
Tenzing
A SQL Implementation On The MapReduce Framework

Biswapesh
Chattopadhyay

biswapesh@

Liang Lin
lianglin@

Weiran Liu
wrliu@

Sagar Mittal
sagarmittal@

Prathyusha
Aragonda

prathyusha@

Vera Lychagina
vlychagina@

Younghee Kwon
youngheek@

Michael Wong
mcwong@

Google
*@google.com

ABSTRACT
Tenzing is a query engine built on top of MapReduce [9]
for ad hoc analysis of Google data. Tenzing supports a
mostly complete SQL implementation (with several exten-
sions) combined with several key characteristics such as het-
erogeneity, high performance, scalability, reliability, meta-
data awareness, low latency, support for columnar storage
and structured data, and easy extensibility. Tenzing is cur-
rently used internally at Google by 1000+ employees and
serves 10000+ queries per day over 1.5 petabytes of com-
pressed data. In this paper, we describe the architecture
and implementation of Tenzing, and present benchmarks of
typical analytical queries.

1. INTRODUCTION
The MapReduce [9] framework has gained wide popularity

both inside and outside Google. Inside Google, MapReduce
has quickly become the framework of choice for writing large
scalable distributed data processing jobs. Outside Google,
projects such as Apache Hadoop have been gaining popular-
ity rapidly. However, the framework is inaccessible to casual
business users due to the need to understand distributed
data processing and C++ or Java.

Attempts have been made to create simpler interfaces on
top of MapReduce, both inside Google (Sawzall [19], Flume-
Java [6]) and outside (PIG [18], HIVE [21], HadoopDB [1]).
To the best of our knowledge, such implementations suffer
from latency on the order of minutes, low efficiency, or poor
SQL compatibility. Part of this inefficiency is a result of
MapReduce’s perceived inability to exploit familiar database
optimization and execution techniques [10, 12, 20]. At the
same time, distributed DBMS vendors have integrated the
MapReduce execution model in their engines [13] to provide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

an alternative to SQL for increasingly sophisticated analyt-
ics. Such vendors include AsterData, GreenPlum, Paraccel,
and Vertica.

In this paper, we describe Tenzing, a SQL query execution
engine built on top of MapReduce. We have been able to
build a system with latency as low as ten seconds, high ef-
ficiency, and a comprehensive SQL92 implementation with
some SQL99 extensions. Tenzing also supports efficiently
querying data in row stores, column stores, Bigtable [7],
GFS [14], text and protocol buffers. Users have access to
the underlying platform through SQL extensions such as
user defined table valued functions and native support for
nested relational data.

We take advantage of indexes and other traditional opti-
mization techniques—along with a few new ones—to achieve
performance comparable to commercial parallel databases.
Thanks to MapReduce, Tenzing scales to thousands of cores
and petabytes of data on cheap, unreliable hardware. We
worked closely with the MapReduce team to implement and
take advantage of MapReduce optimizations. Our enhance-
ments to the MapReduce framework are described in more
detail in section 5.1.

Tenzing has been widely adopted inside Google, especially
by the non-engineering community (Sales, Finance, Market-
ing), with more than a thousand users and ten thousand
analytic queries per day. The Tenzing service currently runs
on two data centers with two thousand cores each and serves
queries on over 1.5 petabytes of compressed data in several
different data sources and formats. Multiple Tenzing tables
have over a trillion rows each.

2. HISTORY AND MOTIVATION
At the end of 2008, the data warehouse for Google Ads

data was implemented on top of a proprietary third-party
database appliance henceforth referred to as DBMS-X. While
it was working reasonably well, we faced the following issues:

1. Increased cost of scalability: our need was to scale to
petabytes of data, but the cost of doing so on DBMS-X
was deemed unacceptably high.

1318



WebUI, API, CLI

Query Server Metadata Server

Master Watcher

Masters Workers

Storage

data & control

Figure 1: Tenzing Architecture.

2. Rapidly increasing loading times: importing new data
took hours each day and adding new data sources took
proportionally longer. Further, import jobs competed
with user queries for resources, leading to poor query
performance during the import process.

3. Analyst creativity was being stifled by the limitations
of SQL and lack of access to multiple sources of data.
An increasing number of analysts were being forced
to write custom code for more complex analysis, often
directly against the source (such as Sawzall against
logs).

We decided to do a major re-design of the existing plat-
form by moving all our analysis to use Google infrastructure,
and specifically to the MapReduce platform. The new plat-
form had to:

1. Scale to thousands of cores, hundreds of users and
petabytes of data.

2. Run on unreliable off-the-shelf hardware, while contin-
uing to be highly reliable.

3. Match or exceed the performance of the existing plat-
form.

4. Have the ability to run directly off the data stored on
Google systems, to minimize expensive ETL processes.

5. Provide all the required SQL features to the analysts
to minimize the learning curve, while also support-
ing more advanced functionality such as complex user-
defined functions, prediction and mining.

We have been largely successful in this effort with Tenz-
ing. With about 18 months of development, we were able to
successfully migrate all users off DBMS-X to the new plat-
form and provide them with significantly more data, more
powerful analysis capabilities, similar performance for most
common scenarios, and far better scalability.

3. IMPLEMENTATION OVERVIEW
The system has four major components: the worker pool,

query server, client interfaces, and metadata server. Figure
1 illustrates the overall Tenzing architecture.

