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ABSTRACT

We present a framework for specifying, training, evaluating,
and deploying machine learning models. Our focus is on
simplifying cutting edge machine learning for practitioners in
order to bring such technologies into production. Recognizing
the fast evolution of the field of deep learning, we make no
attempt to capture the design space of all possible model
architectures in a domain- specific language (DSL) or similar
configuration language. We allow users to write code to define
their models, but provide abstractions that guide develop-
ers to write models in ways conducive to productionization.
We also provide a unifying Estimator interface, making it
possible to write downstream infrastructure (e.g. distributed
training, hyperparameter tuning) independent of the model
implementation.

We balance the competing demands for flexibility and
simplicity by offering APIs at different levels of abstraction,
making common model architectures available out of the
box, while providing a library of utilities designed to speed
up experimentation with model architectures. To make out
of the box models flexible and usable across a wide range
of problems, these canned Estimators are parameterized
not only over traditional hyperparameters, but also using
feature columns, a declarative specification describing how to
interpret input data.

We discuss our experience in using this framework in re-
search and production environments, and show the impact
on code health, maintainability, and development speed.
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1 INTRODUCTION

Machine learning, and in particular, deep learning, is a field
of growing importance. With the deployment of large GPU
clusters in datacenters and cloud computing services, it is
now possible to apply these methods not only in theory, but
integrate them successfully into production systems.

Engineers working on production systems have only re-
cently gained the ability to apply advanced machine learning,
driven in large part by the availability of machine learning
frameworks that implement the lower level numerical com-
putations in efficient ways and allow engineers to focus on
application-specific logic (see e.g., [2–5, 7, 8, 11, 14, 17–20]).
However, the huge amounts of data involved in training, espe-
cially for deep learning models, as well as the complications
of running high intensity computations efficiently on hetero-
geneous and distributed systems, has prevented the most
advanced methods from being widely adopted in production.

As the field of deep learning is still young and develop-
ing fast, any framework hoping to remain relevant must be
expressive enough to not only represent today’s model archi-
tectures, but also next year’s. If the framework is to be used
for experimentation with model architectures (most serious
product work requires at least some experimentation), it is
also crucial to offer the flexibility to change details of mod-
els without having to change components that are deeply
embedded, and which have a highly optimized, low level
implementation.

There is a natural tension between such flexibility on the
one hand, and simplicity and robustness on the other hand.
We use simplicity in a broad sense: From a practitioner’s
point of view, implementing models should not require funda-
mentally new skills, assuming that the model architecture is
known. Experimenting with model features should be trans-
parent, and should not require deep insights into the inner
workings of the framework used to implement the model. We
talk of robustness both as a quality of the software develop-
ment process, as well as a quality of the resulting software.
We call a framework robust if it is easy to write correct and
high-quality software using it, but hard to write broken or
poorly performing software. A framework which nudges the
developer to use best practices, and which makes it hard to
“shoot yourself in the foot” is robust.

Because of the need to keep up with and enable research,
many deep learning frameworks value flexibility above all
else (e.g., [2, 11, 20]). They achieve this flexibility by pro-
viding relatively low-level primitive operations (e.g., matmul,
add, tanh), and require the user to write code in a regular



programming language in order to specify their model. To
simplify life for their users and speed up development, these
frameworks often provide some higher level components, such
as layers (e.g., a fully connected neural network layer with an
optional activation function). Development in a fully-fledged
programming language is inherently dangerous. Working at
a low level can also lead to a lot of code duplication, with
the software maintenance headaches that come with that.

On the other end of the spectrum are systems which use
a DSL to describe the model architecture (e.g., [3, 5, 13,
17]). Such systems are more likely to be geared for specific
production use cases. They can make common cases very
simple to implement (the most common models may even be
built-in primitives). Their higher level of abstraction allows
these frameworks to make optimizations that are inaccessible
to their more flexible peers. They are also robust: users are
strongly guided towards model architectures that work, and it
is hard to write down models that are fundamentally broken.
Apart from the lack of flexibility when it comes to new model
types and architectures, these DSL based systems can be
hard to maintain in the face of an inexorably advancing body
of new research. Adding more and more primitives to a DSL,
or adding more and more options to existing primitives can
be fatal. Google’s own experience with such a system [13]
prompted the development of TensorFlow [2].

