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Abstract

This paper explores various static interpolation methods for ap-

proximating a single dynamically-interpolated language model

used for a variety of recognition tasks on the Google Android

platform. The goal is to find the statically-interpolated first-

pass LM that best reduces search errors in a two-pass system

or that even allows eliminating the more complex dynamic sec-

ond pass entirely. Static interpolation weights that are uniform,

prior-weighted, and the maximum likelihood, maximum a pos-

teriori, and Bayesian solutions are considered. Analysis argues

and recognition experiments on Android test data show that a

Bayesian interpolation approach performs best.

Index Terms: speech recognition, language modeling, lan-

guage model interpolation

1. Introduction

Various speech-enabled features are available on the Android

mobile operating system. These include search-by-voice, voice

input into any text field and an application developer’s API

[1, 2, 3]. By voice, a user can search for a restaurant in Google

Maps, dictate a message in an SMS client, and look for mobile

applications in the Android Market, among the many options.

This diverse input makes accurate language modeling, in par-

ticular, a challenge.

As described in [2], the following methods are employed

for this language modeling problem. First, K component n-

gram language models (LMs) are constructed from available

large corpora deemed relevant to the recognition tasks at hand.

These could include, for example, SMS messages and text

search queries. Second, applications and text fields are pooled

into T tasks, such that the very frequent text fields (e.g., Google

Maps) are individual tasks while the rarest fields are pooled to-

gether into a single ‘other’ task. For each task, a representative

amount of text input is collected into a development set. Next,

K mixture weights are selected for each task that minimize the

perplexity of the corresponding development data when used to

create an interpolated LM from the component n-gram mod-

els. Finally, at recognition time a mixture LM for each task

is used with its corresponding task-specific mixture weights.

This approach resulted in an 11.2% reduction in relative WER

compared to a single task-independent LM whose interpolation

weights were selected to minimize the perplexity of all the task

development text data.

Deploying such a system presents its own challenges.

Given T is over one hundred, creating T statically-interpolated

task LMs is impractical. They can not be switched efficiently

on a single server and distributing different task LMs among

different servers creates serious provisioning and task load-

balancing problems. As described in [2], a single dynamically-

interpolated language model can be used. This model stores the

component LM probabilities separately and when provided with

a set of mixture weights, it performs the linear interpolation on-

demand. In this way, the mixture weights can be changed for

each utterance.

Unfortunately, the dynamically-interpolated LM presents

real-time challenges as well. If it is used in a first-pass recogni-

tion, the overhead of accessing the larger set of weights and

combining them on-demand per utterance takes significantly

more computation than using a statically-interpolated LM. It

also inhibits any static compilation or dynamic caching across

utterances of the underlying recognition network. On the other

hand, the dynamically-interpolated LM can be used in a second-

pass recognition of lattices created from a first-pass using a sin-

gle task-independent LM. In this case, the dynamic interpola-

tion is quite fast given the greatly reduced lattice search space.

However, if the task-independent LM consists of a statically-

interpolated LM whose mixtures weights are selected to mini-

mize the perplexity of all the task development text data, then

the dynamically-interpolated second-pass LM reduces theWER

only 5.1% over the 1st-pass compared to the 11.2% reduc-

tion when the dynamically-interpolated LM is used in the 1st

pass [2]. In other words, significant additional search errors are

incurred with this two-pass strategy.

Faced with these issues, one can either try to speed up

the dynamically-interpolated first-pass LM or close the gap be-

tween using it in a first and second pass. This paper addresses

the latter problem. The goal is to find a static task-independent

LM that is ‘as close as possible’ to the dynamically-interpolated

LM. Such a task-independent LM can then be used as a better

first-pass LM for the task-dependent second pass. If it were

good enough, it might even be possible to eliminate the second

pass.

In Section 3, we describe and compare several possible

ways of creating this task independent LM. These include inter-

polated LMs that use mixture weights that are (1) uniform, (2)

prior-weighted, (3) maximum likelihood, (4) maximum a pos-

teriori, and (5) Bayesian (state-dependent) solutions. We also

formalize the notion of finding the static LM that is as close

as possible to the dynamically-interpolated LM and show the

Bayesian-interpolated LM optimizes this criterion. In Section

4, we present recognition experiments that show the Bayesian-

interpolated LM out-performs other LMs in this scenario.

