 participants, 30 partici-
pants in the Yahoo data set and 44 participants in the ParcWeb data set. Yahoo
participants were recruited using Internet advertising, and ParcWeb partici-
pants were recruited from PARC employees.5 Participants had been asked to

SNIF-ACT 377

5. Because ParcWeb was quite dynamic and changed quite frequently, none of the
participants was familiar with the link structures or knew the location of the target in-
formation before the tasks even though they were PARC employees.



perform the study in the comfort of their office or anywhere else they chose.
Subjects could abandon a task if they felt frustrated, and they were also told
that they could stop and continue the study at a later time. The idea was to
have them work on these tasks as naturally as possible. Users had been explic-
itly asked not to use the search feature of the site, since Chi et al. (2003) were
interested in predicting navigation data. This was the preferred strategy as
shown by Katz & Byrne (2003). Each subject was assigned a total of eight tasks
from across different sites and each task was assigned roughly the same num-
ber of times. Whenever the user wanted to abandon a task, or if they felt they
had achieved the goal, the user clicked on a button signifying the end of the
task. Remote WebLogger recorded the time subjects took to handle each task,
the pages they accessed, and the keystrokes they entered (if any).
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Tasks

ParcWeba

1a Find the PowerPoint slides for Jan Borchers’s June 3, 2002 Asteroid
presentation.

1b Suppose this is your first time using AmberWeb. Find some documentation that
will help you figure out how to use it.

2a Find out where you can download the latest DataGlyph Toolkit.
2b Find some general information about the DataGlyphs project.
3a What do the numerical TAP ratings mean?
3b What patent databases are available for use through PARC?
4a Find the 2002 Holiday Schedule
4b Where can you download an expense report?

Yahoob

1a What is the Yahoo! Directory?
1b You want Yahoo! to add your site to the Yahoo! Directory. Find some guidelines

for writing a description of your site.
2a You have a Yahoo! Email account. How do you save a message to your Sent

Mail folder after you send it?
2b You are receiving spam on your Yahoo! Email account. What can you do to

make it stop?
3a When is the playing season for Fantasy Football?
3b In Fantasy Baseball, what is rotisserie scoring?
4a You are trying to find your friend’s house, and you are pretty sure you typed the

right address into Yahoo! Maps, but the little red star still showed up in the
wrong place. How could this have happened?

4b You want to get driving directions to the airport, but you don’t know the street
address. How else can you get accurate directions there?

a19,227 documents. b7,484 documents.

Figure 8. The tasks given to participants in Experiment 2.



Of all the user sessions collected, the data were inspected to throw out any
sessions that employed the site’s search engine as well as any sessions that did
not go beyond the starting home page. We were not interested in sessions that
involved the search engine, because we wanted users to find the information
using only navigation. In the end, 590 user sessions were usable (358 in Ya-
hoo, 232 in ParcWeb). Figure 9 summarizes the number of usable sessions
that were collected for each task.

In general, we found that in both sites, there were only a few (< 10) “attrac-
tor” pages visited by most of the participants, but there were also many pages
visited by fewer than 10 participants. In fact, a large number of Web pages
were visited only once in both sites. We decided that Web pages that were vis-
ited only a few times seemed more random than systematic and were ex-
cluded from our model simulations. In the rest of the analyses, we dropped
the bottom 30% of the Web pages that were least frequently visited. As a re-
sult, Web pages that were visited fewer than three times (for all participants) in
the ParcWeb site and those visited fewer than five times in the Yahoo site were
excluded for model simulations. Our assumption is that predicting pages vis-
ited most often in our sample of participants is more important in terms of val-
idating the SNIF-ACT model.

5.2. Utility Calculations

Based on the SNIF-ACT 1.0 simulations, we decided to refine the model to
provide more precise predictions on the dynamic user–Web interactions. We
performed Monte Carlo simulations of the model and match the results to ag-
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Tasks

1a 2a 3a 4a 1b 2b 3b 4b Total

ParcWeb
Sessions 31 27 30 33 28 29 24 30 232
Pages 124 72 120 86 350 106 107 232 1,197
Successes 27 0 0 31 5 0 0 23 86
Going back 6 10 9 9 8 10 22 4 78

Yahoo
Sessions 44 47 44 44 44 43 47 45 358
Pages 104 149 164 144 216 197 260 257 1,491
Successes 40 39 36 43 13 18 45 31 265
Going back 10 8 9 8 5 6 8 9 63

Figure 9. The number of usable user sessions, Web pages visited, successes, and the
number of times participants decided to go back to previous Web page in each of the
two sites.



gregates of human data. The major extension of the model in SNIF-ACT 2.0
is the use of an adaptive mechanism that incrementally learns from its experi-
ences with the links and Web pages visited. We show how the mechanism de-
fines stochastic decision boundaries that allow SNIF-ACT 2.0 to decide when
to (a) choose a link on a Web page through a satisficing process, and (b) stop
evaluating links on a Web page and go back to the previous Web page.

The adaptive mechanism is based on the BSM (Fu, in press; Fu & Gray,
2006) and a rational analysis of link evaluation and selection on a Web page.
The details of the rational analysis can be found in Appendix B. As a sum-
mary, the mechanism assumes that the probability that a link will be selected
is incrementally updated through a Bayesian learning framework in which
the user is gathering data from the sequential evaluation (left–right then
top–down) of links on a Web page (see Fu, in press; Fu & Gray, 2006). We de-
fine the perceived closeness of the target information as a weighted sum of the
IS of the links encountered on the Web page (for details, see Appendix B).
This allows us to define how utilities of productions are calculated in SNIF-
ACT 2.0. The general idea is to assume that each link will generate either a
positive or negative reinforcement signal (see Fu & Anderson, 2006) that in-
fluence the evaluation of how likely the target information can be found by
following one of the links.

As discussed earlier, the critical productions that determine which links to
follow and when to go back to the previous page were Attend-to-Link,
Click-Link, and Backup-a-Page. Because participants in the Chi et al. (2003)
data set stayed in the same Web site throughout the entire session, the
Leave-Site production was not used. The utilities of the critical productions
are updated according to the following equations:

Attend-to-Link: U n
U n IS link

N n
( )

( ) ( )
( )

+ = +
+

1
1

Click-Link: U n
U n IS Best Link

k N n
( )

( ) ( )

( )
+ =

+
+ +

1
1

Backup-a-Page: U(n+1) = MIS(Previous Pages)–MIS(links 1 to n)- GoBackCost

(8: Utility equations)

In these equations, U(n) represents the utility of the production at cycle n, and
U(n+1) represents the updated utility of the production at cycle n+1, IS(link)
represents the information scent of the current attended link, N(n) represents
the number of links attended on the Web page at cycle n, IS(Best Link) is the
highest information scent of the links attended on the Web page, k is a scaling
parameter, MIS(Previous page) and MIS(links 1 to n) is the mean information
scent of all links on the previous Web page and the first nth links on the cur-
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rent Web page, respectively, and GoBackCost is the cost of going back to the
previous page. The values of k and GoBackCost were set at k = 5 and
GoBackCost = 5 in the simulations. The first two equations are derived from
the BSM and the rational analysis of link evaluation and selection. The last
equation is based on the finding in SNIF-ACT 1.0 (see Figure 7). We illustrate
this point with a hypothetical example next.