TensorFlow is an open source software library for machine
learning, and especially deep learning. It represents compu-
tation as a generalized data flow graph. The graph is first
built, and then executed separately from graph construction.
Operations such as mul, add, etc., are represented as nodes in
the graph. Edges represent the data flowing between nodes
as a Tensor containing a multi-dimensional array. In the
following, we use op and Tensor interchangeably to denote
a node in the graph (op) and the output that is created
when the node is executed. Most ops are stateless tensor-
in-tensor-out functions. State is represented in the graph as
Variables, special stateful ops. Users can assign ops and
variables to any device. A device can be a CPU, GPU, TPU,
and can live on the local machine or a remote TensorFlow
server. TensorFlow then seamlessly handles communication
between these devices. This is one of the most powerful
aspects of TensorFlow, and we rely on it heavily to enable
scaling models from a single machine to datacenter-scale.

The framework described in this paper is implemented on
top of TensorFlow1, and has been made available as part of
the TensorFlow open-source project. Faced with competing
demands, our goal is to provide users with utilities that sim-
plify common use cases while still allowing access to the full
generality of TensorFlow. Consequently, we do not attempt
to capture the design space of machine learning algorithms in
a DSL. Instead, we offer a harness which removes boilerplate
by providing best practice implementations of common code
patterns. The components we provide are reusable, and inte-
gration points for users are strategically placed to encourage

1While we hope that our description of the features in this paper
is largely self-contained, basic familiarity with TensorFlow will give
valuable context to the reader.

reusable user code. The user configuration is performed by
writing regular TensorFlow code, but a number of lower level
TensorFlow concepts are safely encapsulated and users do not
have to reason about them, eliminating a source of common
problems.

Some of the lower level components such as layers are
closely related in similar frameworks aimed at simplifying
model construction [10, 15, 16, 21].

The highest level object in our framework is an Estimator,
which provides an interface similar to that of Scikit-learn [19],
with some adaptations to simplify productionization. Scikit-
learn has been used in a large number of small to medium
scale machine learning tasks. Using a widely known interface
allows practitioners who are not specialists in TensorFlow to
start working productively immediately.

In the remainder of the paper, we will first discuss the
overall design of our framework (Sec. 2), before describing
in detail all major components (Sec. 3) and our mechanisms
for distributed computations (Sec. 4). We then discuss case
studies and show experimental results (Sec. 5).

2 DESIGN OVERVIEW

The design of our framework is guided by the overarching
principle that users should be led to best practices, with-
out having to abandon established idioms wherever this is
possible. Because our framework is built on TensorFlow,
we inherit a number of common design patterns: there is
a preference for functions and closures over objects, wher-
ever such closures are sufficient; callbacks are common. Our
layer design is informed by the underlying TensorFlow style:
our layer functions are also tensor-in-tensor-out operations.
These preferences are stylistic in nature and have no impact
on the performance or expressivity of the framework, but they
allow users to easily transition if they are used to working
with TensorFlow.

Because one of the greatest strengths of TensorFlow is
its flexibility, it is crucial for us to not restrict what users
can accomplish. While we provide guides that nudge people
to best practices, we provide escape hatches and extension
points that allow users to use the full power of TensorFlow
whenever they need to.

Our requirements include simplifying model building in
general, offering a harness that encourages best practices
and guides users to a production-ready implementation, as
well as implementing the most common types of machine
learning model architectures, and providing an interface for
developers of downstream frameworks and infrastructure. We
are therefore dealing with three distinct (but not necessarily
disjoint) classes of users: users who want to build custom
machine learning models, users who want to use common
models, and users who want to build infrastructure using the
concept of a model, but without knowledge of the specifics.

