Geoffrey E. Hinton

Co-Authors
Geoffrey Hinton is a fellow of the Royal Society, the Royal Society of Canada, and the Association for the Advancement of Artificial Intelligence. He is an honorary foreign member of the American Academy of Arts and Sciences and the National Academy of Engineering, and a former president of the Cognitive Science Society. He has received honorary doctorates from the University of Edinburgh, the University of Sussex, and the University of Sherbrooke. He was awarded the first David E. Rumelhart prize (2001), the IJCAI award for research excellence (2005), the Killam prize for Engineering (2012) , The IEEE James Clerk Maxwell Gold medal (2016), and the NSERC Herzberg Gold Medal (2010) which is Canada's top award in Science and Engineering.
Geoffrey Hinton designs machine learning algorithms. His aim is to discover a learning procedure that is efficient at finding complex structure in large, high-dimensional datasets and to show that this is how the brain learns to see. He was one of the researchers who introduced the back-propagation algorithm and the first to use backpropagation for learning word embeddings. His other contributions to neural network research include Boltzmann machines, distributed representations, time-delay neural nets, mixtures of experts, variational learning, products of experts and deep belief nets. His research group in Toronto made major breakthroughs in deep learning that have revolutionized speech recognition and object classification.
Google Publications
-
Large scale distributed neural network training through online distillation
Rohan Anil, Gabriel Pereyra, Alexandre Tachard Passos, Robert Ormandi, George Dahl, Geoffrey Hinton
ICLR (2018)
-
Matrix capsules with EM routing
Geoffrey Hinton, Sara Sabour, Nicholas Frosst
ICLR (2018) (to appear)
-
Who said what: Modeling individual labelers improves classification
Melody Guan, Varun Gulshan, Andrew Dai, Geoffrey Hinton
AAAI (2018)
-
Distilling a Neural Network Into a Soft Decision Tree
Geoffrey Hinton, Nicholas Frosst
Comprehensibility and Explanation in AI and ML (CEX) @ AI*IA 2017 (2017)
-
Dynamic Routing between Capsules
Sara Sabour, Nicholas Frosst, Geoffrey Hinton
NIPS (2017) (to appear)
-
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, Jeff Dean
ICLR (2017)
-
Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra, George Tucker, Jan Chorowski, Ćukasz Kaiser, Geoffrey Hinton
ICLR Workshop (2017)
-
Who Said What: Modelling Individual Labels Improves Classification
Melody Y. Guan, Varun Gulshan, Andrew M. Dai, Geoffrey Hinton
CVPR Workshop (2017)
-
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray Kavukcuoglu, Geoffrey E. Hinton
NIPS (2016)
-
Using Fast Weights to Attend to the Recent Past
Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, Catalin Ionescu
Google (2016)
-
A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
Quoc V. Le, Navdeep Jaitly, Geoffrey E. Hinton
CoRR, vol. abs/1504.00941 (2015)
-
Distilling the Knowledge in a Neural Network
Geoffrey Hinton, Oriol Vinyals, Jeffrey Dean
NIPS Deep Learning and Representation Learning Workshop (2015)
-
Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, Geoffrey Hinton
NIPS (2015)
-
Guest Editorial: Deep Learning
Marc'Aurelio Ranzato, Geoffrey E. Hinton, Yann LeCun
International Journal of Computer Vision, vol. 113 (2015), pp. 1-2
-
Autoregressive Product of Multi-frame Predictions Can Improve the Accuracy of Hybrid Models
Navdeep Jaitly, Vincent Vanhoucke, Geoffrey Hinton
Proceedings of Interspeech 2014
-
On Rectified Linear Units For Speech Processing
M.D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q.V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean, G.E. Hinton
38th International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver (2013)
Previous Publications
-
Application of Deep Belief Networks for Natural Language Understanding
Ruhi Sarikaya, Geoffrey E. Hinton, Anoop Deoras
IEEE/ACM Trans. Audio, Speech & Language Processing, vol. 22 (2014), pp. 778-784
-
Dropout: a simple way to prevent neural networks from overfitting
Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov
Journal of Machine Learning Research, vol. 15 (2014), pp. 1929-1958
-
Where Do Features Come From?