Figure 10 shows a hypothetical situation in which the SNIF-ACT 2.0
model is processing a Web page. We show how the probabilities of attending
to the next link, selecting a link, and leaving the Web page will change as the
model interacts with this Web page. In this hypothetical Web page, the infor-
mation scent (i.e., IS(link) in the aforementioned utility equations) decreases
from 10 to 2 from Links 1 to 5.6 The information scent of the links from 6 on-
wards stays at 2. The mean information scent of the previous pages was 10
(i.e., MIS(Previous page)), and the noise parameter τ (see the conflict resolu-
tion equation) was set to 1.0. The initial utilities of all productions were set to
0. One can see that initially, the probability of choosing Attend-to-Link is
high. This is based on the assumption that when a Web page is first processed,

SNIF-ACT 381

Figure 10. (a) A hypothetical Web page in which the information scent of links decreases lin-
early from 10 to 2 as the model evaluated links 1 to 5. The information scent of the links from 6
onward stays at 2. The number in parenthesis represents the value of information scent. (b) The
probability of choosing each of the competing productions when the model processes each of
the link in (a) sequentially. The mean information scent of the previous pages was 10. The noise
parameter t was set to 1.0. The initial utilities of all productions were set to 0. k and GoBackCost
were both set to 5.

6. The scent values are chosen for illustration purposes only; the actual scent val-
ues are likely to be in the range from 0 to 200.



there is a bias in learning the utility of links on the page before a decision is
made. However, as more links are evaluated, the utility of the production de-
creases (as the denominator gets larger as N(n) increases), and thus, the proba-
bility of choosing Attend-to-Link decreases. As N(n) increases, the utility of
Click-Link increases, and in this example, the best link evaluated so far is the
first link that has information scent of 10 (i.e., IS(Best Link) = 10). The implicit
assumption of the model is that because evaluation of links takes time, the
more links that are evaluated, the more likely that the best link evaluated so
far will be selected (otherwise the time cost may outweigh the benefits of find-
ing a better link).

As shown in Figure 10, after four links have been evaluated, the probability
of choosing Click-Link is larger than that of Attend-to-Link. At this point, if
Click-Link is selected, the model will choose the first (best) link and the model
will continue to process the next page. However, as the selection process is
stochastic (see the conflict resolution equation), Attend-to-Link may still be
selected. If this is the case, as more links are evaluated (i.e., as N(n) increases),
the probability of choosing Attend-to-Link and Click-Link decreases. On the
other hand, the probability of choosing Backup-a-Page is low initially because
of the high GoBackCost. However, as the mean information scent of the links
evaluated (i.e., MIS(links 1 to n)) on the page decreases, the probability of
choosing Backup-a-Page increases. This happens because the mean informa-
tion scent of the current page is perceived to be dropping relative to the mean
information scent of the previous page. In fact, after eight links are evaluated,
the probability of choosing Backup-a-Page becomes higher than that of At-
tend-to-Link and Click-Link, and the probability of choosing Backup-a-Page
keeps on increasing as more links are evaluated (as the mean information
scent of the current page decreases).

As illustrated in the aforementioned example, as the model attends to each
of the links on the Web page, the probability of selecting Attend-to-Link de-
creases while that of Click-Link increases (the actual probabilities are derived
from the conflict resolution equation). As a result, the utility calculations and
the set of productions implement an adaptive stopping rule for when to stop
evaluating the next link, in which the stopping rule depends stochastically on
the dynamic interactions between past and current experiences of the links.
For example, the model is more likely to stop attending to the next link as it
experiences links of diminishing scent values (see Fu & Gray, 2006 for an-
other context to which this model was applied). Similarly, because the proba-
bility of selecting Backup-a-Page increases as the model attends to each link,
the model is getting more likely to stop attending to the next link or clicking
on the best link. As the information scent of the links on the current Web page
drops below the mean information scent of previous pages, the model is more
likely to stop processing the current Web page and abandon the current path
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of navigation by going back to the previous page. The utility calculations im-
plement a satisficing process based on the theory of bounded rationality (Si-
mon, 1956): As links are evaluated in sequence, the aspiration levels for each
possible actions are updated according to the utility equations after each inter-
action cycle, and the conflict resolution mechanism continuously selects an
action at each cycle based on the utility values of each action. Compared to
SNIF-ACT 1.0, in which we assumed that participants evaluate all links on a
page and pick the one with the highest information scent, the satisficing pro-
cess in SNIF-ACT 2.0 is a more psychologically plausible mechanism. This
learning mechanism also makes the model more adaptive to specific experi-
ences of links on a Web page and therefore makes the model more flexible to
the characteristics of different Web sites.

Finally, it is important to point out that the current mechanism does not
guarantee that the “best” link will be picked. The current model is therefore
consistent with the concept of bounded rationality (Simon, 1956). In other
words, although the information foraging theory is based on the rationality
framework and the optimal foraging theory, the implementation of the model
does include reasonable psychological constraints that do not always imply
optimal behavior (Fu, in press). We believe this is a critical component of any
cognitive model that aims at providing a good descriptive account of user be-
havior in the context of human–computer interaction.

5.3. Results

Link Selections

As the utility calculations imply, when processing a Web page, the model’s
prediction of which link to select depends on both the information scent and
the position of the links. To test the predictions of the SNIF-ACT 2.0 model
on its selection of links, we first started SNIF-ACT 2.0 on the same pages as
the participants in all tasks. The SNIF-ACT 2.0 model was then run the same
number of times as the number of participants in each task, and the selections
of links were recorded.7 After the recordings, in case SNIF-ACT 2.0 did not
pick the same Web page as participants did, we forced the model to follow the
same paths as participants. This model-tracing process was a common meth-
od for comparing model predictions to human performance (e.g., see An-
derson, Corbett, Koedinger, & Pelletier, 1995, for a review). It also allows us
to directly align the model simulation results with the participant data. For ex-
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ample, if participants clicked on a particular Web page k time, the model
would also make k selection on the same Web page. Because the model faced
each of the Web pages the same number of times as the participants, ideally,
the number of times the links on a particular Web page were selected by the
model and participants would be equal. For example, if there were three links
(X, Y, Z) on a Web page and participants clicked Link X three times and Link
Y one time and did not click on Link Z, the model would be presented with
the same Web page four times and made one link selection in each of these
presentations. If the model selected Link X one time, Link Y two times, and
Link Z one time, the correlation between the participant and the model would
be r = –.189.

Using the same calculations, Figure 11 shows the scatter plots of the num-
ber of times the links on all Web pages were selected by the model and partici-
pants. As illustrated by the example earlier, if the model’s predictions were
perfect, all points in Figure 11 should lie on the straight line that passes
through the origin with a slope of 1. Figure 11 shows that, in general, the
model did a good job describing the data, and the model did better in describ-
ing the data in the Yahoo tasks (R2 = .91) than in the ParcWeb tasks (R2 = .69).
In particular, in the ParcWeb site, there were many data points lying near the
x- and y-axis when the model or participants selected the link five times or
fewer (i.e., the area near the origin), suggesting that there were many selec-
tions made by a small number of the participants not predicted by the model
and many selections by small number of runs of the model (because of the
noisy stochastic process) not chosen by the participants. However, even when
these data points were further excluded (those selected fewer than five times
by both the participants and model), we still obtained a fit of R2 = .64 and .91
for the ParcWeb and Yahoo tasks, respectively.