These user classes inform the high level structure of our
framework. At the heart is the Estimator class (see Section
3.2). Its interface (modeled after the eponymous concept in



Scikit-learn [19]) provides an abstraction for a machine learn-
ing model, detailed enough to allow for downstream infras-
tructure to be written, but general enough to not constrain
the type of model represented by an Estimator. Estimators
are given input by a user-defined input function. We provide
implementations for common types of inputs (e.g., input from
numpy [12]).

The Estimator itself is configured using the model fn,
a function which builds a TensorFlow graph and returns
the information necessary to train a model, evaluate it, and
predict with it. Users writing custom Estimators only have to
implement this function. It is possible, and in fact, common,
that model fn contains regular TensorFlow code that does
not use any other component of our framework. This is
often the case because existing models are being adapted or
converted to be implemented in terms of an Estimator. We
do provide a number of utilities to simplify building models,
which can be used independently of Estimator (see Sec. 3.1).
This mutual independence of the abstraction layers is an
important feature of our design, as it enables users to choose
freely the level of abstraction best suited for the problem at
hand.

It is worth noting that an Estimator can be constructed
from a Keras Model. Users of this compatibility feature
cannot use all features of Estimator (in particular, one cannot
specify a separate inference graph with this method), but it
is nevertheless useful for comparisons, and to use existing
models inside downstream infrastructure (such as [6]).

We also provide a number of Estimator implementations
for common machine learning algorithms, which we called
Canned Estimators (these are subclasses of Estimator, see
Section 3.3). In our implementations, we use the same mech-
anisms that a user who writes a custom model would use.
This ensures that we are users of our own framework. To
make them useful for a wide variety of problems, canned
Estimators expose a number of configuration options, the
most important of which is the ability to specify input struc-
ture using feature columns.

3 COMPONENTS

In this section we will describe in detail the various compo-
nents that make up our framework and their relationships.
We start with layers, lower-level utilities that can be used in-
dependently of Estimator, before discussing various aspects
of Estimator itself.

3.1 Layers

One of the advantages of Deep Learning is that common
model architectures are built up from composable parts. For
deep neural networks, the smallest of these components are
called network layers, and we have adopted this name even
though the concept is more widely applicable. A layer is
simply a reusable part of code, and can be as simple as a
fully connected neural network layer or as complex as a full
inception network. We provide a library of layers which is
well tested and whose implementation follow best practices.
We have given our layers a consistent interface in order to

ease the cognitive burden on users. In our framework, layers
are implemented as free functions, taking Tensors as input
arguments (along with other parameters), and returning
Tensors. TensorFlow itself contains a large number of ops
that behave in the same manner, so layers are a natural
extension of TensorFlow and should feel natural to users
of TensorFlow. Because layers accept and produce regular
Tensors, layers and regular TensorFlow ops can be mixed
without requiring special care.

We implement layer functions with best practices in mind:
layers are generally wrapped in a variable scope. This
ensures that they are properly grouped in the TensorBoard
visualization tool, which is essential when inspecting large
models. All variables that are created as part of a layer are
obtained using get variable, which ensures that variables
can be reused or shared in different parts of the model. All
layers assume that the first dimension of input tensors is
the batch dimension, and accept variable batch size input.
This allows changing the batch size as a hyperparameter
during tuning, and it ensures that the model can be reused
for inference, where inputs don’t necessarily arrive in batches.

As an example, let’s create a simple convolutional net to
classify an image. The network comprises three convolutional
and three pooling layers, as well as a final fully connected
layer. We have set sensible defaults on many arguments, so
the invocations are compact unless uncommon behavior is
desired:

1 # Input images as a 4D tensor (batch, width,

2 # height, and channels)

3 net = inputs

4 # instantiate 3 convolutional layers with pooling

5 for _ in range(3):

6 net = layers.conv2d(net,

7 filters=4,

8 kernel_size=3,

9 activation=relu)

10 net = layers.max_pooling2d(net,

11 pool_size=2,

12 strides=1)

13 logits = layers.dense(net, units=num_classes)

We separate out some classes of layers that share a more
restricted interface. Losses are functions which take an
input, a label, and a weight, and return a scalar loss. These
functions, such as l1 loss or l2 loss are used to produce a
loss for optimization.