The distributed worker pool is the execution system
which takes a query execution plan and executes the MapRe-
duces. In order to reduce query latency, we do not spawn
any new processes,1 but instead keep the processes running

1This option is available as a separate batch execution
model.

constantly. This allows us to significantly decrease the end-
to-end latency of queries. The pool consists of master and
worker nodes, plus an overall gatekeeper called the master
watcher. The workers manipulate the data for all the tables
defined in the metadata layer. Since Tenzing is a heteroge-
neous system, the backend storage can be a mix of various
data stores, such as ColumnIO [17], Bigtable [7], GFS [14]
files, MySQL databases, etc.

The query server serves as the gateway between the
client and the pool. The query server parses the query, ap-
plies optimizations and sends the plan to the master for
execution. The Tenzing optimizer applies some basic rule
and cost based optimizations to create an optimal execution
plan.

Tenzing has several client interfaces, including a com-
mand line client (CLI) and a Web UI. The CLI provides
more power such as complex scripting and is used mostly by
power users. The Web UI, with easier-to-use features such
as query & table browsers and syntax highlighting, is geared
towards novice and intermediate users. There is also an API
to directly execute queries on the pool, and a standalone bi-
nary which does not need any server side components, but
rather launches its own MapReduce jobs.

The metadata server provides an API to store and fetch
metadata such as table names and schemas, and pointers to
the underlying data. The metadata server is also responsi-
ble for storing ACLs (Access Control Lists) and other secu-
rity related information about the tables. The server uses
Bigtable as the persistent backing store.

3.1 Life Of A Query
A typical Tenzing query goes through the following steps:

1. A user (or another process) submits the query to the
query server through the Web UI, CLI or API.

2. The query server parses the query into an intermediate
parse tree.

3. The query server fetches the required metadata from
the metadata server to create a more complete inter-
mediate format.

4. The optimizer goes through the intermediate format
and applies various optimizations.

5. The optimized execution plan consists of one or more
MapReduces. For each MapReduce, the query server
finds an available master using the master watcher and
submits the query to it. At this stage, the execution
has been physically partitioned into multiple units of
work(i.e. shards).

6. Idle workers poll the masters for available work. Re-
duce workers write their results to an intermediate
storage.

7. The query server monitors the intermediate area for
results being created and gathers them as they arrive.
The results are then streamed to the upstream client.

4. SQL FEATURES
Tenzing is a largely feature complete SQL engine, and

supports all major SQL92 constructs, with some limitations.
Tenzing also adds a number of enhancements on core SQL

1319



for more advanced analysis. These enhancements are de-
signed to be fully parallelizable to utilize the underlying
MapReduce framework.

4.1 Projection And Filtering
Tenzing supports all the standard SQL operators (arith-

metic operators, IN, LIKE, BETWEEN, CASE, etc.) and
functions. In addition, the execution engine embeds the
Sawzall [19] language so that any built-in Sawzall function
can be used. Users can also write their own functions in
Sawzall and call them from Tenzing.

The Tenzing compiler does several basic optimizations re-
lated to filtering. Some examples include:

1. If an expression evaluates to a constant, it is converted
to a constant value at compile time.

2. If a predicate is a constant or a constant range (e.g.,
BETWEEN) and the source data is an indexed source
(e.g., Bigtable), the compiler will push down the con-
dition to an index range scan on the underlying source.
This is very useful for making date range scans on fact
tables, or point queries on dimension tables, for exam-
ple.

3. If the predicate does not involve complex functions
(e.g., Sawzall functions) and the source is a database
(e.g., MySQL), the filter is pushed down to the under-
lying query executed on the source database.

4. If the underlying store is range partitioned on a col-
umn, and the predicate is a constant range on that
column, the compiler will skip the partitions that fall
outside the scan range. This is very useful for date
based fact tables, for example.

5. ColumnIO files have headers which contain meta in-
formation about the data, including the low and high
values for each column. The execution engine will ig-
nore the file after processing the header if it can de-
termine that the file does not contain any records of
interest, based on the predicates defined for that table
in the query.

6. Tenzing will scan only the columns required for query
execution if the underlying format supports it (e.g.,
ColumnIO).

4.2 Aggregation
Tenzing supports all standard aggregate functions such as

SUM, COUNT, MIN, MAX, etc. and the DISTINCT equiv-
alents (e.g., COUNT DISTINCT). In addition, we support a
significant number of statistical aggregate functions such as
CORR, COVAR and STDDEV. The implementation of ag-
gregate functions on the MapReduce framework have been
discussed in numerous papers including the original MapRe-
duce paper [9]; however, Tenzing employs a few additional
optimizations. One such is pure hash table based aggrega-
tion, which is discussed below.

4.2.1 HASH BASED AGGREGATION
Hash table based aggregation is common in RDBMS sys-

tems. However, it is impossible to implement efficiently
on the basic MapReduce framework, since the reducer al-
ways unnecessarily sorts the data by key. We enhanced the

MapReduce framework to relax this restriction so that all
values for the same key end up in the same reducer shard,
but not necessarily in the same Reduce() call. This made
it possible to completely avoid the sorting step on the re-
ducer and implement a pure hash table based aggregation
on MapReduce. This can have a significant impact on the
performance on certain types of queries. Due to optimizer
limitations, the user must explicitly indicate that they want
hash based aggregation. A query using hash-based aggre-
gation will fail if there is not enough memory for the hash
table.