These results show that, in general, links frequently chosen by participants
were also chosen frequently by the model for both sites. This is important be-
cause this demonstrates the ability of SNIF-ACT 2.0 to identify the links most
likely chosen by the participants across a wide range of tasks in two very differ-
ent Web sites. Theoretically, the results provided further evidence supporting
the claim that the measure of information scent captures the way people evalu-
atemutual relevancebetweendifferent link textsand informationgoals.Froma
practical point of view, we consider the ability to make predictions on which
links are chosen most frequently as one of the most important criteria for evalu-
ating a usability tool. For example, designers are able to evaluate the way infor-
mation is presented on a Web site (or any information structures in general) by
predictinghowpeopleareable toobtain the information theywantefficiently.

To highlight the predictive power of SNIF-ACT 2.0, we also compared the
simulation results to those produced by the Position model and SNIF-ACT
1.0. However, because the Position model predicts only the ranks of links on a
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Figure 11. The scatter plots for the number of times links were selected in the Parcweb and
Yahoo sites by participants and by the SNIF-ACT 2.0, SNIF-ACT 1.0, and Position model.



given Web page based on the position of links, we need to refine the models
so that they include a stochastic action selection mechanism to select a link.
For the Position model, the Backup-a-Page production was never selected,
and the probabilities of choosing the productions Attend-to-Link and Click-
Link were calculated as the following:

P(Attend-to-Link) = 1–
N n( )

Number of Links on thePage

P(Click-Link) =
N n( )

Number of Links on thePage

(9: Probabilities of production selection in the Position model)

where N(n) is the number of links attended on the Web page at cycle n. As the
model attended to each link, the Information Scent value of the link was cal-
culated, and the model kept track of the best link encountered so far. When
the Click-Link production was selected, the best link would be selected. How-
ever, unlike SNIF-ACT 2.0, the probability to click on the best link depended
only on the number of links attended and did not depend on its Information
Scent value.

Figure 11 also shows the same scatter plots for SNIF-ACT 1.0 and the Posi-
tion model. We see that SNIF-ACT 1.0 did a reasonable job describing the
data (R2 = .35 and .62 for the ParcWeb and Yahoo sites, respectively), showing
that even without taking into account the position of links, information scent
still had good predictive power on link selections. For the Position model, we
obtained R2 = .03 and .45 for ParcWeb and Yahoo, respectively. Contrary to
previous findings (e.g., Joachims et al., 2005), the Position model yielded
worse fits than SNIF-ACT 1.0 and 2.0. The results showed that in general, in-
formation scent seems to be a better predictor than position information.8

Figure 11 shows that SNIF-ACT 1.0 and the Position model were worse at
identifying many of the “attractor” pages, as shown by the data points lying
on or close to the x-axis. On the other hand, both SNIF-ACT 1.0 and the Posi-
tion model frequently chose links that were not chosen by the participants, as
shown by the data points lying on the y-axis. By inspecting these links, we
found that links chosen frequently by participants but not by SNIF-ACT 1.0
were all encountered early on (13 of 16 for ParcWeb and 6 of 6 for Yahoo); on
the other hand, those links chosen by SNIF-ACT 1.0 but not by the partici-
pants had high Information Scent values, but they were mostly at the bottom
of the Web page (8 of 12 for ParcWeb and 6 of 7 for Yahoo). The results were
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consistent with the assumption of the SNIF-ACT 2.0 model: Participants
tended to “satisfice” on “reasonably good” links presented earlier on the Web
page rather than exhaustively finding the best links on the whole Web page.
This highlights the importance of including dynamic mechanisms that take
ongoing assessments of link context into account when describing detailed
user interactions with the Web page. Another implication is that, in addition
to link relevance, the physical positions of links will interact with the visual
search process to influence link selection.

Going Back to the Previous Page

The new utility equations allow the model to predict when it will stop
evaluating links and go back to the previous Web page. Going back to the
previous Web page was more likely when the utility of the Backup-a-Page
production became comparable or higher than that of Attend-to-Link and
Click-Link productions, and consequently the Backup-a-Page production
was more likely to be selected by the stochastic conflict resolution equation.
As shown in Figure 10, as the information scent decreases and becomes
much lower than the mean information scent of previous pages, the proba-
bility of choosing the Backup-a-Page production increases. To test the
model’s predictions, we compared the number of times the model chose to
go back on a given Web page to the number of times participants chose to
go back on the same Web page. We then performed the same regression
analyses as we did when we tested SNIF-ACT 2.0 predictions on link selec-
tion. We obtained R2 = .73 and .80 for the ParcWeb and Yahoo sites, re-
spectively (see Figure 12). Given the large number of Web pages that we
analyzed, we considered that SNIF-ACT 2.0 did a good job predicting
when people would stop following a particular path and go back to the pre-
vious page. In the model, when the information scent of a page dropped
below the mean information scent of previous pages, the probability of go-
ing back increased. The results provided further support for the claim that
people will choose to leave a page when the information scent drops, as we
found in the SNIF-ACT1.0 simulations. The results showed that the
satisficing mechanism provided a good descriptive account of both link se-
lections and when people decided to leave a Web page.

Successes in Finding the Target Pages

In the evaluation of our model, we adopted the model-tracing approach, in
which we reset our model to follow the same paths if the model selected a link
different from that chosen by the participants. This approach allows us to di-
rectly align the predictions of the model to the participants’ data. However,
this raises the question that the model is not truly experiencing the exact same
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sequences of Web pages as the participants and may not truly reflect the gen-
eral capabilities of the model in predicting user–Web interactions. We there-
fore performed simulations of the model without resetting and compared the
percentages of time the model could successfully find the target Web pages to
those of participants. The goal of the simulations was to study how well the
model was able to predict the likelihood for participants to find the target in-
formation on a given Web site, and thus how well the model can be applied to
usability analyses of Web sites.

We performed 500 cycles of simulations of the Position model and both
versions of SNIF-ACT and obtained the percentages of successes for each
model. Figure 13 shows the percentages of the participants who successful
found the target Web page as well as percentages of times each of the mod-
els found that target Web pages. There were some “easy” tasks (ParcWeb
1a, 4a, and 4b; Yahoo 1a, 2a, 3a, 4a, 3b and 4b) where most participants
found the target Web pages, but there were a few “difficult” tasks where
none of the participants found the target Web pages (ParcWeb 2a, 3a, 2b,
3b). Figure 13 shows that, in general, the models were worse than partici-
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pants in successfully finding the target pages in the easy tasks. SNIF-ACT
2.0 was closest to participant performance among the other models in tasks
in these easy tasks, followed by SNIF-ACT 1.0, with the Position model be-
ing the worst. However, for the difficult tasks, SNIF-ACT 1.0 still found
many of the target Web pages, whereas both the Position model and
SNIF-ACT 2.0 failed to find the target Web pages, thus providing a better
match to participant performance.