Metrics are another special class of layers commonly used
in evaluation: they take again a label, a prediction, and op-
tionally a weight, and compute a metric such as log-likelihood,
accuracy, or a simple mean squared error. While superficially
similar to losses, they support aggregating a metric across
many minibatches, an important feature whenever the evalu-
ation dataset does not fit into memory. Metrics return two
Tensors: update op, which should be run for each minibatch,
and a value op which computes the final metric value. The



Figure 1: Simplified overview of the Estimator inter-
face.

update op does not return a value, and only updates internal
variables, aggregating the new information contained in the
input minibatch. The value op uses only the internal state
to compute a metric value and returns it. The Estimator’s
evaluation functionality relies on this usage pattern (see be-
low). Properly implementing metrics is nontrivial, and our
experience shows that metrics that are naively implemented
from scratch lead to problems when using large datasets
(using TensorFlow queues in evaluation requires extra finesse
to avoid losing examples to logging or TensorBoard summary
writing).

3.2 Estimator

At the heart of our framework is Estimator, a class that
both provides an interface for downstream infrastructure, as
well as a convenient harness for developers. The interface
for users of Estimator is loosely modeled after Scikit-learn
and consists of only four methods: train trains the model,
given training data. evaluate computes evaluation metrics
over test data, predict performs inference on new data given
a trained model, and finally, export savedmodel exports a
SavedModel, a serialization format which allows the model to
be used in TensorFlow Serving, a prebuilt production server
for TensorFlow models [1].

The user configures an Estimator by passing a callback,
the model fn, to the constructor. When one of its methods
is called, Estimator creates a TensorFlow graph, sets up
the input pipeline specified by the user in the arguments to
the method (see Sec. 3.2), and then calls the model fn with
appropriate arguments to generate the graph representing
the model. The Estimator class itself contains the necessary
code to run a training or evaluation loop, to predict using
a trained model, or to export a prediction model for use in
production.

Estimator hides some TensorFlow concepts, such as Graph
and Session, from the user. The Estimator constructor
also receives a configuration object called RunConfig which
communicates everything that this Estimator needs to know
about the environment in which the model will be run: how
many workers are available, how often to save intermediate
checkpoints, etc.

To ensure encapsulation, Estimator creates a new graph,
and possibly restores from checkpoint, every time a method
is called. Rebuilding the graph is expensive, and it could
be cached to make it more economical to run, say, evaluate
or predict in a loop. However, we found it very useful to
explicitly recreate the graph, trading off performance for
clarity. Even if we did not rebuild the graph, writing such
loops is highly suboptimal in terms of performance. Making
this cost very visible discourages users from accidentally
writing badly performing code.

A schematic of Estimator can be found in Figure 1. Be-
low, we first describe how to provide inputs to the train,
evaluate, and predict methods using input functions. Then
we discuss model specification with model fn, followed by
how to specify outputs within the model fn using Heads.

Specifying inputs with input fn. The methods train,
evaluate, and predict all take an input function, which is
expected to produce two dictionaries: one containing Tensors
with inputs (features), and one containing Tensors with
labels. Whenever a method of Estimator is called, a new
graph is created, the input fn passed as an argument to
the method call is called to produce the input pipeline of
the Estimator, and then the model fn is called with the
appropriate mode argument to build the actual model graph.
Decoupling the core model from input processing allows
users to easily swap datasets. If used in larger infrastructure,
being able to control the inputs completely is very valuable
to downstream frameworks. A typical input fn has the
following form:

1 def my_input_fn(file_pattern):

2 feature_dict = learn.io.read_batch_features(

3 # path to data in tf.Example format

4 file_pattern=file_pattern,

5 batch_size=BATCH_SIZE,

6 # whether sparse or dense ...

7 features=FEATURE_SPEC,

8 # such as TFRecordReader

9 reader=READER,

10 ...)