Consider the following query:

SELECT dept id, COUNT(1)
FROM Employee
/∗+ HASH ∗/ GROUP BY 1;

The following is the pseudo-code:

// In the mapper startup, initialize a hash table with dept id
// as key and count as value.
Mapper::Start() {

dept hash = new Hashtable()
}

// For each row, increment the count for the corresponding
// dept id.
Mapper::Map(in) {

dept hash[in.dept id] ++
}

// At the end of the mapping phase, flush the hash table to
// the reducer, without sorting.
Mapper::Finish() {
for (dept id in dept hash) {

OutputToReducerNoSort(
key = dept id, value = dept hash[dept id])

}
}

// Similarly, in the reducer, initialize a hash table
Reducer::Start() {

dept hash = new Hashtable()
}

// Each Reduce call receives a dept id and a count from
// the map output. Increment the corresponding entry in
// the hash table.
Reducer::Reduce(key, value) {

dept hash[key] += value
}

// At the end of the reduce phase, flush out the
// aggregated results.
Reducer::Finish() {
for (dept id in dept hash) {

print dept id, dept hash[dept id]
}
}

4.3 Joins
Joins in MapReduce have been studied by various groups

[2,4,22]. Since joins are one of the most important aspects of
our system, we have spent considerable time on implement-
ing different types of joins and optimizing them. Tenzing
supports efficient joins across data sources, such as Colum-
nIO to Bigtable; inner, left, right, cross, and full outer joins;
and equi semi-equi, non-equi and function based joins. Cross
joins are only supported for tables small enough to fit in
memory, and right outer joins are supported only with sort/

1320



merge joins. Non-equi correlated subqueries are currently
not supported.

We include distributed implementations for nested loop,
sort/merge and hash joins. For sort/merge and hash joins,
the degree of parallelism must be explicitly specified due to
optimizer limitations. Some of the join techniques imple-
mented in Tenzing are discussed below.

4.3.1 BROADCAST JOINS
The Tenzing cost-based optimizer can detect when a sec-

ondary table is small enough to fit in memory. If the order of
tables specified in the query is not optimal, the compiler can
also use a combination of rule and cost based heuristics to
switch the order of joins so that the larger table becomes the
driving table. If small enough, the secondary table is pulled
into the memory of each mapper / reducer process for in-
memory lookups, which typically is the fastest method for
joining. In some cases, we also use a sorted disk based serial-
ized implementation for the bigger tables to conserve mem-
ory. Broadcast joins are supported for all join conditions
(CROSS, EQUI, SEMI-EQUI, NON-EQUI), each having a
specialized implementation for optimal performance. A few
additional optimizations are applied on a case-by-case basis:

• The data structure used to store the lookup data is
determined at execution time. For example, if the sec-
ondary table has integer keys in a limited range, we use
an integer array. For integer keys with wider range, we
use a sparse integer map. Otherwise we use a data type
specific hash table.

• We apply filters on the join data while loading to re-
duce the size of the in-memory structure, and also only
load the columns that are needed for the query.

• For multi-threaded workers, we create a single copy
of the join data in memory and share it between the
threads.

• Once a secondary data set is copied into the worker
process, we retain the copy for the duration of the
query so that we do not have to copy the data for every
map shard. This is valuable when there are many map
shards being processed by a relatively small number of
workers.

• For tables which are both static and frequently used,
we permanently cache the data in local disk of the
worker to avoid remote reads. Only the first use of
the table results in a read into the worker. Subsequent
reads are from the cached copy on local disk.

• We cache the join results from the last record; since
input data often is naturally ordered on the join at-
tribute(s), it saves us one lookup access.

4.3.2 REMOTE LOOKUP JOINS
For sources which support remote lookups on index (e.g.,

Bigtable), Tenzing supports remote lookup joins on the key
(or a prefix of the key). We employ an asynchronous batch
lookup technique combined with a local LRU cache in order
to improve performance. The optimizer can intelligently
switch table order to enable this if needed.

4.3.3 DISTRIBUTED SORT-MERGE JOINS
Distributed sort-merge joins are the most widely used

joins in MapReduce implementations. Tenzing has an im-
plementation which is most effective when the two tables
being joined are roughly the same size and neither has an
index on the join key.

4.3.4 DISTRIBUTED HASH JOINS
Distributed hash joins are frequently the most effective

join method in Tenzing when:

• Neither table fits completely in memory,

• One table is an order of magnitude larger than the
other,

• Neither table has an efficient index on the join key.

These conditions are often satisfied by OLAP queries with
star joins to large dimensions, a type of query often used
with Tenzing.

Consider the execution of the following query:

SELECT Dimension.attr, sum(Fact.measure)
FROM Fact
/∗+ HASH ∗/ JOIN Dimension USING (dimension key)
/∗+ HASH ∗/ GROUP BY 1;

Tenzing processes the query as follows:2

// The optimizer creates the MapReduce operations required
// for the hash join and aggregation.
Optimizer::CreateHashJoinPlan(fact table, dimension table) {
if (dimension table is not hash partitioned on

dimension key)
Create MR1: Partition dimension table by dimension key

if (fact table is not hash partitioned on dimension key)
Create MR2: Partition fact table by dimension key

Create MR3: Shard−wise hash join and aggregation

// MR1 and MR2 are trivial repartitions and hence the
// pseudo−code is skipped. Pseudo−code for MR3 is below:

// At the start of the mapper, load the corresponding
// dimension shard into memory. Also initialize a hash
// table for the aggregation.
Mapper::Start() {

fact shard.Open()
shard id = fact shard.GetCurrentShard()
dimension shard[shard id].Open()
lookup hash = new HashTable()
lookup hash.LoadFrom(dimension shard[shard id])
agg hash = new Hashtable()
}

// For each row, increment the count for the corresponding
// dimension key.
Mapper::Map(in) {

dim rec = lookup hash(in.dimension key);
agg hash(dim rec.attr) += in.measure;
}

// At the end of the mapping phase, flush the hash table
// to the reducer, without sorting.
Mapper::Finish() {
for (attr in agg hash)

OutputToReducerNoSort(
key = attr, value = agg hash[attr]);

}
}

2Note that no sorting is required in any of the MapReduces,
so it is disabled for all of them.