This interesting result could be explained by the fact that SNIF-ACT 1.0
selected links with the highest scent regardless of their position on the Web
page, and presumably some of those correct links (with possibly the highest
information scent values) were at the bottom of the Web pages that both the
Position model and SNIF-ACT 2.0 could not find. The good fits of SNIF-
ACT 2.0 again demonstrate that the satisficing mechanism provides a good
psychologically plausible account of the process of sequential evaluation of
links. The results also demonstrate the general capabilities of the model to
be utilized as a tool to predict task difficulties and for general usability anal-
yses of Web sites. Usability analysts could first identify a range of typical in-
formation goals for particular Web sites or large information structures. The
model can then be applied to search for these information goals using the
Web site, and the percentages of successes could provide a good index of
how likely users are able to find the target information in general. The good
match of the model to human behavior demonstrates the validities of ap-
plying the model to conduct this kind of automatic usability analyses
system.
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Tasks

1a 2a 3a 4a 1b 2b 3b 4b

ParcWeb
Subject 87% 0% 0% 94% 18% 0% 0% 77%
lin0Positio

n
10% 0% 0% 12% 0% 0% 0% 0%

Snif-Act 1.0 61% 21% 16% 62% 8% 7% 24% 45%
Snif-Act 2.0 71% 0% 0% 63% 21% 0% 0% 51%

Yahoo
Subject 91% 83% 82% 98% 30% 42% 96% 69%
Position 13% 9% 2% 21% 2% 6% 15% 7%
Snif-Act 1.0 53% 76% 78% 82% 21% 37% 46% 53%
Snif-Act 2.0 89% 79% 76% 88% 16% 24% 78% 45%

Figure 13. The percentages of successes in each of the tasks for the subjects and the
models.



Summary of Results

We conclude that SNIF-ACT 2.0 did a good job predicting user–Web in-
teractions in a wide range of users and tasks in realistic settings. In both ver-
sions of the model, SNIF-ACT 1.0 and SNIF-ACT 2.0, we found that the
measure of information scent provides good descriptions of how people eval-
uate mutual relevance of link texts and their information goals. We also com-
pared the models to a simple Position model that selects links based solely on
their positions on the Web page. Consistent with previous results ( Joachims et
al., 2005), we found that the Position model did have some predictive power
in characterizing link selections. On the other hand, both versions of SNIF-
ACT provide much better fits to human data than the Position model, demon-
strating that the measure of information scent does a much better job in pre-
dicting user–Web interactions.

To combine the predictive power of position of links and information
scent, we developed SNIF-ACT 2.0, which implements a stochastic, adaptive
evaluation and selection mechanism when evaluating and selecting links on a
Web page. The major theoretical premise of SNIF-ACT 2.0 is derived from
the assumption that, because evaluation of links takes time, the time cost in-
curred from evaluating all links on a page may not be justified, and thus as
links are evaluated sequentially, the selection of links will be affected by a dy-
namic trade-off of the perceived likelihood of finding the target information
as the model continues to evaluate the list of links and the cost incurred in do-
ing so. Unlike SNIF-ACT 1.0, which selects the best links on a Web page re-
gardless of its position, SNIF-ACT 2.0 satisfices on a good-enough link with-
out exhausting all links on a Web page. Our results show that SNIF-ACT 2.0
provides a better descriptive account of user–Web interactions than both
SNIF-ACT 1.0 and the Position model. By developing our model on the basis
of a general theoretical framework of rational analyses, our goal is to show
how a more general methodology can be useful for developing a solid theo-
retical foundation for usability studies for a wide range of situations.

Besides link selection, SNIF-ACT 2.0 also provides good descriptions of
when people will go back to the previous page. Based on results from the
SNIF-ACT 1.0 simulations, the probability that the model will go back to the
previous page increases as the information scent of the current page is low
compared to the mean information scent of previous pages. This mechanism
is based on the assumption that when the model processes a page, it develops
an expectation of the level of information scent of future pages. When the in-
formation scent of a page drops below the dynamic aspiration level devel-
oped from the ongoing assessments of link context, the model is more likely
to go back to the previous page. The dynamic selection mechanism therefore
successfully provides an integrated account of both link selection and when
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people decide not to continue further on a given Web page. Indeed, when we
allow the model to freely search on the Web sites, we found that SNIF-ACT
2.0 provides the best match to human data in finding (whether successful or
not) the target information. This is important, as it demonstrates the model’s ca-
pability to predict task difficulties and how it can be extended to an automatic
usability analyses tool, which we describe in the Discussion section next.

6. General Discussion

Pirolli and Card (1999) presented the theory of information foraging that casts
the general problem of finding information in terms of an adaptation process
between people and their information environments. In this article, we ex-
tended the theory and presented a computational model that integrates the
Bayesian satisficing mechanism (Fu, 2007; Fu & Gray, 2006), the reinforce-
ment learning model (Fu & Anderson, 2006), and the conflict resolution ac-
tion selection mechanism derived from the random utility theory (McFadden,
1974) to explain user–Web interactions. In particular, we showed that the
model provided an integrated account for link selections on a Web page and
when people would leave the current Web page. In two experiments, we
show that the predictions match human data well at both the individual and
the aggregate level. Although the model is tested only on interactions be-
tween humans and the WWW, we believe that the fundamental principles be-
hind the model are general enough to be applicable to other large informa-
tion structures.

One of the assumptions of conventional optimal foraging models (Ste-
phens & Krebs, 1986) is that the forager has perfect knowledge of the environ-
ment. This assumption is similar to the economic assumption of the “rational
person,” who has perfect knowledge and unlimited computational resources
to derive the optimal decision (Simon, 1955, 1956). Simon argued that human
decision makers are better characterized as exhibiting bounded rationality—
limited knowledge and various psychological constraints often make the
choice process far from optimal. Instead of searching for the optimal choice,
choices are often made once they are good enough based on some estimation
of the characteristics of the environment—a process called satisficing. In our
model, the satisficing process is implemented through the dynamic updating
of utility values and competition among the set of possible actions at each in-
teraction cycle. Instead of processing all links on a page and selecting the best
link, utilities of productions are updated as links are evaluated sequentially.
Once a link is found to be good enough, the model will choose it, or when the
utility of leaving the current Web page is perceived to be higher than evaluat-
ing the next link, the model will leave the current Web page. We show that the
model based on the bounded rationality framework nicely integrates the two
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major aspects of user–Web interactions into a single dynamic mechanism that
makes good, detailed predictions of user behavior at both individual and ag-
gregate levels.

As we proceeded from modeling individual to aggregate behavior, we
were making predictions about the emergent behavior of the population of
Web users. This approach is similar to the analyses of Web user behavior by
Huberman et al. (1997). Huberman et al. showed that the distribution of the
length of sequences of Web page visits can be characterized by the Inverse
Gaussian distribution—a finding that they called the Law of Surfing. The Law
of Surfing assumes that Web page visits can be modeled as a random walk
process in which the expected utility of continuing to the next page is
stochastically related to the expected utility of the current page. An individual
will continue to surf until the expected cost of continuing is perceived to be
larger than the discounted expected value of the information to be found in
the future. Our model shares the same basic assumptions as those behind the
derivation of the Law of Surfing, and in Appendix C, we show that the predic-
tions of our model on aggregate behavior are consistent with those of the Law
of Surfing. On the other hand, instead of predicting how many links a user
will click through on the same Web site, our model is able to produce more
fine-grained predictions that focus on how evaluation of content on a Web
page will affect link selections and when one will go back to the previous
page.

