Jump to Content

Radek Vingralek

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    F1: A Distributed SQL Database That Scales
    Bart Samwel
    Ben Handy
    Mircea Oancea
    Kyle Littlefield
    David Menestrina
    Stephan Ellner
    Ian Rae
    Traian Stancescu
    VLDB (2013)
    Preview abstract F1 is a distributed relational database system built at Google to support the AdWords business. F1 is a hybrid database that combines high availability, the scalability of NoSQL systems like Bigtable, and the consistency and usability of traditional SQL databases. F1 is built on Spanner, which provides synchronous cross-datacenter replication and strong consistency. Synchronous replication implies higher commit latency, but we mitigate that latency by using a hierarchical schema model with structured data types and through smart application design. F1 also includes a fully functional distributed SQL query engine and automatic change tracking and publishing. View details
    Preview abstract We introduce a protocol for schema evolution in a globally distributed database management system with shared data, stateless servers, and no global membership. Our protocol is asynchronous—it allows different servers in the database system to transition to a new schema at different times—and online—all servers can access and update all data during a schema change. We provide a formal model for determining the correctness of schema changes under these conditions, and we demonstrate that many common schema changes can cause anomalies and database corruption. We avoid these problems by replacing corruption-causing schema changes with a sequence of schema changes that is guaranteed to avoid corrupting the database so long as all servers are no more than one schema version behind at any time. Finally, we discuss a practical implementation of our protocol in F1, the database management system that stores data for Google AdWords. View details
    F1 - The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business
    Mircea Oancea
    Stephan Ellner
    Ben Handy
    Bart Samwel
    Xin Chen
    Beat Jegerlehner
    Kyle Littlefield
    Phoenix Tong
    SIGMOD (2012)
    Preview abstract Many of the services that are critical to Google’s ad business have historically been backed by MySQL. We have recently migrated several of these services to F1, a new RDBMS developed at Google. F1 implements rich relational database features, including a strictly enforced schema, a powerful parallel SQL query engine, general transactions, change tracking and notification, and indexing, and is built on top of a highly distributed storage system that scales on standard hardware in Google data centers. The store is dynamically sharded, supports transactionally-consistent replication across data centers, and is able to handle data center outages without data loss. The strong consistency properties of F1 and its storage system come at the cost of higher write latencies compared to MySQL. Having successfully migrated a rich customerfacing application suite at the heart of Google’s ad business to F1, with no downtime, we will describe how we restructured schema and applications to largely hide this increased latency from external users. The distributed nature of F1 also allows it to scale easily and to support significantly higher throughput for batch workloads than a traditional RDBMS. With F1, we have built a novel hybrid system that combines the scalability, fault tolerance, transparent sharding, and cost benefits so far available only in “NoSQL” systems with the usability, familiarity, and transactional guarantees expected from an RDBMS. View details
    Predictable performance and high query concurrency for data analytics
    George Candea
    Neoklis Polyzotis
    VLDB J., vol. 20 (2011), pp. 227-248
    A Scalable, Predictable Join Operator for Highly Concurrent Data Warehouses
    George Candea
    Neoklis Polyzotis
    PVLDB, vol. 2 (2009), pp. 277-288
    Inferring tree topologies using flow tests
    S. Muthukrishnan
    Torsten Suel
    SODA (2003), pp. 828-829