11

12 estimator.train(input_fn=lambda:

13 my_input_fn(TRAINING_FILES), ...)

14 estimator.evaluate(input_fn=lambda:

15 my_input_fn(EVAL_FILES), ...)

Specifying the model with model fn. We chose to
configure Estimator with a single callback, the model fn,
which returns ops for training, evaluation, or prediction, de-
pending on which graph is being requested (which method
of Estimator is being called). For example, if the train

method is called, model fn will be called with an argument
mode=TRAIN, which the user can then use to build a custom
graph in the knowledge that it is going to be used for training.



Conceptually, three entirely different graphs can be built,
and different information is returned, depending on the mode
parameter representing the called method. Nevertheless, we
found it useful to require only a single function for configura-
tion. One of the main sources of error in production systems
is training/serving skew. One type of training/serving skew
happens when a different model is trained than is later served
in production. Of course, models are routinely trained slightly
differently than they are served. For instance, dropout and
batch normalization layers are only active during training.
However, it is easy to make mistakes if one has to rewrite the
whole model three times. Therefore we chose to require a sin-
gle function, effectively encouraging the model developer to
write the model only once. For complex models, appropriate
Python conditionals can be used to ensure that legitimate
differences are explicitly represented in the model. A typical
model fn for a simple model may look like this:

1 def model_fn(features, target, mode, params):

2 predictions = tf.stack(tf.fully_connected,

3 [50, 50, 1])

4 loss = tf.losses.mean_squared_error(target,

5 predictions)

6 train_op = tf.train.create_train_op(

7 loss, tf.train.get_global_step(),

8 params[’learning_rate’], params[’optimizer’])

9 return EstimatorSpec(mode=mode,

10 predictions=predictions,

11 loss=loss,

12 train_op=train_op)

Specifying outputs with Heads. The Head API is an
abstraction for the part of the model behind the last hidden
layer. The key goals of the design are to simplify writing
model fn, to be compatible with a wide range of models,
and to simplify supporting multiple heads. A Head knows
how to compute loss, relevant evaluation metrics, predictions
and metadata about the predictions that other systems (like
serving, model validation) can use. To support different types
of models (e.g., DNN, linear, Wide & Deep [9], gradient
boosted trees, etc.), Head takes logits and labels as input and
generates Tensors for loss, metrics, and predictions. Heads
can also take the activation of the last hidden layer as input
to support DNN with large number of classes where we want
to avoid computing the full logit Tensor. A typical model fn

for a simple single objective model may look like this:

1 def model_fn(features, target, mode, params):

2 last_layer = tf.stack(tf.fully_connected,

3 [50, 50])

4 head = tf.multi_class_head(n_classes=10)

5 return head.create_estimator_spec(

6 features, mode, last_layer,

7 label=target,

8 train_op_fn=lambda loss:

9 my_optimizer.minimize(

10 loss, tf.train.get_global_step())

The abstraction is designed in a way that combining multi-
ple Heads for multi objective learning is as simple as creating
a special type of Head with a list of other heads. Model func-
tions can take Head as a parameter while remaining agnostic
to what kind of Head they are using. A typical model fn for
a simple model with two multi class objectives can look like
this:

1 def model_fn(features, target, mode, params):

2 last_layer = tf.stack(tf.fully_connected,

3 [50, 50])

4 head1 = tf.multi_class_head(n_classes=2,

5 label_name=’y’, head_name=’h1’)

6 head2 = tf.multi_class_head(n_classes=10,

7 label_name=’z’, head_name=’h2’)

8 head = tf.multi_head([head1, head2])

9 return head.create_model_fn_ops(features,

10 features, mode, last_layer,

11 label=target,

12 train_op_fn=lambda loss:

13 my_optimizer.minimize(

14 loss, tf.train.get_global_step())

Executing computations. Once the graph is built, the
Estimator then initializes a Session, prepares it appropri-
ately, and runs the training loop, evaluation loop, or iterates
over the inputs to produce predictions.