There have been other successful models for user–Web interactions, al-
though each of them has a slightly different focus from SNIF-ACT. For exam-
ple, CoLiDes (Kitajima, Blackmon, & Polson, 2000) was implemented in the
Construction-Integration architecture that explains user–Web behavior on a
single Web page. Another model, called MESA by Miller and Remington
(2004) makes good predictions on user behavior in different treelike Web site
architectures. Each of these models has its strength that provides strong moti-
vation for future improvement of the SNIF-ACT model. We provide a review
of existing models of user–Web interactions in Section 6.3. In the next two
sections, we discuss the applications, limitations, and future directions of the
SNIF-ACT model.

6.1. Applications of the SNIF-ACT Model

From a practical point of view, computational models of user–Web interac-
tions are expected to improve current human–information technology de-
signs. Existing guidelines for designs often rely on a set of vague “cognitive
principles” that often only provide coarse predictions about user behavior.
The major advantage of using computational models is that they allow simu-
lations of the integration of various cognitive processes and how they interact
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to affect behavior. These predictions cannot be obtained by simply applying
superficial applications of vague “cognitive principles.” Another obvious ad-
vantage is that it has the potential to perform fully automatic evaluations of in-
formation structures. Given the demands in private industry and public insti-
tutions to improve the Web and the scarcity of relevant psychological theory,
there is likely to be continuing demand for scientific inquiries that may im-
prove commerce and public welfare.

One of the ongoing projects that instantiates the practical capabilities of
the SNIF-ACT model is a system called Bloodhound9 (Chi et al., 2003). A
person (the Web site analyst) interested in doing a usability analysis of a Web
site must indicate the Web site to be analyzed and provide a candidate user in-
formation goal representing a task that users are expected to be performing at
the site. The Bloodhound system starts with a Web crawler program that de-
velops a representation of the linkage topology (the page-to-page links) and
downloads the Web pages (content). From these data, Bloodhound analyzes
the Web pages to determine the information scent cues associated with every
link on every page.

At this point Bloodhound essentially has a representation of every page-
to-page link, and the information scent cues associated with that link. From
this, Bloodhound develops a graph representation in which the nodes are the
Web site pages, the vertices are the page-to-page links at the site, and weights
on the vertices represent the probability of a user choosing a particular vertex
given the user’s information goal and the information scent cues associated
with the link. This graph is represented as a page-by-page matrix in which the
rows represent individual unique pages at the site, the columns also represent
Web site pages, and the matrix cells contain the navigation choice probabili-
ties that predict the probability, based on the measure of information scent
and the conflict resolution equation, that a user with the given information
goal, at a given page, will choose to go to a linked page. Using matrix compu-
tations, this matrix is used to simulate user flow at the Web site by assuming
that the user starts at some given Web page and iteratively chooses to go to
new pages based on the predicted navigation choice probabilities. The user
flow simulation yields predictions concerning the pattern of visits to Web
pages, and the proportion of users that will arrive at target Web pages that
contain the information relevant to their tasks.

As part of the Bloodhound p`roject, an input screen is created so that Web
site analysts can enter specifications of user tasks, the Web site URL, and the
target pages that contain the information relevant to those tasks. An analysis is
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then done by Bloodhound and a report is then automatically generated that
shows such measures as the predicted number of users who will be able to
find target information relevant to the specified task, as well as intermediate
navigation pages that are predicted to be highly visited that may be a cause of
bottlenecks. Unlike the model-tracing method we used when evaluating
SNIF-ACT 2.0, the system demonstrates the general capability of the model
to travel to all pages on the Web site and generate a probability profile for the
whole site. The development of an automatic tool that accurately models
user-Web behavior will greatly facilitate the interactive process of developing
and evaluating Web sites.

6.2. Cognitive Models of Web Navigation

There have been many attempts to understand Web users and to develop
Web usability methods. Empirical studies (e.g., Choo, Detlor, & Turnbull,
2000) have reported general patterns of information-seeking behavior but
have not provided much in the way of detailed analysis. Web usability
methodologists (Krug, 2000; Nielsen, 2000; Spool et al., 1999) have drawn on
a mix of case studies and empirical research to extract best design practices
for use during development as well as evaluation methods for identifying us-
ability problems (Garzotto, Matera, & Paolini, 1998). For instance, principles
regarding the ratio of content to navigation structure on Web pages (Nielsen,
2000), the use of information scent to improve Web site navigation (User In-
terface Engineering, 1999), reduction of cognitive overhead (Krug, 2000),
writing style and graphic design (Brinck et al., 2001), and much more can be
found in the literature. Unfortunately, these principles are not universally
agreed upon and have not been rigorously tested. For instance, there is a de-
bate about the importance of download time as a usability factor (Nielsen,
2000; User Interface Engineering, 1999). Such methods can identify re-
quirements and problems with specific designs and may even lead to some
moderately general design practices, but they are not aimed at the sort of
deeper scientific understanding that may lead to large improvements in Web
interface design.

The development of theory in this area can greatly accelerate progress and
meet the demands of changes in the way we interact with the Web (Newell &
Card, 1985). Greater theoretical understanding and the ability to predict the
effects of alternative designs could bring greater coherence to the usability lit-
erature and provide more rapid evolution of better designs. In practical
terms, a designer armed with such theory could explore and explain the ef-
fects of different design decisions on Web designs before the heavy invest-
ment of resources for implementation and testing. Theory and scientific mod-
els themselves may not be of direct use to engineers and designers, but they
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form a solid and fruitful foundation for design models and engineering mod-
els (Card et al., 1983; Paternò, Sabbatino, & Santoro, 2000). Unfortunately,
cognitive engineering models that had been developed to deal with the analy-
sis of expert performance on well-defined tasks involving application pro-
grams (e.g., Pirolli, 1999) have had limited applicability to understanding for-
aging through content-rich hypermedia, and consequently new theories are
needed.

The SNIF-ACT model presented in this article is one of several recently
developed cognitive models aimed at a better understanding of Web naviga-
tion. Web navigation, or browsing, typically involves some mix of scanning
and reading Web pages, using search engines, assessing and selecting links on
Web pages to go to other Web pages, and using various backtracking mecha-
nisms (e.g., history lists or Back buttons on a browser). None of these recently
developed cognitive models (including SNIF-ACT 1.0) offers a complete ac-
count of all of these behaviors that are involved in a typical information forag-
ing task on the Web. The development of SNIF-ACT has been driven by a
process of rational analysis (Anderson, 1990) of the tasks facing the Web user
and successive refinement of models in a cognitive architecture that is aimed
to provide an integrated theory of cognition (Anderson & Lebiere, 1998).
SNIF-ACT has focused on modeling how users make navigation choices
when browsing over many pages until they either give up or find what they
are seeking. These navigation choices involve which links to follow, or when
to give up on a particular path and go to a previous page, another Web site, or
a search engine. SNIF-ACT may be compared to two other recent models of
Web navigation, MESA (Miller & Remington, 2004) and CoLiDeS (Kitajima
et al., 2005), which are summarized in the next subsections.