Cognitive Science, vol. 38 (2014), pp. 1078-1101
-
Discovering Multiple Constraints that are Frequently Approximately Satisfied
Geoffrey E. Hinton, Yee Whye Teh
CoRR, vol. abs/1301.2278 (2013)
-
Improving deep neural networks for LVCSR using rectified linear units and dropout
George E. Dahl, Tara N. Sainath, Geoffrey E. Hinton
ICASSP (2013), pp. 8609-8613
-
Modeling Documents with Deep Boltzmann Machines
Nitish Srivastava, Ruslan Salakhutdinov, Geoffrey E. Hinton
CoRR, vol. abs/1309.6865 (2013)
-
Modeling Documents with Deep Boltzmann Machines
Nitish Srivastava, Ruslan Salakhutdinov, Geoffrey E. Hinton
UAI (2013)
-
Modeling Natural Images Using Gated MRFs
Marc'Aurelio Ranzato, Volodymyr Mnih, Joshua M. Susskind, Geoffrey E. Hinton
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35 (2013), pp. 2206-2222
-
New types of deep neural network learning for speech recognition and related applications: an overview
Li Deng, Geoffrey E. Hinton, Brian Kingsbury
ICASSP (2013), pp. 8599-8603
-
On the importance of initialization and momentum in deep learning
Ilya Sutskever, James Martens, George E. Dahl, Geoffrey E. Hinton
ICML (3) (2013), pp. 1139-1147
-
Speech Recognition with Deep Recurrent Neural Networks
Alex Graves, Abdel-rahman Mohamed, Geoffrey E. Hinton
CoRR, vol. abs/1303.5778 (2013)
-
Speech recognition with deep recurrent neural networks
Alex Graves, Abdel-rahman Mohamed, Geoffrey E. Hinton
ICASSP (2013), pp. 6645-6649
-
Tensor Analyzers
Yichuan Tang, Ruslan Salakhutdinov, Geoffrey E. Hinton
ICML (3) (2013), pp. 163-171
-
Using an autoencoder with deformable templates to discover features for automated speech recognition
Navdeep Jaitly, Geoffrey E. Hinton
INTERSPEECH (2013), pp. 1737-1740
-
A Better Way to Pretrain Deep Boltzmann Machines
Ruslan Salakhutdinov, Geoffrey E. Hinton
NIPS (2012), pp. 2456-2464
-
A Practical Guide to Training Restricted Boltzmann Machines
Neural Networks: Tricks of the Trade (2nd ed.) (2012), pp. 599-619
-
Acoustic Modeling Using Deep Belief Networks
Abdel-rahman Mohamed, George E. Dahl, Geoffrey E. Hinton
IEEE Trans. Audio, Speech & Language Processing, vol. 20 (2012), pp. 14-22
-
An Efficient Learning Procedure for Deep Boltzmann Machines
Ruslan Salakhutdinov, Geoffrey E. Hinton
Neural Computation, vol. 24 (2012), pp. 1967-2006
-
Conditional Restricted Boltzmann Machines for Structured Output Prediction
Volodymyr Mnih, Hugo Larochelle, Geoffrey E. Hinton
CoRR, vol. abs/1202.3748 (2012)
-
Deep Lambertian Networks
Yichuan Tang, Ruslan Salakhutdinov, Geoffrey E. Hinton
ICML (2012)
-
Deep Mixtures of Factor Analysers
Yichuan Tang, Ruslan Salakhutdinov, Geoffrey E. Hinton
CoRR, vol. abs/1206.4635 (2012)
-
Deep Mixtures of Factor Analysers
Yichuan Tang, Ruslan Salakhutdinov, Geoffrey E. Hinton
ICML (2012)
-
Deep Neural Networks for Acoustic Modeling in Speech Recognition
Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, Brian Kingsbury
Signal Processing Magazine (2012)
-
Efficient Parametric Projection Pursuit Density Estimation
Max Welling, Richard S. Zemel, Geoffrey E. Hinton
CoRR, vol. abs/1212.2513 (2012)
-
ImageNet Classification with Deep Convolutional Neural Networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton
NIPS (2012), pp. 1106-1114
-
ImageNet Classification with Deep Convolutional Neural Networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton
NIPS (2012)
-
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov
CoRR, vol. abs/1207.0580 (2012)
-
Introduction to the Special Section on Deep Learning for Speech and Language Processing
Dong Yu, Geoffrey E. Hinton, Nelson Morgan, Jen-Tzung Chien, Shigeki Sagayama
IEEE Trans. Audio, Speech & Language Processing, vol. 20 (2012), pp. 4-6
-
Learning to Label Aerial Images from Noisy Data