In many speech recognition domains using a smaller LM in

a first pass, followed by a larger LM in the second pass gives

nearly the same accuracy as using the larger LM in the first

pass. For example, if the smaller LM is obtained by entropy

pruning the second-pass LM [4] then this typically holds [5]

provided the lattice beams are reasonably large. In fact, the

first-pass LM can be pruned to a very small size without sig-

nificantly impacting the second-pass accuracy. As a final set of

experiments in Section 4, we explore how small we can make

the task-independent first-pass LMwith little loss in the second-

pass task-dependent rescoring.



2. Related Work

There is a large literature on language model adaptation, in gen-

eral, and mixture language models, in particular [6, 7]. One sce-

nario is topic modeling, where parts of a corpus are labeled by

pre-defined topics and sub-language models are built on these

topics and used in interpolation [8, 9]. Another scenario is di-

alog modeling, where the dialog state is used instead to define

the sub-corpora [10, 11, 12].

One difference between our and these scenarios is that in

our case the source corpora for the language models is usually

distinct from the tasks. The sources are chosen for their availi-

bility of large of amounts of hopefully relevant text. The tasks

are determined by our applications, there are large number of

them, and we often have only a modest amount of transcribed

development data for them. Another difference is that our tasks

are very diverse; many are independent domains.

3. Interpolated Language Models

Assume that there are K n-gram language models trained on

the available large corpora. For the mobile speech problem,

K = 6 and includes SMS, spoken search queries, and text

search queries. Call these G1, . . . , GK and let pk(w|h) be the
probability that word w follows history h according to LM Gk.

Assume there are T tasks that are to be performed and that p(t)
gives the a priori probability of performing a given task. For

the mobile speech problem, T is approximately one hundred

and includes SMS, Google Maps, Gmail, and Android Market

search. Note there are many more tasks than there are available,

relevant LM text corpora.

For the t-th task, assume the mixture weights

(λ1,t, . . . , λm,t) have been selected such that:

p(w|ht) =
K
∑

k=1

λk,tpk(w|h) (1)

gives the mixture language model that minimizes the perplexity

on development data from the t-th task. Assume that this task-

dependent interpolated LM is used in a second-pass recognition

of that task.

Our goal, for efficiency reasons explained in the introduc-

tion, is to find a task-independent LM that can be used in a first-

pass that is as close as possible to the task-dependent LM, gives

the fewest additional search errors in a two-pass scenario and

potentially, if good enough, could be used to eliminate the dy-

namic second-pass entirely. In this section, the LMs considered

are restricted to those that can be generated from the compo-

nent LMs, the task mixtures weights and the task prior prob-

abilities. In other words, pk(w|h), (λ1,t, . . . , λm,t) and p(t)
are the given information. Note pk(w|h) and (λ1,t, . . . , λm,t)
are also the building blocks of the second-pass LM while p(t) is
found from the task usage frequencies. Saying the first-pass LM

is task-independent here means that the input sentence’s task is

not provided to this stage during recognition.

Note the task priors p(t) can be well-estimated by logging

task usage. We have not assumed that we have development

data that is sampled representatively according to the tasks but

only enough per task to accurately estimate (λ1,t, . . . , λm,t).

We now present several possible task-independent LMs that

are constructed from this information. All our models have the

form of a mixture LM over the component LMs. We will use

αk to denote the mixture weights of the task-independent LM.

3.1. Uniform Interpolated LM

A particularly simple task-independent LM is to create the in-

terpolated LM with uniform weights:

αk =
1

T
(2)

This choice, however, makes no use of the a priori task proba-

bilities, p(t).

3.2. Prior-weighted Interpolated LM

Another simple model, but one taking advantage of the a pri-

ori task probabilities, uses the average of the per-task mixture

weights:

αk =

T
∑

t=1

λk,tp(t) (3)

3.3. Maximum Likelihood Interpolated LM

The above choices, however, seem ad hoc. Consider instead:

tml = argmax
t

p(w|t) =
∏

i

p(wi|hi, t) (4)

wherew = w1 . . . wl is the input sentence of length l and hi =
wi−n+1 . . . wi−1 is the (n − 1)-gram history. This equality

holds under the n-gram Markov assumption which we assume

is valid throughtout. The mixture weights αk = λk,tml
give the

maximum likelihood solution.

A task-independent solution can, in principle, be computed

by running T parallel recognitions using LMs with each of the

task-specific mixture weights and then selecting the best scor-

ing solution, but this is hardly practical. This model, like the

uniform one, does not use the a priori task information.

