Using Entity Information from a Knowledge Base to Improve Relation Extraction
Venue
Proceedings of the 13th annual workshop of The Australasian Language Technology Association, Association for Computational Linguistics (2015)
Publication Year
2015
Authors
Lan Du, Anish Kumar, M. Johnson, Massimiliano Ciaramita
BibTeX
Abstract
Relation extraction is the task of extracting predicate-argument relationships
between entities from natural language text. This paper investigates whether
background information about entities available in knowledge bases such as FreeBase
can be used to improve the accuracy of a state-of-the-art relation extraction
system. We describe a simple and effective way of incorporating FreeBase’s notable
types into a state-of-the-art relation extraction system (Riedel et al., 2013).
Experimental results show that our notable type-based system achieves an average
7.5% weighted MAP score improvement. To understand where the notable type
information contributes the most, we perform a series of ablation experiments.
Results show that the notable type information improves relation extraction more
than NER labels alone across a wide range of entity types and relations.