Volodymyr Mnih, Geoffrey E. Hinton
ICML (2012)
-
Products of Hidden Markov Models: It Takes N>1 to Tango
Graham W. Taylor, Geoffrey E. Hinton
CoRR, vol. abs/1205.2614 (2012)
-
Robust Boltzmann Machines for recognition and denoising
Yichuan Tang, Ruslan Salakhutdinov, Geoffrey E. Hinton
CVPR (2012), pp. 2264-2271
-
Understanding how Deep Belief Networks perform acoustic modelling
Abdel-rahman Mohamed, Geoffrey E. Hinton, Gerald Penn
ICASSP (2012), pp. 4273-4276
-
Visualizing non-metric similarities in multiple maps
Laurens van der Maaten, Geoffrey E. Hinton
Machine Learning, vol. 87 (2012), pp. 33-55
-
A better way to learn features: technical perspective
Commun. ACM, vol. 54 (2011), pp. 94
-
Conditional Restricted Boltzmann Machines for Structured Output Prediction
Volodymyr Mnih, Hugo Larochelle, Geoffrey E. Hinton
UAI (2011), pp. 514-522
-
Deep Belief Networks using discriminative features for phone recognition
Abdel-rahman Mohamed, Tara N. Sainath, George E. Dahl, Bhuvana Ramabhadran, Geoffrey E. Hinton, Michael A. Picheny
ICASSP (2011), pp. 5060-5063
-
Deep belief nets for natural language call-routing
Ruhi Sarikaya, Geoffrey E. Hinton, Bhuvana Ramabhadran
ICASSP (2011), pp. 5680-5683
-
Discovering Binary Codes for Documents by Learning Deep Generative Models
Geoffrey E. Hinton, Ruslan Salakhutdinov
topiCS, vol. 3 (2011), pp. 74-91
-
Generating Text with Recurrent Neural Networks
Ilya Sutskever, James Martens, Geoffrey E. Hinton
ICML (2011), pp. 1017-1024
-
Learning a better representation of speech soundwaves using restricted boltzmann machines
Navdeep Jaitly, Geoffrey E. Hinton
ICASSP (2011), pp. 5884-5887
-
Modeling the joint density of two images under a variety of transformations
Joshua M. Susskind, Geoffrey E. Hinton, Roland Memisevic, Marc Pollefeys
CVPR (2011), pp. 2793-2800
-
On deep generative models with applications to recognition
Marc'Aurelio Ranzato, Joshua M. Susskind, Volodymyr Mnih, Geoffrey E. Hinton
CVPR (2011), pp. 2857-2864
-
Transforming Auto-Encoders
Geoffrey E. Hinton, Alex Krizhevsky, Sida D. Wang
ICANN (1) (2011), pp. 44-51
-
Two Distributed-State Models For Generating High-Dimensional Time Series
Graham W. Taylor, Geoffrey E. Hinton, Sam T. Roweis
Journal of Machine Learning Research, vol. 12 (2011), pp. 1025-1068
-
Using very deep autoencoders for content-based image retrieval
Alex Krizhevsky, Geoffrey E. Hinton
ESANN (2011)
-
Binary coding of speech spectrograms using a deep auto-encoder
Li Deng, Michael L. Seltzer, Dong Yu, Alex Acero, Abdel-rahman Mohamed, Geoffrey E. Hinton
INTERSPEECH (2010), pp. 1692-1695
-
Boltzmann Machines
Encyclopedia of Machine Learning (2010), pp. 132-136
-
Comparing Classification Methods for Longitudinal fMRI Studies
Tanya Schmah, Grigori Yourganov, Richard S. Zemel, Geoffrey E. Hinton, Steven L. Small, Stephen C. Strother
Neural Computation, vol. 22 (2010), pp. 2729-2762
-
Deep Belief Nets
Encyclopedia of Machine Learning (2010), pp. 267-269
-
Dynamical binary latent variable models for 3D human pose tracking
Graham W. Taylor, Leonid Sigal, David J. Fleet, Geoffrey E. Hinton
CVPR (2010), pp. 631-638
-
Factored 3-Way Restricted Boltzmann Machines For Modeling Natural Images
Marc'Aurelio Ranzato, Alex Krizhevsky, Geoffrey E. Hinton
AISTATS (2010), pp. 621-628
-
Gated Softmax Classification
Roland Memisevic, Christopher Zach, Geoffrey E. Hinton, Marc Pollefeys
NIPS (2010), pp. 1603-1611
-
Generating more realistic images using gated MRF's
Marc'Aurelio Ranzato, Volodymyr Mnih, Geoffrey E. Hinton
NIPS (2010), pp. 2002-2010
-
Learning to Detect Roads in High-Resolution Aerial Images
Volodymyr Mnih, Geoffrey E. Hinton
ECCV (6) (2010), pp. 210-223
-
Learning to Represent Spatial Transformations with Factored Higher-Order Boltzmann Machines