Most machine learning algorithms are iterative nonlin-
ear optimizations, and therefore have a particularly simple
algorithmic form: a single loop which runs the same com-
putation over and over again, with different input data in
each iteration. When used during training, this is called the
training loop. In evaluation using mini-batches, much the
same structure is used, except that variables are not updated,
and typically, more metrics than just the loss are computed.

An idealized training loop implemented in TensorFlow is
simple: start a Session, then run a training op in a loop.
However, we have to at least initialize variables and special
data structures like tables which are used in embeddings.
Queue runners (implemented as Python threads) have to be
started, and should be stopped at the end to ensure a clean
exit. Summaries (which provide data to the TensorBoard
visualization tool) have to be computed and written to file.
The real challenge begins when distributed training is taken
into account. While TensorFlow takes care of distribution
of the computation and communication between workers,
it requires many coordinated steps before a model can be
successfully trained. The distributed computation introduces
a number of opportunities for users to make mistakes: certain
variables must be initialized on all workers, most only on one.
The model state should be saved periodically to ensure that
the computation can recover when workers go down, and
needs to be recovered safely when they restart. End-of-input
signals have to be handled gracefully.



Because the training loop is so ubiquitous, a good imple-
mentation removes a lot of duplicated user code. Because
it is simple only in theory, we can remove a source of error
and frustration for users. Therefore, Estimator implements
and controls the training loop. It automatically assigns
Variables to parameter servers to simplify distributed com-
putation, and it gives the user only limited access to the
underlying TensorFlow primitives. Users must specify the
graph, and the op(s) to run in each iteration, and they may
override the device placement.

Code injection using Hooks. Hooks make it impossible to
implement advanced optimization techniques that break the
simple loop abstraction in a safe manner. They are also useful
for custom processing that has to happen alongside the main
loop, for recordkeeping, debugging, monitoring or reporting.
Hooks let users define custom behaviour at Session creation,
before and after each iteration, and at the end of training.
They also let users add ops other than those specified by the
model fn to be run within the same Session.run call. For
example, a user who wants to train not for a given number
of steps, but a given amount of wall time, could implement a
Hook as follows:

1 class TimeBasedStopHook(tf.train.SessionRunHook):

2 def begin(self):

3 self.started_at = time.time()

4 def after_run(self, run_context, run_values):

5 if time.time() - self.started_at >= TRAIN_TIME:

6 run_context.request_stop()

Hooks are activated by passing them to the train call.
When the Hook shown above is passed to train, the model
training will end after the set time. Much of the functional-
ity that Estimator provides (for instance, summaries, step
counting, and checkpointing) is internally implemented using
such Hooks.

3.3 Canned Estimators

There are many model architectures commonly used by re-
searchers and practitioners. We decided to provide those ar-
chitectures as canned Estimators so that users don’t need to
rewrite the same models again and again. Canned Estimators
are a good example of how to use Estimator itself. They are
direct subclasses of Estimator that only override their con-
structors. As such, users of canned Estimators would only
need to know how to use an Estimator, and how to configure
the canned Estimator. This means that canned Estimators
are mainly restricted to define a canned model fn. There are
two main reasons behind this restrictive design. First, we
are expecting an increasing number of canned Estimators to
be implemented. To minimize the cognitive load on users,
all these canned Estimators should behave identically. Sec-
ond, this restriction makes the canned Estimator developer
a user of Estimator. This leads to an implicit comprehensive
flexibility test of our API.

Neural networks rely on operations which take dense
Tensors and output dense Tensors. Many machine learn-
ing problems have sparse features such as query keywords,
product id, url, video id, etc. For models with many inputs,
specifying how these features are attached to the model often
consumes a large fraction of the total setup time. Based on
our experience, one of the most error prone parts of building a
model is converting these features into a single dense Tensor.

We offer the FeatureColumn abstraction to simplify input
ingestion. FeatureColumns are a declarative way of specify-
ing inputs. Canned Estimators take FeatureColumns as a
constructor argument and handle the conversion of sparse
or dense features of all types to a dense Tensor usable by
the core model. As an example, the following code shows
a canned Estimator implementation for the Wide & Deep
architecture [9]. The deep part of the model uses embeddings
while the linear part uses the crosses of base features.