1321



The reducer code is identical to the hash aggregation
pseudo-code in 4.2.1.

The Tenzing scheduler can intelligently parallelize opera-
tions to make hash joins run faster. In this case, for example,
the compiler would chain MR3 and MR1, and identify MR2
as a join source. This has the following implications for the
backend scheduler:

• MR1 and MR2 will be started in parallel.

• MR3 will be started as soon as MR2 finishes and MR1
starts producing data, without waiting for MR1 to fin-
ish.

We also added several optimizations to the MapReduce
framework to improve the efficiency of distributed hash joins,
such as sort avoidance, streaming, memory chaining and
block shuffle. These are covered in more detail in 5.1.

4.4 Analytic Functions
Tenzing supports all the major analytic functions, with

a syntax similar to PostgreSQL / Oracle. These functions
have proven to be quite popular with the analyst commu-
nity. Some of the most commonly used analytic functions
are RANK, SUM, MIN, MAX, LEAD, LAG and NTILE.

Consider the following example with analytic functions
which ranks employees in each department by their salary:

SELECT
dept, emp, salary,
RANK() OVER (
PARTITION BY dept ORDER BY salary DESC)
AS salary rank

FROM Employee;

The following pseudo-code explains the backend implemen-
tation:

Mapper::Map(in) {
// From the mapper, we output the partitioning key of
// the analytic function as the key, and the ordering
// key and other information as value.
OutputToReducerWithSort(

key = in.dept, value = {in.emp, in.salary})
}

Reducer::Reduce(key, values) {
// Reducer receives all values with the same partitioning
// key. The list is then sorted on the ordering key for
// the analytic function.
sort(values on value.salary)
// For simple analytic function such as RANK, it is

enough
// to just print out the results once sorted.
for (value in values) {

print key, value.emp, value.salary, i
}
}

Currently, Tenzing does not support the use of multi-
ple analytic functions with different partitioning keys in the
same query. We plan to remove this restriction by rewriting
such queries as merging result sets from multiple queries,
each with analytic functions having the same partitioning
key. Note that it is possible to combine aggregation and
analytic functions in the same query - the compiler simply
rewrites it into multiple queries.

4.5 OLAP Extensions
Tenzing supports the ROLLUP() and CUBE() OLAP ex-

tensions to the SQL language. We follow the Oracle variant
of the syntax for these extensions. These are implemented
by emitting additional records in the Map() phase based on
the aggregation combinations required.

Consider the following query which outputs the salary of
each employee and also department-wise and grand totals:

SELECT dept, emp, SUM(salary)
FROM Employee
GROUP BY ROLLUP(1, 2);

The following pseudo-code explains the backend implemen-
tation:

// For each row, emit multiple key value pairs, one
// for each combination of keys being aggregated.
Mapper::Map(in) {

OutputToReducerWithSort(
key = {dept, emp}, value = salary)

OutputToReducerWithSort(
key = {dept, NULL}, value = salary)

OutputToReducerWithSort(
key = {NULL, NULL}, value = salary)

}

// The reducer will do a standard pre−sorted
// aggregation on the data.
Reducer::Reduce(key, list<value>) {

sum := 0
for (i = 1 to list<value>.size()) {

sum += value[i].salary
}
print key, sum
}

4.6 Set Operations
Tenzing supports all standard SQL set operations such as

UNION, UNION ALL, MINUS and MINUS ALL. Set op-
erations are implemented mainly in the reduce phase, with
the mapper emitting the records using the whole record as
the key, in order to ensure that similar keys end up together
in the same reduce call. This does not apply to UNION
ALL, for which we use round robin partitioning and turn off
reducer side sorting for greater efficiency.

4.7 Nested Queries And Subqueries
Tenzing supports SELECT queries anywhere where a ta-

ble name is allowed, in accordance with the SQL standard.
Typically, each nested SQL gets converted to a separate
MapReduce and the resultant intermediate table is substi-
tuted in the outer query. However, the compiler can opti-
mize away relatively simple nested queries such that extra
MapReduce jobs need not be created. For example, the
query

SELECT COUNT(∗) FROM (
SELECT DISTINCT emp id FROM Employee);

results in two MapReduce jobs: one for the inner DISTINCT
and a second for the outer COUNT. However, the query

SELECT ∗ FROM (
SELECT DISTINCT emp id FROM Employee);

results in only one MapReduce job. If two (or more) MapRe-
duces are required, Tenzing will put the reducer and follow-
ing mapper in the same process. This is discussed in greater
detail in 5.1.

1322



message Department {
required int32 dept id = 1;
required string dept name = 2;
repeated message Employee {
required int32 emp id = 3;
required string emp name = 4;
};
repeated message Location {
required string city name = 5;
}
};

Figure 2: Sample protocol buffer definition.

4.8 Handling Structured Data
Tenzing has read-only support for structured (nested and

repeated) data formats such as complex protocol buffer struc-
tures. The current implementation is somewhat native and
inefficient in that the data is flattened by the reader at the
lowest level and fed as multiple records to the engine. The
engine itself can only deal with flat relational data, unlike
Dremel [17]. Selecting fields from different repetition levels
in the same query is considered an error.

For example, given the protocol buffer definition in figure
2, the query

SELECT emp name, dept name FROM Department;

is valid since it involves one repeated level (Employee). How-
ever, the query

SELECT emp name, city name FROM Department;

is invalid since Employee and Location are independently
repeating groups.

4.9 Views
Tenzing supports logical views over data. Views are sim-

ply named SELECT statements which are expanded inline
during compilation. Views in Tenzing are predominantly
used for security reasons: users can be given access to views
without granting them access to underlying tables, enabling
row and column level security of data.