Roland Memisevic, Geoffrey E. Hinton
Neural Computation, vol. 22 (2010), pp. 1473-1492
-
Learning to combine foveal glimpses with a third-order Boltzmann machine
Hugo Larochelle, Geoffrey E. Hinton
NIPS (2010), pp. 1243-1251
-
Modeling pixel means and covariances using factorized third-order boltzmann machines
Marc'Aurelio Ranzato, Geoffrey E. Hinton
CVPR (2010), pp. 2551-2558
-
Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine
George E. Dahl, Marc'Aurelio Ranzato, Abdel-rahman Mohamed, Geoffrey E. Hinton
NIPS (2010), pp. 469-477
-
Phone recognition using Restricted Boltzmann Machines
Abdel-rahman Mohamed, Geoffrey E. Hinton
ICASSP (2010), pp. 4354-4357
-
Rectified Linear Units Improve Restricted Boltzmann Machines
Vinod Nair, Geoffrey E. Hinton
ICML (2010), pp. 807-814
-
Temporal-Kernel Recurrent Neural Networks
Ilya Sutskever, Geoffrey E. Hinton
Neural Networks, vol. 23 (2010), pp. 239-243
-
3D Object Recognition with Deep Belief Nets
Vinod Nair, Geoffrey E. Hinton
NIPS (2009), pp. 1339-1347
-
Deep Boltzmann Machines
Ruslan Salakhutdinov, Geoffrey E. Hinton
AISTATS (2009), pp. 448-455
-
Deep belief networks
Scholarpedia, vol. 4 (2009), pp. 5947
-
Factored conditional restricted Boltzmann Machines for modeling motion style
Graham W. Taylor, Geoffrey E. Hinton
ICML (2009), pp. 1025-1032
-
Improving a statistical language model through non-linear prediction
Andriy Mnih, Zhang Yuecheng, Geoffrey E. Hinton
Neurocomputing, vol. 72 (2009), pp. 1414-1418
-
Learning Generative Texture Models with extended Fields-of-Experts
Nicolas Heess, Christopher K. I. Williams, Geoffrey E. Hinton
BMVC (2009), pp. 1-11
-
Modeling pigeon behavior using a Conditional Restricted Boltzmann Machine
Matthew D. Zeiler, Graham W. Taylor, Nikolaus F. Troje, Geoffrey E. Hinton
ESANN (2009)
-
Products of Hidden Markov Models: It Takes N>1 to Tango
Graham W. Taylor, Geoffrey E. Hinton
UAI (2009), pp. 522-529
-
Replicated Softmax: an Undirected Topic Model
Ruslan Salakhutdinov, Geoffrey E. Hinton
NIPS (2009), pp. 1607-1614
-
Semantic hashing
Ruslan Salakhutdinov, Geoffrey E. Hinton
Int. J. Approx. Reasoning, vol. 50 (2009), pp. 969-978
-
Using fast weights to improve persistent contrastive divergence
Tijmen Tieleman, Geoffrey E. Hinton
ICML (2009), pp. 1033-1040
-
Workshop summary: Workshop on learning feature hierarchies
Kai Yu, Ruslan Salakhutdinov, Yann LeCun, Geoffrey E. Hinton, Yoshua Bengio
ICML (2009), pp. 5
-
Zero-shot Learning with Semantic Output Codes
Mark Palatucci, Dean Pomerleau, Geoffrey E. Hinton, Tom M. Mitchell
NIPS (2009), pp. 1410-1418
-
A Scalable Hierarchical Distributed Language Model
Andriy Mnih, Geoffrey E. Hinton
NIPS (2008), pp. 1081-1088
-
Analysis-by-Synthesis by Learning to Invert Generative Black Boxes
Vinod Nair, Joshua M. Susskind, Geoffrey E. Hinton
ICANN (1) (2008), pp. 971-981
-
Deep, Narrow Sigmoid Belief Networks Are Universal Approximators
Ilya Sutskever, Geoffrey E. Hinton
Neural Computation, vol. 20 (2008), pp. 2629-2636
-
Generative versus discriminative training of RBMs for classification of fMRI images
Tanya Schmah, Geoffrey E. Hinton, Richard S. Zemel, Steven L. Small, Stephen C. Strother
NIPS (2008), pp. 1409-1416
-
Implicit Mixtures of Restricted Boltzmann Machines
Vinod Nair, Geoffrey E. Hinton
NIPS (2008), pp. 1145-1152
-
Improving a statistical language model by modulating the effects of context words
Zhang Yuecheng, Andriy Mnih, Geoffrey E. Hinton
ESANN (2008), pp. 493-498
-
The Recurrent Temporal Restricted Boltzmann Machine
Ilya Sutskever, Geoffrey E. Hinton, Graham W. Taylor
NIPS (2008), pp. 1601-1608
-
Using matrices to model symbolic relationship
Ilya Sutskever, Geoffrey E. Hinton
NIPS (2008), pp. 1593-1600
-
Boltzmann machine
Scholarpedia, vol. 2 (2007), pp. 1668