MESA

MESA (Miller & Remington, 2004) simulates the flow of users through
tree structures of linked Web pages. MESA is intended to be a cognitive engi-
neering model for calculating the time cost of navigation through alternative
Web structures for given tasks. The focus of MESA is on link navigation,
which empirical studies (Katz & Byrne, 2003) suggest is the dominant strategy
for foraging for information on the Web. MESA was formulated based on sev-
eral principles: (a) the rationality principle, which heuristically assumes that us-
ers adopt rational behavior solutions to the problems posed by their environ-
ments (within the bounds of their limitations); (b) the limited capacity principle,
which constrains the model to perform operations that are cognitively and
physically feasible for the human user; and (c) the simplicity principle, which fa-
vors good approximations when added complexity makes the model less us-
able with little improvement in fit (see also Newell & Card, 1985).
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MESA scans the links on a Web page in serial order. MESA navigates with
three basic operators that (a) assess the relevance of a link on a Web page, (b)
select a link, and (c) backtrack to a previous page. MESA employs a threshold
strategy for selecting links and an opportunistic strategy for temporarily delaying
return to a previous page. MESA scans links on a Web page in serial order. If
a link exceeds an internal threshold, it selects that link and goes to the linked
page. Otherwise, if the link is below threshold, MESA continues scanning
and assessing links. If MESA reaches the end of a Web page without selecting
a link, it rescans the page with a lower threshold unless the threshold has al-
ready been lowered, or if marginally relevant links were encountered on the
first scan.

MESA achieves correlations of r2 = .79 with human user navigation times
across a variety of tasks, Web structures, and quality of information scent
(Miller & Remington, 2004). MESA does not, however, directly interact with
the Web, which requires the modeler to hand code the structure of Web that is
of concern to the simulation. MESA also does not have an automated way of
computing link relevance (the information scent of links), requiring that mod-
elers separately obtain ratings of stated preferences for links. Both of these
concerns are addressed by the SNIF-ACT model.

CoLiDeS

CoLiDeS (Kitajima et al., 2005) is model of Web navigation that derives
from Kintsch’s (1998) construction-integration cognitive architecture. The
CoLiDeS cognitive model is the basis for a cognitive engineering approach
called Cognitive Walkthrough for the Web (CWW; Blackmon, Kitajima, &
Polson, 2005). Construction-integration is generally a process by which
meaningful representations of internal and external entities such as texts, dis-
play objects, and object–action connections are constructed and elaborated
with material retrieved from memory, then a spreading activation constraint
satisfaction process integrates the relevant information and eliminates the ir-
relevant. CoLiDeS includes meaningful knowledge for comprehending task
instructions, formulating goals, parsing the layout of Web pages, compre-
hending link labels, and performing navigation actions. In CoLiDeS these
spreading activation networks include representations of goals and subgoals,
screen elements, and propositional knowledge, including object-action pairs.
These items are represented as nodes in a network interconnected by links
weighted by strength values. Activation is spread through the network in pro-
portion to the strength of connections. The connection strengths between rep-
resentations of a user’s goal and screen objects correspond to the notion of in-
formation scent. As discussed next, these strengths are partly determined by
LSA measures (Landauer & Dumais, 1997).
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Given a task goal, CoLiDeS (Kitajima et al., 2005) forms a content subgoal
representing the meaning of the desired content and a navigation subgoal rep-
resenting the desired method for finding that content (e.g., “use the Web site
navigation bar”). CoLiDeS then proceeds through two construction-integra-
tion phases: an attention phase, which determines which display items to attend
to, and an action-selection phase, which results in the next navigation action to
select. During the attention phase, a given Web page is parsed into subregions
based on knowledge of Web and GUI layouts, knowledge is retrieved to elab-
orate interpretations of these subregions, and constraint satisfaction selects an
action determining the direction of attention to a Web page subregion. Dur-
ing the action selection phase, representations of the elements of the selected
subregion are elaborated by knowledge from long-term memory. The spread-
ing activation constraint satisfaction process then selects a few objects in the
subregion as relevant. Another constraint satisfaction process then selects eli-
gible object-action pairs that are associated with the relevant items. This de-
termines the next navigation action to perform.

In both the attention phase and the action-selection phase, spreading acti-
vation networks are constructed, activation is spread through the networks,
and the most active elements in the network are selected and acted upon. As
just noted, LSA is used to determine the relevance (information scent) of dis-
play objects to a user’s goal. LSA is a technique, similar to factor analysis
(principal components analysis), computed over a word by document matrix
tabulating the occurrence of terms (words) in documents in a collection of
documents. Terms (words) can be represented as vectors in a factor space
in which the cosine of the angle between those vectors represents term-
to-term similarity (Manning & Schuetze, 1999), and those similarity scores
correlate well with such things as judgments of synonymy (Landauer, 1986).
In CoLiDeS, relevance is determined by five factors (Kitajima et al., 2005):

1. Semantic similarity as measured as the cosine of LSA term vectors rep-
resenting a user’s goal and words on a Web page.

2. The LSA term vector length of words on a Web page, which is assumed
to measure the familiarity of the term.

3. The frequency of occurrence of terms in document collection on which
LSA has been computed.

4. The frequency of encounter with Web page terms in a user’s session.
5. Literal matches between terms representing the user’s goal and the

terms on a Web page.

These five factors combine to determine the strengths of association
among elements representing goal elements and Web page elements, which
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determines the spread of activation and ultimately the control of attention
and action in CoLiDeS.

The primary evaluation of CoLiDeS comes from a Web usability engineer-
ing model called CWW (Blackmon et al., 2005; Kitajima et al., 2005). CWW
is used to find and identify usability problems on given Web pages. This in-
cludes prediction of the total number of clicks to accomplish a goal (a mea-
sure of task difficulty), the identification of problems due to lack of familiar
wording on Web pages, links that compete for attention, and links that have
weak information scent.

Relations Between SNIF-ACT and Other Models

SNIF-ACT, like MESA, is a simulation of how users navigate over a series
of Web pages, although SNIF-ACT is not artificially restricted to treelike
structures and deals with actual Web content and structures. Similar to
MESA, SNIF-ACT is founded on a rational analysis of Web navigation, al-
though the rational analysis of SNIF-ACT derives from information foraging
theory (Pirolli, 2005; Pirolli & Card, 1999). This rational analysis guides the
implementation of SNIF-ACT as a computational cognitive model. The ini-
tial implementations of SNIF-ACT have implicitly assumed a slightly differ-
ent version of MESA’s simplicity principle: SNIF-ACT was developed under
the assumption that the complexity of Web navigation behavior could best be
addressed by a process of successive approximation. This involves first mod-
eling factors that are assumed to control the more significant aspects of the be-
havioral phenomena and then proceeding to refine the model to address ad-
ditional details of user behavior.

As argued elsewhere (Pirolli, 2005), the use of information scent to make
navigation choices during link following on the Web is perhaps the most sig-
nificant factor in determining performance times in seeking information. This
is because navigation through a Web structure, such as a Web site, can be
characterized as a search process over a graph in which graph nodes repre-
sent pages and graph edges represent links among pages. Although the under-
lying structure is a graph, the observed search process typically forms a tree.
Each search tree node, representing a visited page, has some number of
branches emanating from it, corresponding to the links emanating from that
page to linked pages. If the user makes perfect navigation choices at each
node, only one branch is followed from each node in the tree along the short-
est path from a start node (representing a starting Web page) to a target node
(representing a page satisfying the user’s goal). Performance times will be pro-
portional to the length of that minimal path. On the other hand, if the quality
of information scent does not support perfect navigation choices, then more
than one branch will be explored from each node visited, on average. Conse-
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quently, performance times will grow exponentially with the minimum dis-
tance between the start page and the target, and the size of the exponent will
grow with the average number of incorrect links followed per node (Pirolli,
2005). In the general case, small changes in information scent can cause a
qualitative change from costs that grow linearly with the minimum distance
from start to target, to costs that grow exponentially with minimum dis-
tance—what has been called a phase transition (Hogg & Huberman, 1987) in
search costs. Consequently, the development of SNIF-ACT has focused first
on modeling the role of information scent in navigation choice. In this respect
it is much like CoLiDeS (Kitajima et al., 2005).