3.4. Maximum A Posteriori Interpolated LM

A solution similar to the ML solution, but which takes advan-

tage of the a priori task information, is:

tmap = argmax
t

p(t|w) = argmax
t

p(tw) (5)

= argmax
t

p(w|t)p(t) (6)

= argmax
t

p(t)
∏

i

p(wi|hi, t) (7)

The mixture weights αk = λk,tmap give the maximum a poste-

riori solution.

A task-independent solution can, in principle, be com-

puted by running T parallel recognitions using LMs each pre-

multiplied by the task-specific prior probabilities and with task-

specific mixture weights and then selecting the best scoring so-

lution. Like the maximum likelihood solution, however, this is

hardly practical.

3.5. Bayesian Interpolated LM

Instead of selecting the a posteriori best task-independent mix-

ture weights, one can average over the task priors to obtain the

Bayesian solution:

p(w) =

T
∑

t=1

p(t,w) =

T
∑

t=1

p(w|t)p(t) (8)

=

T
∑

t=1

p(t)
∏

i

p(wi|hi, t) (9)



Given the accurate task prior distribution that is available, this

seems an optimal use of it. However, at first glance, it appears

even less practical than the maximum likelihood and maximum

a posteriori solutions.

However, note that:

p(w) =
∏

i

p(wi|hi) =
∏

i

T
∑

t=1

p(wi, t|hi) (10)

=
∏

i

T
∑

t=1

p(t|hi)p(wi|hit) (11)

=
∏

i

T
∑

t=1

p(t|hi)

K
∑

k=1

λk,tpk(wi|hi) (12)

=
∏

i

K
∑

k=1

[

T
∑

t=1

p(t|hi)λk,t

]

pk(wi|hi) (13)

=
∏

i

K
∑

k=1

αk,hi
pk(wi|hi) (14)

where:

αk,hi
=

T
∑

t=1

p(t|hi)λk,t (15)

Equation (14) corresponds to an interpolated LM with state-

dependent mixture weights αk,hi
. These can be computed from

the task priors and the component LMs using (1) and

p(t|hi) =
p(hi|t)p(t)

∑T

t=1
p(hi|t)p(t)

(16)

p(hi|t) =
i

∏

j=1

p(wj |hj , t). (17)

As such, it is quite practical to construct this Bayesian mixture

solution for even very large LMs. Further, if the components

are backoff language models, the Bayesian LM is one as well.

Its n-grams are the union of those of the component LMs with

probablities calculated according to the sum in Equation 14 and

with the backoff weights appropriately normalized.

The result is a task-independent statically-interpolated LM.

Comparing (3) and (15), we see both use task probabilities to

average the task mixture weights. However, in the former case

these are a priori probablities, while in the latter case these are

dependent on the current LM history.

A Bayesian approach has previously been explored in the

simple case of one in-domain (the ‘task’) and one out-of-

domain (the ‘background’) language model[13]. The state-

dependent mixing parameter depends on the state probabilities

from each model and a single prior probability that is tuned on

development data.

3.6. Discussion

Equation (10) shows that the Bayesian interpolated LM repre-

sents p(w); this is the actual distribution we can observe dur-

ing the first pass and it is hard to see how we could do bet-

ter. Another way to view this is to measure how close some

distribution q(w), independent of the prior distribution p(t),
is to the appropriately prior-weighted task-dependent distribu-

tion p(t)p(w|t)), i.e. to the joint word task distribution p(w, t).
Kullback Leibier (KL) divergence (or relative entropy) can be

used to formalize this distance:

D(p(w, t) ‖ q(w)p(t)) =
∑

w,t

p(w, t) log
p(w, t)

q(w)p(t)
(18)

Looking for the best distribution:

q̂ = argmin
q

D(p(w, t) ‖ q(w)p(t)) (19)

= argmin
q

∑

w,t

p(w, t) log
p(w, t)

q(w)p(t)
(20)

= argmin
q

∑

w,t

p(w, t) log
p(w)

q(w)

p(w, t)

p(w)p(t)
(21)

= argmin
q

D(p(w) ‖ q(w)) + Ip(w; t) (22)

= p(w) (23)

Equation (23) follows since the non-negative KL distance is

zero when the distributions are identical and the mutual infor-

mation term is independent of q. This shows the Bayesian in-

terpolated LM will minimize the distance to the joint word task

distribution assuming the p(t) and p(w|t) are accurately esti-

mated.