-
Learning Multilevel Distributed Representations for High-Dimensional Sequences
Ilya Sutskever, Geoffrey E. Hinton
AISTATS (2007), pp. 548-555
-
Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure
Ruslan Salakhutdinov, Geoffrey E. Hinton
AISTATS (2007), pp. 412-419
-
Modeling image patches with a directed hierarchy of Markov random fields
Simon Osindero, Geoffrey E. Hinton
NIPS (2007), pp. 1121-1128
-
Restricted Boltzmann machines for collaborative filtering
Ruslan Salakhutdinov, Andriy Mnih, Geoffrey E. Hinton
ICML (2007), pp. 791-798
-
Three new graphical models for statistical language modelling
Andriy Mnih, Geoffrey E. Hinton
ICML (2007), pp. 641-648
-
Unsupervised Learning of Image Transformations
Roland Memisevic, Geoffrey E. Hinton
CVPR (2007)
-
Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes
Ruslan Salakhutdinov, Geoffrey E. Hinton
NIPS (2007), pp. 1249-1256
-
Visualizing Similarity Data with a Mixture of Maps
James Cook, Ilya Sutskever, Andriy Mnih, Geoffrey E. Hinton
AISTATS (2007), pp. 67-74
-
A Fast Learning Algorithm for Deep Belief Nets
Geoffrey E. Hinton, Simon Osindero, Yee Whye Teh
Neural Computation, vol. 18 (2006), pp. 1527-1554
-
Modeling Human Motion Using Binary Latent Variables
Graham W. Taylor, Geoffrey E. Hinton, Sam T. Roweis
NIPS (2006), pp. 1345-1352
-
Topographic Product Models Applied to Natural Scene Statistics
Simon Osindero, Max Welling, Geoffrey E. Hinton
Neural Computation, vol. 18 (2006), pp. 381-414
-
Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation
Geoffrey E. Hinton, Simon Osindero, Max Welling, Yee Whye Teh
Cognitive Science, vol. 30 (2006), pp. 725-731
-
Improving dimensionality reduction with spectral gradient descent
Roland Memisevic, Geoffrey E. Hinton
Neural Networks, vol. 18 (2005), pp. 702-710
-
Inferring Motor Programs from Images of Handwritten Digits
Geoffrey E. Hinton, Vinod Nair
NIPS (2005), pp. 515-522
-
Learning Causally Linked Markov Random Fields
Geoffrey E. Hinton, Simon Osindero, Kejie Bao
AISTATS (2005)
-
On Contrastive Divergence Learning
Miguel Ă. Carreira-Perpiñån, Geoffrey Hinton
AISTATS (2005)
-
What kind of graphical model is the brain?
IJCAI (2005), pp. 1765-
-
Exponential Family Harmoniums with an Application to Information Retrieval
Max Welling, Michal Rosen-Zvi, Geoffrey E. Hinton
NIPS (2004), pp. 1481-1488
-
Multiple Relational Embedding
Roland Memisevic, Geoffrey E. Hinton
NIPS (2004), pp. 913-920
-
Neighbourhood Components Analysis
Jacob Goldberger, Sam T. Roweis, Geoffrey E. Hinton, Ruslan Salakhutdinov
NIPS (2004), pp. 513-520
-
Probabilistic sequential independent components analysis
Max Welling, Richard S. Zemel, Geoffrey E. Hinton
IEEE Trans. Neural Networks, vol. 15 (2004), pp. 838-849
-
Reinforcement Learning with Factored States and Actions
Brian Sallans, Geoffrey E. Hinton
Journal of Machine Learning Research, vol. 5 (2004), pp. 1063-1088
-
Efficient Parametric Projection Pursuit Density Estimation
Max Welling, Richard S. Zemel, Geoffrey E. Hinton
UAI (2003), pp. 575-582
-
Energy-Based Models for Sparse Overcomplete Representations
Yee Whye Teh, Max Welling, Simon Osindero, Geoffrey E. Hinton
Journal of Machine Learning Research, vol. 4 (2003), pp. 1235-1260
-
Wormholes Improve Contrastive Divergence
Geoffrey E. Hinton, Max Welling, Andriy Mnih
NIPS (2003), pp. 417-424
-
A Desktop Input Device and Interface for Interactive 3D Character Animation
Sageev Oore, Demetri Terzopoulos, Geoffrey E. Hinton
Graphics Interface (2002), pp. 133-140
-
A New Learning Algorithm for Mean Field Boltzmann Machines
Max Welling, Geoffrey E. Hinton
ICANN (2002), pp. 351-357
-
In Memory of Ray Reiter (1939-2002)
Fiora Pirri, Geoffrey E. Hinton, Hector J. Levesque
AI Magazine, vol. 23 (2002), pp. 93
-