However, SNIF-ACT differs in several respects from CoLiDeS. The
model of information scent is based on a rational analysis of navigation choice
behavior (Pirolli, 2005). The rational analysis is specified as a RUM (McFad-
den, 1974) that includes a Bayesian assessment of the likelihood of achieving
an information goal given the available information scent cues. Also unlike
CoLiDeS, SNIF-ACT derives from the ACT-R architecture (Anderson &
Lebiere, 1998). Although we currently do not make use of the full set of mod-
eling capabilities in ACT-R, we expect those capabilities to be useful in suc-
cessive refinements of SNIF-ACT. For instance, SNIF-ACT does not cur-
rently make use of ACT-R modules for the prediction of eye movements and
other perceptual-motor behavior, which would be crucial to the prediction of
how users scan individual Web pages and why users often fail to find informa-
tion displayed on a Web page (but see Brumby & Howes, 2004). SNIF-ACT
also does not make use of ACT-R’s capacity for representing information-
seeking plans that are characteristic of expert Web users (Bhavnani, 2002).
Our choice of ACT-R as the basis for the SNIF-ACT model is partly driven
by the expectation that other developed aspects of ACT-R can be used in
more detailed elaborations of the basic SNIF-ACT model.

Although SNIF-ACT could not predict which Web site people would go to
when they first start to search for information (by actions other than link-click-
ing), the model seemed to match well with human data on when they decided
to go back to the previous pages. Being able to predict how long users will
spend at a Web site, or on a Web foraging session, has been addressed by sto-
chastic models of aggregate user behavior (Huberman et al., 1998). We build
upon optimal foraging models (Charnov, 1976; McNamara, 1982) to develop
a rational analysis of information patch leaving (Pirolli & Card, 1999) that
specifies the decision rule for abandoning the current link-following path.
This rational analysis is also implemented in SNIF-ACT. To conclude, we
found that although different cognitive models address slightly different as-
pects of user–Web interactions, there is no theoretical reason why they could
not be integrated to complement each other in their strengths and weak-
nesses. In fact, we find the successes of these cognitive models of user–Web
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interactions demonstrate the promising aspect of developing a strong theoret-
ical foundation for characterizing and understanding complex human–tech-
nology interactions.

6.3. Limitations and Future Directions

Sequential Versus Hierarchical Processing of Web Pages

One of the assumptions of the SNIF-ACT model is the sequential process-
ing of links on a Web page. This assumption is realistic for the tasks that we an-
alyzed, in which participants often used search engines that returned a list of
links for them to process. Although we believe that this is one of the dominant
modes of user–Web interactions for general information-seeking tasks, the as-
sumption of sequential processing of links may not apply as well in certain
kinds of Web pages. For example, Blackmon et al. (2005) studied how people
processed Web pages that were categorized under different headings and sub-
regions. They found that people tended to scan headings to identify the subre-
gions of the Web page that were semantically most similar to their user goals.
Of interest, they found that when there was a high-scent heading on the Web
page, people tended to focus on the subregion categorized under the high-
scent heading and ignored the rest of the Web page. Blackmon et al.’s results
implied a hierarchical, instead of sequential, processing of links on a Web
page in these kinds of Web pages.

At this point, SNIF-ACT was developed at a level of abstraction that was
not sensitive to different visual layouts of the Web pages and thus could not
predict results from Blackmon et al. On the other hand, the sequential pro-
cessing of links in SNIF-ACT is at the evaluation stage, not at the attentional
stage. Our plan is that once we have a better understanding of the relationship
between people’s attention process to different links and different visual lay-
outs, it is possible to reorder the sequence of links evaluated by SNIF-ACT
based on the relationship. In fact, by recording detailed eye movements of us-
ers while they are navigating on the Web, models have been constructed
that predict sequences of fixations are constructed to explain low-level per-
ceptual processes in information seeking (Brumby & Howes, 2004; Hornof,
2004; Hornof & Halverson, 2003). As complex Web pages are becoming
more common, a good theory of attention allocation as a function of differ-
ent visual layouts is definitely important in predicting navigational behav-
ior. Our goal is to incorporate existing results and perform further studies to
understand attention allocation strategies in complex Web pages and com-
bine these results in future versions of the SNIF-ACT model. In fact, we be-
lieve that such a synergy will result in a more detailed and predictive model
of Web navigation.
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Users With Different Background Knowledge

In both SNIF-ACT 1.0 and 2.0, we tested participants on general informa-
tion-seeking tasks that involve little domain-specific knowledge. Indeed, our
model is based on weak problem-solving methods that do not depend on do-
main-specific knowledge. It is possible that in specific domains, for example,
for Web sites that contain medical information for practitioners, expert users
(either expert in the domain or in the Web sites) may perform differently by
forming complicated goal structures (e.g., see Bhavnani, 2002) that possibly
cannot be handled by the current version of SNIF-ACT (although it is almost
trivial to implement goal structures in a production system; see Anderson &
Lebiere, 1998). We do not know exactly know how expertise will influence
the user–Web interactions and whether the influence will have large variabil-
ity across domains. The question is clearly subject to future research.

A related question is how background knowledge will affect the computa-
tions of information scent. For example, familiarities of different words for a
college-level and a ninth-grade user could be very different (as they could be
different between professional anthropologists and astrophysicists) and thus
may affect the measurement of relatedness of two sets of words for different
groups of users with very different background knowledge. One approach is
to divide the text corpus a priori into sets that correspond to different groups
of users with different background knowledge and perform the information
scent calculations using these separate text corpora (e.g., see Kitajima et al.,
2005). This will allow the model to be sensitive to individual differences in
background knowledge.

Another related question is how well are usability analysts able to generate
typical information goals as required by the current model. The current eval-
uation of SNIF-ACT does assume that a well-defined information goal is pre-
sented to the user. One could imagine that in many cases, users do not have a
well-formulated information goal but rather a vague or ill-defined informa-
tion goal that motivates them to search on the WWW to either understand a
topic better, to acquire some conceptual framework in a particular domain, or
to investigate the opinions of others on a particular topic or problems. Obvi-
ously, our model was not able to answer these questions directly, and more re-
search is needed to understand how these information goals would arise as
people are engaged in this kind of ill-defined, “sense-making” tasks.
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Appendix A. The Random Utility Model of Link Choice

Consider a person facing a Web page with a choice set of links L consisting
of j alternatives. Suppose the person chooses alternative k from L. If rational
behavior is assumed, revealed preference implies that Uk ≥ Uj for all j in L.
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The probability of this event occurring can be represented as Pk = Prob (Uk ≥
Uj for all j in L).