Consider the table Employee with fields emp id, ldap user,
name, dept id, and salary. We can create the following view
over it:

CREATE VIEW Employee V AS
SELECT emp id, ldap\ user, name, dept id
FROM Employee
WHERE dept id IN (
SELECT e.dept id FROM Employee e
WHERE e.ldap\ user=USERNAME());

This view allows users to see only other employees in their
department, and prevents users from seeing the salary of
other employees.

4.10 DML
Tenzing has basic support for DML operations INSERT,

UPDATE and DELETE. Support is batch mode (i.e. meant
for batch DML application of relatively large volumes of
data). Tenzing is not ACID compliant - specifically, we are
atomic, consistent and durable, but do not support isolation.

INSERT is implemented by creating a new data set and
adding the new data set to the existing metadata. Essen-
tially, this acts as a batch mode APPEND style INSERT.

Tenzing allows the user to specify, but does not enforce,
primary and foreign keys.

Limited support (no joins) for UPDATE and DELETE is
implemented by applying the update or delete criteria on the
data to create a new dataset. A reference to the new dataset
then replaces the old reference in the metadata repository.

4.11 DDL
We support a number of DDL operations, including CRE-

ATE [OR REPLACE] [EXTERNAL] [TEMPORARY] TA-
BLE, DROP TABLE [IF EXISTS], RENAME TABLE, GEN-
ERATE STATISTICS, GRANT and REVOKE. They all
work as per standard SQL and act as the main means of
controlling metadata and access. In addition, Tenzing has
metadata discovery mechanisms built-in to simplify import-
ing datasets into Tenzing. For example, we provide tools
and commands to automatically determine the structure of
a MySQL database and make its tables accessible from Ten-
zing. We can also discover the structure of protocol buffers
from the protocol definition and import the metadata into
Tenzing. This is useful for Bigtable, ColumnIO, RecordIO
and SSTable files in protocol buffer format.

4.12 Table Valued Functions
Tenzing supports both scalar and table-valued user-defined

functions, implemented by embedding a Sawzall interpreter
in the Tenzing execution engine. The framework is designed
such that other languages can also be easily integrated. In-
tegration of Lua and R has been proposed, and work is in
progress. Tenzing currently has support for creating func-
tions in Sawzall that take tables (vector of tuples) as input
and emit tables as output. These are useful for tasks such
as normalization of data and doing complex computation
involving groups of rows.

4.13 Data Formats
Tenzing supports direct querying of, loading data from,

and downloading data into many formats. Various options
can be specified to tweak the exact form of input / output.
For example, for delimited text format, the user can spec-
ify the delimiter, encoding, quoting, escaping, headers, etc.
The statement below will create the Employee table from a
pipe delimited text file input and validate that the loaded
data matches the table definition and all constraints (e.g.,
primary key) are met:

CREATE TABLE
Employee(emp id int32, emp name string)

WITH DATAFILE:CSV[delim=”|”]:”employee.txt”
WITH VALIDATION;

Other formats supported by Tenzing include:

• ColumnIO, a columnar storage system developed by
the Dremel team [17].

• Bigtable, a highly distributed key-value store [7].

• Protocol buffers [11] stored in compressed record for-
mat (RecordIO) and sorted strings format (SSTables
[7]).

• MySQL databases.

• Data embedded in the metadata (useful for testing and
small static data sets).

1323



5. PERFORMANCE
One of the key aims of Tenzing has been to have per-

formance comparable to traditional MPP database systems
such as Teradata, Netezza and Vertica. In order to achieve
this, there are several areas that we had to work on:

5.1 MapReduce Enhancements
Tenzing is tightly integrated with the Google MapReduce

implementation, and we made several enhancements to the
MapReduce framework to increase throughput, decrease la-
tency and make SQL operators more efficient.

Workerpool. One of the key challenges we faced was re-
ducing latency from minutes to seconds. It became rapidly
clear that in order to do so, we had to implement a solution
which did not entail spawning of new binaries for each new
Tenzing query. The MapReduce and Tenzing teams collab-
oratively came up with the pool implementation. A typical
pool consists of three process groups:

1. The master watcher. The watcher is responsible for
receiving a work request and assigning a free master
for the task. The watcher also monitors the overall
health of the pool such as free resources, number of
running queries, etc. There is usually one one watcher
process for one instance of the pool.

2. The master pool. This consists of a relatively small
number of processes (usually a few dozen). The job
of the master is to coordinate the execution of one
query. The master receives the task from the watcher
and distributes the tasks to the workers, and monitors
their progress. Note that once a master receives a task,
it takes over ownership of the task, and the death of
the watcher process does not impact the query in any
way.

3. The worker pool. This contains a set of workers (typi-
cally a few thousand processes) which do all the heavy
lifting of processing the data. Each worker can work
as either a mapper or a reducer or both. Each worker
constantly monitors a common area for new tasks and
picks up new tasks as they arrive on a FIFO basis. We
intend to implement a priority queue so that queries
can be tiered by priority.

Using this approach, we were able to bring down the la-
tency of the execution of a Tenzing query itself to around 7
seconds. There are other bottlenecks in the system however,
such as computation of map splits, updating the metadata
service, committing / rolling back results (which involves
file renames), etc. which means the typical latency varies
between 10 and 20 seconds currently. We are working on
various other enhancements and believe we can cut this time
down to less than 5 seconds end-to-end, which is fairly ac-
ceptable to the analyst community.