Learning Sparse Topographic Representations with Products of Student-t Distributions
Max Welling, Geoffrey E. Hinton, Simon Osindero
NIPS (2002), pp. 1359-1366
-
Local Physical Models for Interactive Character Animation
Sageev Oore, Demetri Terzopoulos, Geoffrey E. Hinton
Comput. Graph. Forum, vol. 21 (2002), pp. 337-346
-
Recognizing Handwritten Digits Using Hierarchical Products of Experts
Guy Mayraz, Geoffrey E. Hinton
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24 (2002), pp. 189-197
-
Self Supervised Boosting
Max Welling, Richard S. Zemel, Geoffrey E. Hinton
NIPS (2002), pp. 665-672
-
Stochastic Neighbor Embedding
Geoffrey E. Hinton, Sam T. Roweis
NIPS (2002), pp. 833-840
-
Training Products of Experts by Minimizing Contrastive Divergence
Neural Computation, vol. 14 (2002), pp. 1771-1800
-
Discovering Multiple Constraints that are Frequently Approximately Satisfied
Geoffrey E. Hinton, Yee Whye Teh
UAI (2001), pp. 227-234
-
Global Coordination of Local Linear Models
Sam T. Roweis, Lawrence K. Saul, Geoffrey E. Hinton
NIPS (2001), pp. 889-896
-
Learning Distributed Representations of Concepts Using Linear Relational Embedding
Alberto Paccanaro, Geoffrey E. Hinton
IEEE Trans. Knowl. Data Eng., vol. 13 (2001), pp. 232-244
-
Learning Hierarchical Structures with Linear Relational Embedding
Alberto Paccanaro, Geoffrey E. Hinton
NIPS (2001), pp. 857-864
-
Products of Hidden Markov Models
Andrew D. Brown, Geoffrey E. Hinton
AISTATS (2001)
-
Relative Density Nets: A New Way to Combine Backpropagation with HMM's
Andrew D. Brown, Geoffrey E. Hinton
NIPS (2001), pp. 1149-1156
-
Extracting Distributed Representations of Concepts and Relations from Positive and Negative Propositions
Alberto Paccanaro, Geoffrey E. Hinton
IJCNN (2) (2000), pp. 259-264
-
Learning Distributed Representations by Mapping Concepts and Relations into a Linear Space
Alberto Paccanaro, Geoffrey E. Hinton
ICML (2000), pp. 711-718
-
Modeling High-Dimensional Data by Combining Simple Experts
AAAI/IAAI (2000), pp. 1159-1164
-
Rate-coded Restricted Boltzmann Machines for Face Recognition
Yee Whye Teh, Geoffrey E. Hinton
NIPS (2000), pp. 908-914
-
Recognizing Hand-written Digits Using Hierarchical Products of Experts
Guy Mayraz, Geoffrey E. Hinton
NIPS (2000), pp. 953-959
-
SMEM Algorithm for Mixture Models
Naonori Ueda, Ryohei Nakano, Zoubin Ghahramani, Geoffrey E. Hinton
Neural Computation, vol. 12 (2000), pp. 2109-2128
-
Split and Merge EM Algorithm for Improving Gaussian Mixture Density Estimates
Naonori Ueda, Ryohei Nakano, Zoubin Ghahramani, Geoffrey E. Hinton
VLSI Signal Processing, vol. 26 (2000), pp. 133-140
-
Using Free Energies to Represent Q-values in a Multiagent Reinforcement Learning Task
Brian Sallans, Geoffrey E. Hinton
NIPS (2000), pp. 1075-1081
-
Variational Learning for Switching State-Space Models
Zoubin Ghahramani, Geoffrey E. Hinton
Neural Computation, vol. 12 (2000), pp. 831-864
-
Learning to Parse Images
Geoffrey E. Hinton, Zoubin Ghahramani, Yee Whye Teh
NIPS (1999), pp. 463-469
-
Spiking Boltzmann Machines
Geoffrey E. Hinton, Andrew D. Brown
NIPS (1999), pp. 122-128
-
Variational Learning in Nonlinear Gaussian Belief Networks
Brendan J. Frey, Geoffrey E. Hinton
Neural Computation, vol. 11 (1999), pp. 193-213
-
Coaching variables for regression and classification
Robert Tibshirani, Geoffrey Hinton
Statistics and Computing, vol. 8 (1998), pp. 25-33
-
Fast Neural Network Emulation of Dynamical Systems for Computer Animation
Radek Grzeszczuk, Demetri Terzopoulos, Geoffrey E. Hinton
NIPS (1998), pp. 882-888
-
Glove-TalkII-a neural-network interface which maps gestures to parallel formant speech synthesizer controls
S. Sidney Fels, Geoffrey E. Hinton
IEEE Trans. Neural Networks, vol. 9 (1998), pp. 205-212
-
