
The Learning Behind Gmail Priority Inbox

Douglas Aberdeen Ondrej Pacovsky Andrew Slater
Google Inc.

Zurich, Switzerland
{daa,ondrej,aws}@google.com

Abstract

The Priority Inbox feature of Gmail ranks mail by the probability that the user
will perform an action on that mail. Because “importance” is highly personal,
we try to predict it by learning a per-user statistical model, updated as frequently
as possible. This research note describes the challenges of online learning over
millions of models, and the solutions adopted.

1 The Gmail Priority Inbox

Many Gmail users receive tens or hundreds of mails per day. The Priority Inbox attempts to alleviate
such information overload by learning a per-user statistical model of importance, and ranking mail
by how likely the user is to act on that mail. This is not a new problem [3, 4], however to do this
at scale, performing real-time ranking and near-online updating of millions of models per day sig-
nificantly complicates the problem. The challenges include inferring the importance of mail without
explicit user labelling; finding learning methods that deal with non-stationary and noisy training
data; constructing models that reduce training data requirements; storing and processing terabytes
of per-user feature data; and finally, predicting in a distributed and fault tolerant way.

While ideas were borrowed from the application of ML in Gmail spam detection [6], importance
ranking is harder as users disagree on what is important, requiring a high degree of personalization.
The result is one of the largest and most user facing applications of ML at Google.

2 The Learning Problem

2.1 Features

There are many hundred features falling into a few categories. Social features are based on the degree
of interaction between sender and recipient, e.g. the percentage of a sender’s mail that is read by the
recipient. Content features attempt to identify headers and recent terms that are highly correlated
with the recipient acting (or not) on the mail, e.g. the presence of a recent term in the subject. Recent
user terms are discovered as a pre-processing step prior to learning. Thread features note the user’s
interaction with the thread so far, e.g. if a user began a thread. Label features examine the labels that
the user applies to mail using filters. We calculate feature values during ranking and we temporarily
store those values for later learning. Continuous features are automatically partitioned into binary
features using a simple ID3 style algorithm on the histogram of the feature values.

2.2 Importance Metric

A goal of Priority Inbox is to rank without explicit labelling from the user, allowing the system
to work “out-of-the-box”. Importance ground truth is based on how the user interacts with a mail
after delivery. Our goal is to predict the probability that the user will interact with the mail within

1

T seconds of delivery, providing the rank of the mail. Informally, we predict p = Pr(a ∈ A, t ∈
(Tmin, Tmax)|f , s); where a is the action performed on the mail, A is the set of actions denoting
importance (e.g., opens, replies, manual corrections), t is the delay between delivery and the action,
f is the vector of features, and s indicates that user has had an opportunity to see the mail.

Imposing Tmin is necessary to give users an opportunity to react to new mail, but is also constrained
by how frequently we can update models. It is less than 24 hours. Imposing Tmax bounds the in-
teractions we need to consider and is a function of the resources available to store and process mail
features. It is measured in days. A consequence is that users with interaction periods greater than
Tmax will not generate training data. To summarize, the prediction error is:

e =

{ 0 if ¬s ∨ t /∈ (Tmin, Tmax)
1− p if a ∈ A;
−p otherwise.

2.3 Models

We use simple linear logistic regression models to keep learning and prediction scalable. A glut of
data exists for learning a global model, but a dearth of data exists for learning personalized user
models. We use a simple form of transfer learning [5] where the final prediction is the sum of the
global model and the user model log odds (Fig. 1):

s =
n∑

i=1

figi +
n+k∑
i=1

fiwi, p =
1

1 + exp−s
.

The number of features is denoted by n. We use k additional user specific features that are not
present in the global model. The global model weights are g and are updated independently and
held fixed during personal model updates. Thus, the personal model weights w only represent how
different the user is from the global model of importance. This results in more compact user models
and the ability to quickly adopt changes in the global model, e.g., when new features are added.

We perform online passive-aggressive updates [2] with the PA-II regression variant to combat the
high degree of noise in the training set. Each mail is used once to update the global model and once
to update the model for the recipient of the mail, e.g. the update for the i’th user model weight is

wi ← wi + fi
sgn(e) max(|e| − ε, 0)

‖f‖2 + 1
2C

,

where e is the error, C is a regularization parameter that tunes the “aggressiveness” of the updates
and ε is the hinge-loss tolerance, or the degree “passiveness”. In practice, we abuse C by adjusting it
per mail to represent our confidence in the label, e.g. a manual correction by a user is given a higher
value of C. User models also have higher C than the global model, and new user models have higher
values still to promote initial learning.

2.4 Ranking for Classification

We determine a per user threshold for s to classify each mail as important or not important. We treat
the problem as ranking rather than classification because tuning the threshold quickly is critical for
user perceived performance. It is difficult to algorithmically determine the threshold that will make a
user happy. Opening a mail is a strong signal of importance for our metric (Sec. 2.2), but many users
open a lot of mail that is “interesting” rather than “important”. Also, unlike spam classification, users
do not agree on the cost of a false positive versus a false negative. Our experience showed a huge
variation between user preferences for volume of important mail, which can not be correlated with
their actions. Thus, we need some manual intervention from users to tune their threshold. When a
user marks messages in a consistent direction, we perform a real-time increment to their threshold.