Streaming & In-memory Chaining. The original im-
plementation of Tenzing serialized all intermediate data to
GFS. This led to poor performance for multi-MapReduce
queries, such as hash joins and nested sub-selects. We im-
proved the performance of such queries significantly by im-
plementing streaming between MapReduces, i.e. the up-
stream and downstream MRs communicate using the net-
work and only use GFS for backup. We subsequently im-
proved performance further by using memory chaining, where

Workers Time (s) Throughput

100 188.74 16.74
500 36.12 17.49

1000 19.57 16.14

Table 1: Tenzing Scalability.

the reducer of the upstream MR and the mapper of the
downstream MR are co-located in the same process.

Sort Avoidance. Certain operators such as hash join
and hash aggregation require shuffling, but not sorting. The
MapReduce API was enhanced to automatically turn off
sorting for these operations. When sorting is turned off, the
mapper feeds data to the reducer which directly passes the
data to the Reduce() function bypassing the intermediate
sorting step. This makes many SQL operators significantly
more efficient.

Block Shuffle. Typically, MapReduce uses row based en-
coding and decoding during shuffle. This is necessary since
in order to sort the data, rows must be processed individu-
ally. However, this is inefficient when sorting is not required.
We implemented a block-based shuffle mechanism on top of
the existing row-based shuffler in MapReduce that combines
many small rows into compressed blocks of roughly 1MB in
size. By treating the entire block as one row and avoiding
reducer side sorting, we were able to avoid some of the over-
head associated with row serialization and deserialization in
the underlying MapReduce framework code. This lead to
3X faster shuffling of data compared to row based shuffling
with sorting.

Local Execution. Another simple MapReduce optimiza-
tion we do is local run. The backend can detect the size of
the underlying data to be processed. If the size is under a
threshold (typically 128 MB), the query is not sent to the
pool, but executed directly in the client process. This re-
duces the query latency to about 2 seconds.

5.2 Scalability
Because it is built on the MapReduce framework, Ten-

zing has excellent scalability characteristics. The current
production deployment runs in two data centers, using 2000
cores each. Each core has 6 GB of RAM and 24 GB of lo-
cal disk, mainly used for sort buffers and local caches (Note
that the data is primarily stored in GFS and Bigtable). We
benchmarked the system for the simple query

SELECT a, SUM(b)
FROM T
WHERE c = k
GROUP BY a

with data stored in ColumnIO format on GFS files (see table
1). Throughput, measured in rows per second per worker,
remains steady as the number of workers is scaled up.

5.3 System Benchmarks
In order to evaluate Tenzing performance against com-

mercial parallel databases, we benchmarked four commonly
used analyst queries (see appendix A) against DBMS-X, a
leading MPP database appliance with row-major storage.
Tenzing data was stored in GFS in ColumnIO format. The
Tenzing setup used 1000 processes with 1 CPU, 2 GB RAM

1324



Query DBMS-X (s) Tenzing (s) Change

#2 129 93 39% faster
#4 70 69 1.4% faster
#1 155 213 38% slower
#3 9 28 3.1 times slower

Table 2: Tenzing versus DBMS-X.

Throughput

Rows Selected Vector LLVM Ratio

#8 104 99.58% 21 89 4.2
#6 60 100.00% 8.1 25 3.2
#1 19 99.16% 0.66 2.0 3.0
#2 19 0.81% 23 61 2.6
#7 104 58.18% 6.7 17 2.5
#3 57 3.74% 7.4 15 2.0
#5 104 4.28% 13 19 1.5
#4 40 2.49% 12 13 1.1

Table 3: LLVM and Vector Engine Benchmarks.

and 8 GB local disk each. Results are shown in table 2.
The poor performance on query #3 is because query exe-
cution time is dominated by startup time. The production
version of Tenzing was used for the benchmarks; we believe
Tenzing’s results would have been significantly faster if the
experimental LLVM engine discussed in the next section had
been ready at benchmark time.

5.4 Experimental LLVM Query Engine
Our execution engine has gone through multiple itera-

tions to achieve single-node efficiency close to commercial
DBMS. The first implementation translated SQL expres-
sions to Sawzall code. This code was then compiled using
Sawzall’s just-in-time (JIT) compiler. However, this proved
to be inefficient because of the serialization and deserializa-
tion costs associated with translating to and from Sawzall’s
native type system. The second and current implementation
uses Dremel’s SQL expression evaluation engine, which is
based on direct evaluation of parse trees of SQL expressions.
While more efficient than the original Sawzall implementa-
tion, it was still somewhat slow because of its interpreter-like
nature and row based processing.

For the third iteration, we did extensive experiments with
two major styles of execution: LLVM based native code gen-
eration with row major block based intermediate data and
column major vector based processing with columnar in-
termediate storage. The results of benchmarking LLVM vs
vector on some typical aggregation queries is shown in table
3. All experiments were done on the same dual-core Intel
machine with 4 GB of RAM, with input data in columnar
form in-memory. Note that the LLVM engine is a work
in progress and has not yet been integrated into Tenzing.
Table sizes are in millions of rows and throughput is again
measured in millions of rows per worker per second. The
data suggests that the higher the selectivity of the where
clause, the better the LLVM engine’s relative performance.
We found that the LLVM approach gave better overall re-
sults for real-life queries while vector processing was some-

what better for pure select-project queries with high selec-
tivity. In comparison to the production evaluation engine,
the vector engine’s per-worker throughput was about three
times higher; the LLVM engine’s per-worker throughput was
six to twelve times higher.

Our LLVM based query engine stores intermediate results
by rows, even when both input and output are columnar. In
comparison to columnar vector processing, we saw several
advantages and disadvantages.