NeuroAnimator: Fast Neural Network Emulation and Control of Physics-based Models
Radek Grzeszczuk, Demetri Terzopoulos, Geoffrey E. Hinton
SIGGRAPH (1998), pp. 9-20
-
SMEM Algorithm for Mixture Models
Naonori Ueda, Ryohei Nakano, Zoubin Ghahramani, Geoffrey E. Hinton
NIPS (1998), pp. 599-605
-
A Mobile Robot that Learns its Place
Sageev Oore, Geoffrey E. Hinton, Gregory Dudek
Neural Computation, vol. 9 (1997), pp. 683-699
-
Efficient Stochastic Source Coding and an Application to a Bayesian Network Source Model
Brendan J. Frey, Geoffrey E. Hinton
Comput. J., vol. 40 (1997), pp. 157-165
-
Glove-talk II - a neural-network interface which maps gestures to parallel formant speech synthesizer controls
S. Sidney Fels, Geoffrey E. Hinton
IEEE Trans. Neural Networks, vol. 8 (1997), pp. 977-984
-
Hierarchical Non-linear Factor Analysis and Topographic Maps
Zoubin Ghahramani, Geoffrey E. Hinton
NIPS (1997), pp. 486-492
-
Instantiating Deformable Models with a Neural Net
Christopher K. I. Williams, Michael Revow, Geoffrey E. Hinton
Computer Vision and Image Understanding, vol. 68 (1997), pp. 120-126
-
Modeling the manifolds of images of handwritten digits
Geoffrey E. Hinton, Peter Dayan, Michael Revow
IEEE Trans. Neural Networks, vol. 8 (1997), pp. 65-74
-
Using Expectation-Maximization for Reinforcement Learning
Peter Dayan, Geoffrey E. Hinton
Neural Computation, vol. 9 (1997), pp. 271-278
-
Free Energy Coding
Brendan J. Frey, Geoffrey E. Hinton
Data Compression Conference (1996), pp. 73-81
-
Varieties of Helmholtz Machine
Peter Dayan, Geoffrey E. Hinton
Neural Networks, vol. 9 (1996), pp. 1385-1403
-
Does the Wake-sleep Algorithm Produce Good Density Estimators?
Brendan J. Frey, Geoffrey E. Hinton, Peter Dayan
NIPS (1995), pp. 661-667
-
GloveTalkII: An Adaptive Gesture-to-Formant Interface
Sidney Fels, Geoffrey E. Hinton
CHI (1995), pp. 456-463
-
The Helmholtz machine
Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, Richard S. Zemel
Neural Computation, vol. 7 (1995), pp. 889-904
-
Using Pairs of Data-Points to Define Splits for Decision Trees
Geoffrey E. Hinton, Michael Revow
NIPS (1995), pp. 507-513
-
An Alternative Model for Mixtures of Experts
Lei Xu 0001, Michael I. Jordan, Geoffrey E. Hinton
NIPS (1994), pp. 633-640
-
Glove-TalkII: Mapping Hand Gestures to Speech Using Neural Networks
Sidney Fels, Geoffrey E. Hinton
NIPS (1994), pp. 843-850
-
Recognizing Handwritten Digits Using Mixtures of Linear Models
Geoffrey E. Hinton, Michael Revow, Peter Dayan
NIPS (1994), pp. 1015-1022
-
A soft decision-directed LMS algorithm for blind equalization
Steven J. Nowlan, Geoffrey E. Hinton
IEEE Trans. Communications, vol. 41 (1993), pp. 275-279
-
Autoencoders, Minimum Description Length and Helmholtz Free Energy
Geoffrey E. Hinton, Richard S. Zemel
NIPS (1993), pp. 3-10
-
Developing Population Codes by Minimizing Description Length
Richard S. Zemel, Geoffrey E. Hinton
NIPS (1993), pp. 11-18
-
Glove-Talk: a neural network interface between a data-glove and a speech synthesizer
S. Sidney Fels, Geoffrey E. Hinton
IEEE Trans. Neural Networks, vol. 4 (1993), pp. 2-8
-
Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights
Geoffrey E. Hinton, Drew van Camp
COLT (1993), pp. 5-13
-
Learning Mixture Models of Spatial Coherence
Suzanna Becker, Geoffrey E. Hinton
Neural Computation, vol. 5 (1993), pp. 267-277
-
Feudal Reinforcement Learning
Peter Dayan, Geoffrey E. Hinton
NIPS (1992), pp. 271-278
-
Simplifying Neural Networks by Soft Weight-Sharing
Steven J. Nowlan, Geoffrey E. Hinton
Neural Computation, vol. 4 (1992), pp. 473-493
-
Adaptive Mixtures of Local Experts
Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, Geoffrey E. Hinton
Neural Computation, vol. 3 (1991), pp. 79-87
-
Adaptive Soft Weight Tying using Gaussian Mixtures