1 # Define wide model features and crosses.

2 query_x_docid = crossed_column(

3 ["query", "docid"], num_buckets)

4 wide_cols = [query_x_docid, ...]

5

6 # Define deep model features and embeddings.

7 query = categorical_column_with_hash_bucket(

8 "query", num_buckets)

9 docid = categorical_column_with_hash_bucket(

10 "docid", num_buckets)

11 query_emb = embedding_column(query, dimension=32)

12 docid_emb = embedding_column(docid, dimension=32)

13 deep_cols = [query_emb, docid_emb, ...]

14 # Define model structure and start training.

15 estimator = DNNLinearCombinedClassifier(

16 wide_cols, deep_cols,

17 dnn_hidden_units=[500, 200, 100])

18 estimator.train(input_fn, ...)

4 DISTRIBUTED EXECUTION

With the built-in functionalities and utilities mentioned above,
Estimators are ready for training, evaluating and exporting
the model on a single machine. For production usages and
models with large amounts of training data, utilities for
distributed execution are also provided together with Estima-
tors, which takes the advantage of TensorFlow’s distributed
training support. The core of distributed execution support is
the Experiment class, which groups the Estimator with two
input functions for training and evaluation. The architecture
is summarized in Figure 2.

In each TensorFlow cluster, there are several parameter
servers and several worker tasks. Most workers are hand-
ing the training process, which basically calls the Estimator

train method with the training input fn. One of the workers
is designated leader and is responsible for managing check-
points and other maintenance work. Currently, the primary
mode of replica training in TensorFlow Estimators is between-
graph replication and asynchronous training. However, it
could be easily extended to support other replicated training



Figure 2: Simplified overview of the Experiment in-
terface.

settings. With this architecture, gradient descent training
can be executed in parallel.

We have evaluated scaling of TensorFlow Estimators by
running different numbers of workers with fixed numbers of
parameter servers. We trained a DNN model on a large in-
ternal recommendation dataset (100s of billions of examples)
for 48 hours and present average number of training steps per
second. Figure 3 shows that we achieve almost linear scaling
of global steps per second with the number of workers.

Figure 3: Measuring scaling of DNN model training
implemented with TensorFlow Estimators, varying
the number of workers. Shown are measurements as
well as the theoretical perfect linear scaling.

There is a special worker handling the evaluation pro-
cess for the Experiment to evaluate the performance and
export the model. It runs in a continuous loop and calls the
Estimator evaluate method with the evaluation input fn.
In order to avoid race conditions and inconsistent model
parameter states, the evaluation process always begins with
loading the latest checkpoint and calculates the evaluation
metrics based on the model parameters from that checkpoint.
As a simple extension, the Experiment also supports the
evaluation with the training input fn, which is very useful
to detect overfitting in deep learning in practice.

Furthermore, we also provide utilities, RunConfig and
runner, to ease the way of using and configuring Experiment

in a cluster for distributed training. RunConfig holds all the
execution related configuration the Experiment/Estimator
requires, including cluster specification, model output direc-
tory, checkpoints configuration, etc. In particular, RunConfig
specifies the task type of the current task, which allows
all tasks sharing the same binary but running a different
mode, such as parameter server, training, or continual evalua-
tion. The runner is simply a utility method to construct the
RunConfig, e.g., by parsing the environment variable, and exe-
cute the Experiment/Estimator with that RunConfig. With
this design, Experiment/Estimator could be easily shared by
various execution frameworks including end-to-end machine
learning pipelines [6] and even hyper-parameters tuning.

5 CASE STUDIES AND ADOPTION

For machine learning practitioners within Google, this frame-
work has dramatically reduced the time to launch a working
model. Before TensorFlow Estimators, the typical model con-
struction cycle involved writing custom TensorFlow code to
ingest and represent features (sparse features were especially
tricky), construction of the model layers itself, establishing
training and validation loops, productionizing the system to
run on distributed training clusters, adding evaluation met-
rics, debugging training NaNs, and debugging poor model
quality.