In the random utility model, utilities are assumed to consist of two parts,
one is deterministic and one is stochastic, thus the utility of link k can be rep-
resented as

Uk=Vk + εk

Thus, Pk = Prob (Uk ≥ Uj for all j in L)

= Prob (Vk – Vj ≥ εj - εk for all j in L)

To determine Pk (the probability that a person will choose link k), one needs
to specify thedistribution for ε.McFadden (1974) showed that ifweallow theas-
sumption that ε follows one of the popular extreme value distribution called a
double exponential distribution, that is, Prob (εk < t) = exp[-exp(-t/b)], then
once can obtain the conflict resolution equation as:

The assumption of the double exponential distribution for the error term
thus allows an elegant closed form equation for the probability of selecting a
link from a set. The distribution corresponds to the limiting distribution of the
maximum value in a set of N elements as N approaches infinity.

APPENDIX B. A RATIONAL ANALYSIS OF LINK
EVALUATION AND SELECTION

This analysis is based on the rational analysis in chapter 5 of Anderson
(1990). The analysis aims at providing a rational basis for the utility calcula-
tions of the productions in the SNIF-ACT 2.0 model. The goal of the rational
analysis is to derive the adaptive mechanism for the action evaluation and se-
lection process as links are sequentially processed. The analysis is based on a
Bayesian framework in which the user is gathering data from the sequential
evaluation of links on a Web page. We define:

X = variable that measures the closeness to the target
S = binary variable that describes whether the link will lead to the target page
R = probability that the target information can be found
r = the event that the target information exists
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Given the definitions, it immediately follows that

Pr(S = 1|r) = R, (A.1)

and

Pr(S = 0|r) = 1 - R; (A.2)

we also have, by Bayes Theorem:

Pr(S,X|r) = Pr(X|S,r) Pr(S|r). (A.3)

Because the major assumption of the information foraging theory is that in-
formation scent (IS) directly measures the closeness to the target, we define:

where IS(j) represents the information scent of link j, and K and á are constant
parameters of the Equation A.4. Equation A.4 assumes that the measure of
closeness is a hyperbolically discounted sum of the information scents of the
links encountered in the past. The use of a hyperbolic discount function has
been validated in a number of studies in human preferences (e.g., Ainslie &
Haslam, 1992; Loewenstein & Prelec, 1991; Mazur, 2001).

We treat this problem as one of sampling the random variables (X, S) from
a Bernoulli distribution, with R equivalent to the parameter to the estimated
for the distribution. The appropriate Bayesian conjugate distribution conve-
nient for use in updating estimates of R from samples of a Bernoulli random
variable is the beta distribution. That is, we assume a prior beta distribution
for R, and the user will use the observed information scent of the links on a
Web page to update a posterior beta distribution of R. We take R to follow a
beta distribution with parameters a and b. After the user has experienced a se-
quence of links on a Web page, represented as

Ln = ((X1, S1), (X2, S2) … (Xn, Sn))

where each pair (Xi, Si) describes the closeness to the target and whether the
link leads to the target page. Because the prior of R is a beta distribution, the
posterior distribution Pr(R|Ln) is also a beta, and the new parameters can be
shown to be
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anew = a + ∑Si (A.5)

and

bnew = b + ∑(1 - Si) (A.6)

as its parameters. The posterior predictive distribution for S and X given Ln

can be computed as:

In our case, our interest mainly lies on the posterior predictive probability
that the user can find the target, that is, Pr(Sn + 1 = 1, Xn + 1|Ln), which can be
computed as:

If the user is considering links sequentially on a Web page before the target
is found, we have ∑Si = 0. To reduce the number of parameters, we set = a,
K = 1/a. and assume that b = 0. We now only have one parameter a, which
represents the prior number of successes in finding the target information on
the web. The equation can then be reduced to:

In the model, the aforementioned probability is calculated to approximate
the utilities of the productions read-next-link and click-link. Putting the previ-
ous equation in a recursive form, we have:

In the equation specified in the text, we set a = 1 for the read-next-link pro-
duction; and a = 1 + k for the click-link production. By setting the value of a
for click-link to a higher value, we assume that in general, following a link is
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more likely to lead to the target page than attending to the next link on the
same Web page. k is a free parameter that we used to fit the data.

APPENDIX C. THE LAW OF SURFING

The law of surfing (Huberman et al., 1998) was derived to describe emer-
gent aggregate Web navigation behavior. We are interested to see (a) if the
data sets we collected also exhibit the same properties as predicted by the law
of surfing (LoS), and (b) whether SNIF-ACT 2.0, a model aims at explaining
fine-grained dynamic user–Web interactions, will exhibit the same emergent
properties at the aggregate level. The LoS is based on the notion that Web
surfing can be modeled as a Weiner process with a random (positive) drift pa-
rameter µ and with noise σ2. Specifically, the utility of a page Xt to be visited at
time t to the utility of a currently viewed page Xt-1 at time t – 1 is calculated as

where εt is a random variable from a Gaussian distribution with mean µ and
variance σ2. It is assumed that this process starts in some initial state X0, and
terminates when some threshold utility U is encountered. The distribution of
first passage times (i.e, in our case, the number of clicks on a web site before
the user leaves, or the “depth”) for this process is characterized by an Inverse
Gaussian Distribution (IGD) which is usually presented as

where E t v[ ] = andVar t
v

[ ] .=
3

λ
An interesting implication of the LoS can be

obtained by taking logarithms on both sides of (2), which yields

The equation suggests that a log-log plot will show a straight line whose
slope approximates -3/2 for small values of t. Figure 14 shows the log-log plot
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of the observed and predicted frequency and the number of clicks in the Ya-
hoo and ParcWeb Web sites. We can see that in general both the observed and
predicted data by SNIF-ACT 2.0 are consistent with the properties predicted
by the LoS.

The LoS also allows precise predictions on the probability that a user will
leave a Web site as the user is navigating on the Web site. Figure 15 shows the
cumulative distribution frequency (CDF) of the predictions by LoS and
SNIF-ACT 2.0. The figure also shows the data collected from Yahoo and
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Figure 14. Log-Log plots of frequency against number of clicks on Web pages in Yahoo
and ParcWeb. In the equations, x represents Log(clicks) and y represents Log(fre-
quency).

(continued)



ParcWeb, with mean of 2.31 clicks and variance of 1.35 before users stopped
clicking forward (i.e., either go back, type in a different URL, etc.). The match
between the predictions between the LoS and SNIF-ACT 2.0 are extremely
good (R2 = .993), and the match between the observed and LoS (R2 = .984)
and that between the observed and SNIF-ACT 2.0 (R2 = .976) are also good.
The good match between SNIF-ACT 2.0 and LoS in Figure 14 and Figure 15
is striking. SNIF-ACT and Los were derived based on very different assump-
tion of human behavior and contents of Web sites. LoS was derived based on
minimal assumption of human behavior (the IGD) and was insensitive to spe-
cific contents of Web pages. The value of LoS is its predictive power in
long-term aggregate behavior in very large information structures. On the
other hand, SNIF-ACT was derived from a rational analysis of link selection
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and assumption of how a single user may dynamically make decisions based
on specific contents of Web sites. The good match between the two model
suggests that the long-term expected behavior of SNIF-ACT is consistent
with the predictions by LoS.
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Figure 15. The Cumulative Distribution Frequency for the number of users on Yahoo
and ParcWeb plotted against the number of clicks and the predictions by the law of surf-
ing and SNIF-ACT 2.0.
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