CPI^2: CPU performance isolation for shared compute clusters
Venue
SIGOPS European Conference on Computer Systems (EuroSys), ACM, Prague, Czech Republic (2013), pp. 379-391
Publication Year
2013
Authors
Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, John Wilkes
BibTeX
Abstract
Our solution, CPI2, uses cycles-per-instruction (CPI) data obtained by hardware performance counters to identify problems, select the likely perpetrators, and then optionally throttle them so that the victims can return to their expected behavior. It automatically learns normal and anomalous behaviors by aggregating data from multiple tasks in the same job.
We have rolled out CPI2 to all of Google's shared compute clusters. The paper presents the analysis that lead us to that outcome, including both case studies and a large-scale evaluation of its ability to solve real production issues.