4. Experiments

In this section, we report experimental results comparing the

uniform, prior-weighted, and Bayesian interpolation methods

of the previous section. We exclude the maximum likelihood

and maximum a posteriori methods since they are not practical

to compute.

4.1. Data and Models

The test set consists of a randomized, anonymized selection of

49,649 transcribed utterances and 319,766 words covering 131

voice tasks from the Android mobile platform. Among the most

frequent tasks are SMS, Google Translate, NotePad, Google

Maps, Facebook, and Browser.

The acoustic model is a tied-state triphone GMM-based

HMM whose input features are 13 PLP-cepstral coeffi-

cients, frame-stacked and projected onto 39 dimensions using

LDA/STC, trained using ML, MMI, and boosted-MMI objec-

tive functions as described in [1].

Separate 4-gram language models were constructed using

Katz backoff from each of six sources. The sources include

anonymized and randomized voice input text from Android,

transcribed and typed search queries, and SMS messages.

These were assembled into a single dynamically-

interpolated language model as described in [2] that had 55

million n-grams (1 million unigrams, 27 million bigrams, 21

million 3-grams and 6 million 4-grams). Statically-interpolated

language models were also constructed using several of the

interpolation methods of Section 3.

4.2. Language Model Interpolation Results

Table 1 shows the recognition word error rate using these mod-

els. Uniform and prior-weighted mixture weight interpolation

both give 13.7% word error rate in a first pass. Using lattices

generated from these first passes and a dynamically-interpolated

second pass with task-specific mixture weights, gives 13.0%

word error rate with both these interpolation methods. Using

Bayesian interpolation instead improves the first pass by 0.4%

and the second pass by 0.1%. The gains due to Bayesian inter-

polation are comparable to those seen by [13].

The dynamically-interpolated LM, which uses task-specific

mixture weights, has a word error rate of 12.9% when used in a

first pass. This matches the Bayesian statically-interpolated first

pass followed by the dynamically-interpolated second pass. In



Interpolation 1st-pass 2nd-pass

Method WER WER

uniform 13.7 13.0

prior-weighted 13.7 13.0

bayesian 13.3 12.9

dynamic 12.9 -

Table 1: Word error rate of various interpolation methods in first

and second-pass recognition. The first-pass and second pass

LMs have 55 million n-grams.

Interpolation 1st-pass 2nd-pass

Method WER WER

uniform 14.1 13.0

prior-weighted 14.0 13.0

bayesian 13.6 12.9

dynamic 12.9 -

Table 2: Word error rate of various interpolation methods in first

and second-pass recognition. The first-pass LM has 17 million

n-grams and second pass LMs has 55 million n-grams.

general, we did not see significant gaps between the rescoring

and single-pass dynamic scenarios compared to [2]. This could

be due to improvements in the models and data collection or

variations in the developement and test sets that have occurred

as the Google platform has matured.

4.3. Language-Model Pruning Results

In the above experiments, the statically-interpolated and the

dynamically-interpolated language models had the same num-

ber of n-grams: 55 million. Given that using the statically-

interpolated models in a first pass followed by rescoring with

the dynamically-interpolated model did not introduce signifi-

cant search errors, we chose to increase the ‘distance’ between

the two passes by pruning the statically-interpolated models us-

ing entropy pruning [4]. This not only would further test these

methods but also allows us to see how small we can make the

first pass system, a important memory saving, and still obtain

satisfactory results.

Table 2 shows the recognition word error rate using 17 mil-

lion n-grams for the statically-interpolated LMs and 55 millon

for the dynamically-interpolated LM. The second-pass results

are identical to using the 55 million n-gram LMs in Table 1.

The first pass shows a degradation of 0.3% to 0.4% WER with

the Bayesian interpolation still 0.4% better than the other two.

Figure 1 shows first and second-pass results using a range of

first-pass Bayesian-interpolated LM sizes. Even with only six

million n-grams, an order of magnitude fewer than the second

pass, only 0.2% WER is lost compared the full 55 million n-

gram first-pass LM.

The conclusions of these experiments is that using the best-

performing Bayesian interpolation method, little to nothing is

lost in a two-pass strategy when using a range of statically-

interpolated LM sizes in the first pass. Further, a simpler

statically-interpolated single-pass strategy can be adopted if de-

sired with a 0.4% loss, which is 0.4% better than the other in-

terpolation methods.
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