Aaron D'Souza

- Research Area(s)
- General Science
- Machine Intelligence
Google Publications
-
Bayesian Robot System Identification with Input and Output Noise
Jo-Anne Ting, Aaron D'Souza, Stefan Schaal
Neural Networks (2010) (to appear)
-
Efficient Learning and Feature Selection in High-Dimensional Regression
Jo-Anne Ting, Aaron D'Souza, Stefan Schaal
Neural Computation, vol. 22(4) (2010), pp. 831-886
-
A Bayesian Approach to Empirical Local Linearization for Robotics
Jo-Anne Ting, Aaron D'Souza, Sethu Vijayakumar, Stefan Schaal
International Conference on Robotics and Automation (ICRA2008)
-
Automatic outlier detection: A Bayesian approach
Jo-Anne Ting, Aaron D'Souza, Stefan Schaal
International Conference on Robotics and Automation (ICRA 2007)
-
Bayesian Regression with Input Noise for High-Dimensional Data
Jo-Anne Ting, Aaron D'Souza, Stefan Schaal
In Proceedings of the 23rd International Conference on Machine Learning, ACM Press (2006)
-
Predicting EMG Data from M1 Neurons with Variational Bayesian Least Squares
Jo-Anne Ting, Aaron D'Souza, Kenji Yamamoto, Toshinori Yoshioka, Donna Hoffman, Shinji Kakei, Lauren Sergio, John Kalaska, Mitsuo Kawato, Peter Strick, Stefan Schaal
Advances in Neural Information Processing Systems 18, MIT Press (2006)
Previous Publications
-
Predicting EMG Data from M1 Neurons with Variational Bayesian Least Squares
Jo-Anne Ting, Aaron D'Souza, Kenji Yamamoto, Toshinori Yoshioka, Donna L. Hoffman, Lauren Sergio, Shinji Kakei, John Kalaska, Mitsuo Kawato, Peter Strick, Stefan Schaal
Neural Information Processing Systems (2005)
-
The Bayesian backfitting relevance vector machine
Aaron D'Souza, Sethu Vijayakumar, Stefan Schaal
International Conference on Machine Learning (2004)