TensorFlow Estimators simplify or automate all but the
debugging steps. Estimators give the practitioner confidence
that, when debugging NaNs or poor quality, these problems
arise either from their choice of hyperparameters or their
choice of features — but not a bug in the wiring of the model
itself.

When TensorFlow Estimators became available, several
TensorFlow models under development greatly benefited from
transitioning to the framework. One multiclass classification
model attained 37% better model accuracy by switching from
a custom model that performed multiple logistic regressions
to a standard Estimator that properly used a softmax cross-
entropy loss — the switch also reduced lines of code required
from 800 to 200. A different TensorFlow CTR model was
stuck in the debugging phase for several weeks, but was
transitioned to the framework within two days and achieved
launchable offline metrics.

It is worth noting that using Estimators and the associ-
ated machinery also requires considerably less expertise than
would be required to implement the equivalent functionality
from scratch. Recently, a cohort of Google data scientists
with limited Python experience and no TensorFlow experi-
ence were able to bootstrap real models in a two-day class
setting.

5.1 Experience in YouTube Watch Next

Using TensorFlow Estimators, we have productionized and
launched a deep model (DNNClassifier) in the Watch Next
video recommender system of YouTube. Watch Next is a
product recommending a ranked set of videos for a user
to choose from after the user is done watching the current



video. One unique aspect about our model is that the model
is trained over multiple days, with the training data being
continuously updated.

Our input features consist of both sparse categorical fea-
tures and real-valued features. The sparse features are further
transformed into embedding columns before being fed into the
hidden layers. The FeatureColumn API greatly simplifies how
we construct the input layer of our model. Additionally, the
train-to-serve support of TensorFlow Estimators considerably
reduced the engineering effort to productionize the Watch
Next model. Furthermore, the Estimator framework made
it easy to implement new Estimators and experiment with
new model architectures such as multiple-objective learning
to accommodate specific product needs.

The initial version of the model pipeline was developed
using low-level TensorFlow primitives prior to the release of
Estimators. While debugging why the model quality failed to
match our expectation, we discovered critical bugs related to
how the network layers were constructed and how the input
data were processed.

As an early adopter, Watch Next prompted the develop-
ment of missing features such as shared embedding columns.
Shared embedding columns allow multiple semantically simi-
lar features to share a common embedding space, with the
benefit of transfer learning across features and smaller model
size.

5.2 Adoption within Google

Software engineers at Google have a variety of choices for
how to implement their machine learning models. Before we
developed the higher-level framework in TensorFlow, engi-
neers were effectively forced to implement one-off versions of
the components in our framework.

An internal survey has shown that, since we introduced
this framework and Estimators less than a year ago, close
to 1,000 Estimators have been checked into the Google
codebase and more than 120,000 experiments have been
recorded (an experiment in this context is a complete train-
ing run; not all runs are recorded, so the true number is
significantly higher). Of those, over half (57%) use imple-
mentations of canned Estimators (e.g., LinearClassifier,
DNNLinearCombinedRegressor). There are now over 20 Esti-
mator classes implementing various standard machine learn-
ing algorithms in the TensorFlow code base. Examples in-
clude DynamicRnnEstimator (implementing dynamically un-
rolled RNNs for classification or regression problems) and
TensorForestEstimator (implementing random forests). Fig-
ure 4 shows the current distribution of Estimator usage. This
framework allowed teams to build high-quality machine learn-
ing models within an average of one engineer-week, sometimes
as fast as within 2 hours. 74% of respondents say that de-
velopment with this framework is faster than other machine
learning APIs they used before. Most importantly, users
note that they can focus their time on the machine learning
problem as opposed to the implementation of underlying
basics. Among existing users, quick ramp-up, ease of use,

reuse of common code and readability of a commonly used
framework are the most frequently mentioned benefits.

Figure 4: Current usage of Estimators at Google.
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