• For hash table based operators like aggregation and
join, using rows is more natural: composite key com-
parison has cache locality, and conflict resolution is
done using pointers. Our engine iterates on input rows
and uses generated procedures that do both. However
to our best knowledge, there is no straightforward and
fast columnar solution for using hash table. Searching
in hash table breaks the cache locality for columns,
resulting in more random memory accesses.

• Vector processing engines always materialize interme-
diate results in main memory. In contrast our gener-
ated native code can store results on the stack (better
data locality) or even registers, depending on how the
JIT compiler optimizes.

• If selectivity of source data is low, vector processing
engines load less data into cache and thus scan faster.
Because our engine stores data in rows, scans end up
reading more data and are slower.

• While LLVM provides support for debugging JITed
code [16], there are more powerful analysis and debug-
ging tools for the native C/C++ routines used by most
vector processing engines.

The majority of queries in our workload are analytic queries
that have aggregations and/or joins. These operations are
significant performance bottlenecks compared to other op-
erators like selection and projection. We believe that native
code generation engine deals better with these bottlenecks
and is a promising approach for query processing.

6. RELATED WORK
A significant amount of work has been done in recent years

in the area of large scale distributed data processing. These
fall into the following broad categories:

• Core frameworks for distributed data processing. Our
focus has been on MapReduce [9], but there are sev-
eral others such as Nephele/PACT [3] and Dryad [15].
Hadoop [8] is an open source implementation of the
MapReduce framework. These powerful but complex
frameworks are designed for software engineers imple-
menting complex parallel algorithms.

• Simpler procedural languages built on top of these
frameworks. The most popular of these are Sawzall
[19] and PIG [18]. These have limited optimizations
built in, and are more suited for reasonably experi-
enced analysts, who are comfortable with a procedu-
ral programming style, but need the ability to iterate
quickly over massive volumes of data.

1325



• Language extensions, usually with special purpose op-
timizers, built on top of the core frameworks. The
ones we have studied are FlumeJava [6], which is built
on top of MapReduce, and DryadLINQ [23], which is
built on top of Dryad. These seem to be mostly geared
towards programmers who want to quickly build large
scalable pipelines with relatively simple operations (e.g.
ETL pipelines for data warehouses).

• Declarative query languages built on top of the core
frameworks with intermediate to advanced optimiza-
tions. These are geared towards the reporting and
analysis community, which is very comfortable with
SQL. Tenzing is mostly focused on this use-case, as we
believe, are HIVE [21], SCOPE [5] and HadoopDB [1]
(recently commercialized as Hadapt). The latter is an
interesting hybrid that tries to approach the perfor-
mance of parallel DBMS by using a cluster of single-
node databases and MapReduce as the glue layer.

• Embedding MapReduce and related concepts into tra-
ditional parallel DBMSs. A number of vendors have
such offerings now, including Greenplum, AsterData,
Paraccel and Vertica.

7. CONCLUSION
We described Tenzing, a SQL query execution engine built

on top of MapReduce. We demonstrated that:

• It is possible to create a fully functional SQL engine
on top of the MapReduce framework, with extensions
that go beyond SQL into deep analytics.

• With relatively minor enhancements to the MapRe-
duce framework, it is possible to implement a large
number of optimizations currently available in com-
mercial database systems, and create a system which
can compete with commercial MPP DBMS in terms of
throughput and latency.

• The MapReduce framework provides a combination of
high performance, high reliability and high scalability
on cheap unreliable hardware, which makes it an ex-
cellent platform to build distributed applications that
involve doing simple to medium complexity operations
on large data volumes.

• By designing the engine and the optimizer to be aware
of the characteristics of heterogeneous data sources, it
is possible to create a smart system which can fully uti-
lize the characteristics of the underlying data sources.

8. ACKNOWLEDGEMENTS
Tenzing is built on top of a large number of existing

Google technologies. While it is not possible to list all in-
dividuals who have contributed either directly or indirectly
towards the implementation, we would like to highlight the
contribution of the following:

• The data warehouse management, specifically Hemant
Maheshwari, for providing business context, manage-
ment support and overall guidance.

• The MapReduce team, specifically Jerry Zhao, Marián
Dvorský and Derek Thomson, for working closely with
us in implementing various enhancements to MapRe-
duce.

• The Dremel team, specifically Sergey Melnik and Matt
Tolton, for ColumnIO storage and the SQL expression
evaluation engine.

• The Sawzall team, specifically Polina Sokolova and
Robert Griesemer, for helping us embed the Sawzall
language which we use as the primary scripting lan-
guage for supporting complex user-defined functions.

• Various other infrastructure teams at Google, includ-
ing but not limited to the Bigtable, GFS, Machines
and SRE teams.

• Our loyal and long-suffering user base, especially the
people in Sales & Finance.

9. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz, and A. Rasin. HadoopDB: an
architectural hybrid of MapReduce and DBMS
technologies for analytical workloads. Proceedings of
the VLDB Endowment, 2:922–933, August 2009.

[2] F.N. Afrati and J.D. Ullman. Optimizing joins in a
Map-Reduce environment. In Proceedings of the 13th
International Conference on Extending Database
Technology, pages 99–110. ACM, 2010.

[3] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/pacts: a programming model
and execution framework for web-scale analytical
processing. In Proceedings of the 1st ACM symposium
on Cloud computing, SoCC ’10, pages 119–130, New
York, NY, USA, 2010. ACM.

[4] S. Blanas, J.M. Patel, V. Ercegovac, J. Rao, E.J.
Shekita, and Y. Tian. A comparison of join algorithms
for log processing in MapReduce. In Proceedings of the
2010 international conference on Management of data,
pages 975–986. ACM, 2010.