3 Production

Scaling learning to millions of users is as difficult as tuning the algorithms for a single user. To store
and serve models, and to collect mail training data, we make extensive use of bigtable [1], which
combines features of a distributed file system with a database.

2

3.1 Prediction Time

Priority Inbox ranks mail at a rate far exceeding the capacity of a single machine. It is also difficult
to predict the data center that will handle a user’s Gmail account, so we must be able to score any
user from any data center, without delaying mail delivery. A bigtable is used to globally replicate
and serve models to dedicated ranking tasks. After feature extraction and scoring, another bigtable
is used to log the features to be used for learning.

Logging data to bigtable provides real-time merging of the mail features with subsequent user ac-
tions by maintaining a record per user:message-id. Thus all the data required for a model update is
located in the same record. If we were to instead append all features and actions to a file on disk as
they occur, hundreds of machines for several hours would be needed simply to aggregate and sort the
log entries by user. Bigtable shares those resources across many applications and provides real-time
record merging, making the data available globally for learning within minutes.

3.2 Learning

Sharding learning is conceptually simple. Each core is responsible for updating a fraction of user
models. The challenge is to feed data over the network at a rate that keeps the cores busy. Bigtable
does a lot of this work by providing global access to sorted user:message-id records. It is tempt-
ing to simply fetch the user model, perform updates for each message record, and write back the
model. Unfortunately, with many millions of users the penalty for individual model reads and writes
over the network is prohibitive. It is necessary to batch user model reads and writes, loading as
many models as possible into RAM. For efficiency, bigtable performs batch reads in approximate
key order, allowing parallelism across the servers that hold the data. Since messages are keyed by
user:message-id, messages may be occasionally out of user order.

To evaluate our implicit metric we need to know the last time a user was active in Gmail. We cannot
determine this until all user:message-id records have been read because they are not in temporal
order. This requires two passes over the email data held in bigtable, per shard of user models. The
first pass computes the last action time and other statistics over the shard of users. The amount of
data transferred is small so the first pass is fast. The second pass scans over all message feature
data, performing updates. Finally, all the user models that have changed are batch written back to
the bigtable. Thus, each available core is given a fraction of users by user id prefix and that fraction
is further split into shards of users where all the models can be held in RAM simultaneously (Fig.
2). The end result is that we can process 35 users per second per core, on off peak non-dedicated
desktop-like machines. Some users have thousands of updates, some have one. This is a significant
resource saving over true online learning with 24/7 dedicated tasks.

3.3 Data Protection

All user data is analyzed and stored in accordance with Google’s privacy policy, and the features
extracted from messages are deleted after training. For debugging and tuning, the team members
only examined the features and statistical models of their own accounts.

4 Results

Fig. 3 shows a typical histogram of log-odds scores for the global model, with green (light) buckets
indicating important messages (based on our metric), and red (dark) buckets indicating unimportant
messages. This demonstrates how logistic regression produces a smooth ranking function. Each
bucket contains a ratio of important to unimportant which follows the log-odds curve.

Based on our implicit importance definition, our accuracy (tp+ tn)/messages is approximately
80± 5% on a control group. Presentation bias causes accuracy to be 2 or 3% higher for active Prior-
ity Inbox users. This figure is better than it seems. Due to threshold tuning, our false negative rate is
3 – 4 times the false positive rate. Users read mail they acknowledge is not important, thus many of
our false negatives are correctly classified from the user’s point of view. This illustrates the difficulty
of determining importance implicitly, the level of noise in the data set, and the challenge of evalu-
ating user perceived quality. Manual markings from users are valuable because they provide a true

3

Figure 1: Adding personal and global model scores. Figure 2: Sharding of user model learning.

Figure 3: Score distribution for the global model.
Dots show ratio of important to not important.

Combination Error

Global model 45%
User models 38%
User models & thresholds 31%

Table 1: Error rates on user marked mail.

evaluation of importance, although they largely arise from classification errors and are hence biased.
From a set of 160k such markings we computed the difference between applying only the global
model versus personalized models and personalized models plus personalized thresholds (Tab. 1).
The trend is that increased personalization significantly reduces mistakes.

The ultimate goal is to help Gmail users. We analyzed the time Google employees spent on email
with and without Priority Inbox. Averaging over Googlers that receive similar volumes of mail,
Priority Inbox users (approx. 2000 users) spent 6% less time reading mail overall, and 13% less
time reading unimportant mail. They are also more confident to bulk archive or delete email.

References
[1] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar

Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a distributed storage system for structured data.
In OSDI ’06 Proceedings, page 15, 2006.

[2] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai S. Shwartz, and Yoram Singer. Online passive-aggressive
algorithms. JLMR, 7:551–585, 2006.

[3] L. Dabbish, R. Kraut, S. Fussell, and S Kiesler. Understanding email use: Predicting action on a message.
In CHI 2005, pages 691 – 700. ACM Press, 2005.

[4] Mark Dredze, Bill N. Schilit, and Peter Norvig. Suggesting email view filters for triage and search. In In
Proc. IJCAI’09, pages 1414–1419, 2009.

[5] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345–1359, October 2010.

[6] Bradley Taylor. Sender reputation in a large webmail service. In Third Conference on Email and Anti-Spam
(CEAS 2006), 2006.

4