Steven J. Nowlan, Geoffrey E. Hinton
NIPS (1991), pp. 993-1000
-
Learning to Make Coherent Predictions in Domains with Discontinuities
Suzanna Becker, Geoffrey E. Hinton
NIPS (1991), pp. 372-379
-
A time-delay neural network architecture for isolated word recognition
Kevin J. Lang, Alex Waibel, Geoffrey E. Hinton
Neural Networks, vol. 3 (1990), pp. 23-43
-
Building adaptive interfaces with neural networks: The glove-talk pilot study
Sidney Fels, Geoffrey E. Hinton
INTERACT (1990), pp. 683-688
-
Connectionist Symbol Processing - Preface
Artif. Intell., vol. 46 (1990), pp. 1-4
-
Discovering Viewpoint-Invariant Relationships That Characterize Objects
Richard S. Zemel, Geoffrey E. Hinton
NIPS (1990), pp. 299-305
-
Evaluation of Adaptive Mixtures of Competing Experts
Steven J. Nowlan, Geoffrey E. Hinton
NIPS (1990), pp. 774-780
-
Mapping Part-Whole Hierarchies into Connectionist Networks
Artif. Intell., vol. 46 (1990), pp. 47-75
-
The Bootstrap Widrow-Hoff Rule as a Cluster-Formation Algorithm
Geoffrey E. Hinton, Steven J. Nowlan
Neural Computation, vol. 2 (1990), pp. 355-362
-
Connectionist Learning Procedures
Artif. Intell., vol. 40 (1989), pp. 185-234
-
Deterministic Boltzmann Learning Performs Steepest Descent in Weight-Space
Neural Computation, vol. 1 (1989), pp. 143-150
-
Dimensionality Reduction and Prior Knowledge in E-Set Recognition
Kevin J. Lang, Geoffrey E. Hinton
NIPS (1989), pp. 178-185
-
Discovering High Order Features with Mean Field Modules
Conrad C. Galland, Geoffrey E. Hinton
NIPS (1989), pp. 509-515
-
Phoneme recognition using time-delay neural networks
Alexander H. Waibel, Toshiyuki Hanazawa, Geoffrey E. Hinton, Kiyohiro Shikano, Kevin J. Lang
IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 37 (1989), pp. 328-339
-
TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations
Richard S. Zemel, Michael Mozer, Geoffrey E. Hinton
NIPS (1989), pp. 266-273
-
A Distributed Connectionist Production System
David S. Touretzky, Geoffrey E. Hinton
Cognitive Science, vol. 12 (1988), pp. 423-466
-
GEMINI: Gradient Estimation Through Matrix Inversion After Noise Injection
Yann LeCun, Conrad C. Galland, Geoffrey E. Hinton
NIPS (1988), pp. 141-148
-
Connectionist Architectures for Artificial Intelligence
Scott E. Fahlman, Geoffrey E. Hinton
IEEE Computer, vol. 20 (1987), pp. 100-109
-
Learning Representations by Recirculation
Geoffrey E. Hinton, James L. McClelland
NIPS (1987), pp. 358-366
-
Learning Translation Invariant Recognition in Massively Parallel Networks
PARLE (1) (1987), pp. 1-13
-
Learning in Massively Parallel Nets (Panel)
Drew V. McDermott, Geoffrey E. Hinton
AAAI (1986), pp. 1149
-
A Learning Algorithm for Boltzmann Machines
David H. Ackley, Geoffrey E. Hinton, Terrence J. Sejnowski
Cognitive Science, vol. 9 (1985), pp. 147-169
-
Shape Recognition and Illusory Conjunctions
Geoffrey E. Hinton, Kevin J. Lang
IJCAI (1985), pp. 252-259
-
Symbols Among the Neurons: Details of a Connectionist Inference Architecture
David S. Touretzky, Geoffrey E. Hinton
IJCAI (1985), pp. 238-243
-
Massively Parallel Architectures for AI: NETL, Thistle, and Boltzmann Machines
Scott E. Fahlman, Geoffrey E. Hinton, Terrence J. Sejnowski
AAAI (1983), pp. 109-113
-
A Parallel Computation that Assigns Canonical Object-Based Frames of Reference
IJCAI (1981), pp. 683-685
-
Shape Representation in Parallel Systems
IJCAI (1981), pp. 1088-1096
-
Some Demonstrations of the Effects of Structural Descriptions in Mental Imagery
Cognitive Science, vol. 3 (1979), pp. 231-250
-
Representation and Control in Vision
Aaron Sloman, David Owen, Geoffrey E. Hinton, Frank Birch, Frank O'Gorman
AISB/GI (ECAI) (1978), pp. 309-314
-
Using Relaxation to find a Puppet
AISB (ECAI) (1976), pp. 148-157