[5] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets. Proc.
VLDB Endow., 1:1265–1276, August 2008.

[6] C. Chambers, A. Raniwala, F. Perry, S. Adams, R.R.
Henry, R. Bradshaw, and N. Weizenbaum. FlumeJava:
easy, efficient data-parallel pipelines. In Proceedings of
the 2010 ACM SIGPLAN conference on Programming
language design and implementation, pages 363–375.
ACM, 2010.

[7] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R.E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):1–26, 2008.

[8] D. Cutting et al. Apache Hadoop Project.
http://hadoop.apache.org/.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

1326



[10] J. Dean and S. Ghemawat. MapReduce: a flexible
data processing tool. Communications of the ACM,
53(1):72–77, 2010.

[11] J. Dean, S. Ghemawat, K. Varda, et al. Protocol
Buffers: Google’s Data Interchange Format.
Documentation and open source release at
http://code.google.com/p/protobuf/.

[12] D.J. DeWitt and M. Stonebraker. MapReduce: A
major step backwards. The Database Column, 1, 2008.

[13] E. Friedman, P. Pawlowski, and J. Cieslewicz.
SQL/MapReduce: A practical approach to
self-describing, polymorphic, and parallelizable
user-defined functions. Proceedings of the VLDB
Endowment, 2(2):1402–1413, 2009.

[14] S. Ghemawat, H. Gobioff, and S. Leung. The Google
file system. SIGOPS Oper. Syst. Rev., 37:29–43,
October 2003.

[15] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. SIGOPS Oper. Syst. Rev.,
41:59–72, March 2007.

[16] R. Kleckner. LLVM: Debugging JITed Code With
GDB. Retrieved June 27, 2011, from
http://llvm.org/docs/DebuggingJITedCode.html.

[17] S. Melnik, A. Gubarev, J.J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
Interactive Analysis of Web-Scale Datasets.
Proceedings of the VLDB Endowment, 3(1), 2010.

[18] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: a not-so-foreign language for
data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, pages 1099–1110. ACM, 2008.

[19] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming, 13(4):277–298, 2005.

[20] M. Stonebraker, D. Abadi, D.J. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin. MapReduce and
parallel DBMSs: friends or foes? Communications of
the ACM, 53(1):64–71, 2010.

[21] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
a warehousing solution over a Map-Reduce framework.
Proceedings of the VLDB Endowment, 2(2):1626–1629,
2009.

[22] H. Yang, A. Dasdan, R.L. Hsiao, and D.S. Parker.
Map-Reduce-Merge: simplified relational data
processing on large clusters. In Proceedings of the 2007
ACM SIGMOD international conference on
Management of data, pages 1029–1040. ACM, 2007.

[23] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: a system for
general-purpose distributed data-parallel computing
using a high-level language. In Proceedings of the 8th
USENIX conference on Operating systems design and
implementation, OSDI’08, pages 1–14, Berkeley, CA,

USA, 2008. USENIX Association.

APPENDIX
A. BENCHMARK QUERIES

This section contains the queries used for benchmarking
performance against DBMS-X. The table sizes are indicated
using XM or XK suffix.

A.1 Query 1
SELECT DISTINCT dim2.dim1 id
FROM FactTable1 XXB stats
INNER JOIN DimensionTable1 XXXM dim1
USING (dimension1 id)

INNER JOIN DimensionTable2 XXM dim2
USING (dimension2 id)

WHERE dim2.attr BETWEEN A and B
AND stats.date id > some date id
AND dim1.attr IN (Val1, Val2, Val3, ...);

A.2 Query 2
SELECT

dim1.attr1, dates.finance week id,
SUM(FN1(dim3.attr3, stats.measure1)),
SUM(FN2(dim3.attr4, stats.measure2)),

FROM FactTable1 XXB stats
INNER JOIN DimensionTable1 XXXM dim1
USING (dimension1 id)

INNER JOIN DatesDim dates
USING (date id)

INNER JOIN DimensionTable3 XXXK dim3
USING (dimension3 id)

WHERE <fact date range>
GROUP BY 1, 2;

A.3 Query 3
SELECT attr4 FROM (
SELECT dim4.attr4, COUNT(∗) AS dup count
FROM DimensionTable4 XXM dim4
JOIN DimensionTable5 XXM dim5
USING (dimension4 id)

WHERE dim4.attr1 BETWEEN Val1 and Val2
AND dim5.attr2 IN (Val3, Val4)
GROUP BY 1
HAVING dup count = 1) x;

A.4 Query4
SELECT attr1, measure1 / measure2
FROM (
SELECT

attr1,
SUM(FN1(attr2, attr3, attr4)) measure1,
SUM(FN2(attr5, attr6, attr7)) measure2,

FROM DimensionTable6 XXM
WHERE FN3(attr8) AND FN4(attr9)
GROUP BY 1

) v;

1327


	Introduction
	History And Motivation
	Implementation Overview
	Life Of A Query

	SQL Features
	Projection And Filtering
	Aggregation
	HASH BASED AGGREGATION 

	Joins
	BROADCAST JOINS
	REMOTE LOOKUP JOINS
	DISTRIBUTED SORT-MERGE JOINS
	DISTRIBUTED HASH JOINS

	Analytic Functions
	OLAP Extensions
	Set Operations
	Nested Queries And Subqueries
	Handling Structured Data
	Views
	DML
	DDL
	Table Valued Functions
	Data Formats

	Performance
	MapReduce Enhancements 
	Scalability
	System Benchmarks
	Experimental LLVM Query Engine

	Related Work
	Conclusion
	Acknowledgements
	References
	Benchmark Queries
	Query 1
	Query 2
	Query 3
	Query4


