Optimizing Touchscreen Keyboards for Gesture Typing
Venue
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2015), ACM, New York, NY, USA, pp. 3365-3374
Publication Year
2015
Authors
Brian Smith, Xiaojun Bi, Shumin Zhai
BibTeX
Abstract
Despite its growing popularity, gesture typing suffers from a major problem not
present in touch typing: gesture ambiguity on the Qwerty keyboard. By applying
rigorous mathematical optimization methods, this paper systematically investigates
the optimization space related to the accuracy, speed, and Qwerty similarity of a
gesture typing keyboard. Our investigation shows that optimizing the layout for
gesture clarity (a metric measuring how unique word gestures are on a keyboard)
drastically improves the accuracy of gesture typing. Moreover, if we also
accommodate gesture speed, or both gesture speed and Qwerty similarity, we can
still reduce error rates by 52% and 37% over Qwerty, respectively. In addition to
investigating the optimization space, this work contributes a set of optimized
layouts such as GK-D and GK-T that can immediately benefit mobile device users.
