Quantum Computing

Quantum Computing merges two great scientific revolutions of the 20th century: computer science and quantum physics. Quantum physics is the theoretical basis of the transistor, the laser, and other technologies which enabled the computing revolution. But on the algorithmic level, today's computing machinery still operates on ""classical"" Boolean logic. Quantum Computing is the design of hardware and software that replaces Boolean logic by quantum law at the algorithmic level. For certain computations such as optimization, sampling, search or quantum simulation this promises dramatic speedups. We are particularly interested in applying quantum computing to artificial intelligence and machine learning. This is because many tasks in these areas rely on solving hard optimization problems or performing efficient sampling.

Recent Publications

Triply efficient shadow tomography
Robbie King
David Gosset
PRX Quantum, 6 (2025), pp. 010336
Optimizing quantum gates towards the scale of logical qubits
Alexandre Bourassa
Andrew Dunsworth
Will Livingston
Vlad Sivak
Trond Andersen
Yaxing Zhang
Desmond Chik
Jimmy Chen
Charles Neill
Alejo Grajales Dau
Anthony Megrant
Alexander Korotkov
Vadim Smelyanskiy
Yu Chen
Nature Communications, 15 (2024), pp. 2442
Drug Design on Quantum Computers
Raffaele Santagati
Alán Aspuru-Guzik
Matthias Degroote
Leticia Gonzalez
Elica Kyoseva
Nikolaj Moll
Markus Oppel
Robert Parrish
Michael Streif
Christofer Tautermann
Horst Weiss
Nathan Wiebe
Clemens Utschig-Utschig
Nature Physics (2024)
Analyzing Prospects for Quantum Advantage in Topological Data Analysis
Dominic W. Berry
Yuan Su
Casper Gyurik
Robbie King
Joao Basso
Abhishek Rajput
Nathan Wiebe
Vedran Djunko
PRX Quantum, 5 (2024), pp. 010319
Quantum Computation of Stopping power for Inertial Fusion Target Design
Dominic Berry
Alina Kononov
Alec White
Joonho Lee
Andrew Baczewski
Proceedings of the National Academy of Sciences, 121 (2024), e2317772121

Some of our teams