
ar
X

iv
:1

00
7.

12
71

v1
 [

cs
.D

S]
 8

 J
ul

 2
01

0

Online Vertex-Weighted Bipartite Matching and

Single-bid Budgeted Allocations

Gagan Aggarwal∗ Gagan Goel† Chinmay Karande‡ Aranyak Mehta§

Abstract

We study the following vertex-weighted online bipartite matching problem: G(U, V,E) is a
bipartite graph. The vertices in U have weights and are known ahead of time, while the vertices
in V arrive online in an arbitrary order and have to be matched upon arrival. The goal is to
maximize the sum of weights of the matched vertices in U . When all the weights are equal, this
reduces to the classic online bipartite matching problem for which Karp, Vazirani and Vazirani
gave an optimal

(

1− 1

e

)

-competitive algorithm in their seminal work [KVV90].

Our main result is an optimal
(

1− 1

e

)

-competitive randomized algorithm for general vertex
weights. We use random perturbations of weights by appropriately chosen multiplicative factors.
Our solution constitutes the first known generalization of the algorithm in [KVV90] in this model
and provides new insights into the role of randomization in online allocation problems. It also
effectively solves the problem of online budgeted allocations [MSVV05] in the case when an
agent makes the same bid for any desired item, even if the bid is comparable to his budget -
complementing the results of [MSVV05, BJN07] which apply when the bids are much smaller
than the budgets.

∗Google Inc., Mountain View. Email: gagana@google.com
†Georgia Institute of Technology. Email: gagang@cc.gatech.edu
‡Georgia Institute of Technology. Email: ckarande@cc.gatech.edu. Work done while visiting Google.
§Google Inc., Mountain View. Email: aranyak@google.com

http://arxiv.org/abs/1007.1271v1

1 Introduction

Online bipartite matching is a fundamental problem with numerous applications such as matching
candidates to jobs, ads to advertisers, or boys to girls. A canonical result in online bipartite
matching is due to Karp, Vazirani and Vazirani [KVV90], who gave an optimal online algorithm for
the unweighted case to maximize the size of the matching. In their model, we are given a bipartite
graph G(U, V,E). The vertices in U are known ahead of time, while the vertices in V arrive one at
a time online in an arbitrary order. When a vertex in V arrives, the edges incident to it are revealed
and it can be matched to a neighboring vertex in U that has not already been matched. A match
once made cannot be revoked. The goal is to maximize the number of matched vertices.

However, in many real world scenarios, the value received from matching a vertex might be
different for different vertices: (1) Advertisers in online display ad-campaigns are willing to pay
a fixed amount every time their graphic ad is shown on a website. By specifying their targeting
criteria, they can choose the set of websites they are interested in. Each impression of an ad can be
thought of as matching the impression to the advertiser, collecting revenue equal to the advertiser’s
bid. (2) Consider the sale of an inventory of items such as cars. Buyers arrive in an online manner
looking to purchase one out of a specified set of items they are interested in. The sale of an item
generates revenue equal to the price of the item. The goal in both these cases is to maximize the
total revenue. With this background, we consider the following problem:

Online vertex-weighted bipartite matching: The input instance is a bipartite graph
G(U, V,E, {bu}u∈U), with the vertices in U and their weights bu known ahead of time. Vertices in
V arrive one at a time, online, revealing their incident edges. An arriving vertex can be matched to
an unmatched neighbor upon arrival. Matches once made cannot be revoked later and a vertex left
unmatched upon arrival cannot be matched later. The goal is to maximize the sum of the weights
of the matched vertices in U .

Connection to the online budgeted allocation problem: Apart from being a natural gener-
alization of the online bipartite matching problem, our vertex-weighted matching problem is closely
related to an important class of online problems. Mehta et al [MSVV05] considered the follow-
ing online version of maximum budgeted allocation problem [GKP01, LLN01] to model sponsored
search auctions: We have n agents and m items. Each agent i specifies a monetary budget Bi and
a bid bij for each item j. Items arrive online, and must be immediately allocated to an agent. If a
set S of items is allocated to agent i, then the agent pays the minimum of Bi and

∑

j∈S bij. The
objective is to maximize the total revenue of the algorithm. An important and unsolved restricted
case of this problem is when all the non-zero bids of an agent are equal, i.e. bij = bi or 0 for all j.
This case reduces to our vertex-weighted matching problem (For a proof, refer to Appendix A).

For the general online budgeted allocation problem, no factor better than 1
2 (achieved by a

simple deterministic greedy algorithm [LLN01]) is yet known. The best known lower bound stands
at 1 − 1

e
due to the hardness result in [KVV90] for the case when all bids and budgets are equal

to 1 - which is equivalent to the unweighted online matching problem. The small bids case - where
bij ≪ Bi for all i and j - was solved by [MSVV05, BJN07] achieving the optimal 1− 1

e
deterministic

competitive ratio. It was believed that handling large bids requires the use of randomization, as
in [KVV90]. In particular, many attempts [KV07, BM08, GM08] had been made to simplify the
analysis of the randomized algorithm in [KVV90], but no generalization had been achieved.

Our solution to the vertex-weighted matching problem is a significant step in this direction. Our
algorithm generalizes that of [KVV90] and provides new insights into the role of randomization in
these solutions, as outlined in Section 1.1. Finally, our algorithm has interesting connections to the
solution of [MSVV05] for the small bids case - despite the fact that the vertex-weighted matching
problem is neither harder nor easier than the small bids case. This strongly suggests a possible
unified approach to the unrestricted online budgeted allocation problem. See Section 1.2 for details.

1.1 Overview of the Result

Solution to the unweighted case: To describe our result, it is instructive to start at the un-
weighted case (bu = 1 for all u ∈ U) and study its solution by [KVV90]. Two natural approaches
that match each arriving v ∈ V to the an unmatched neighbor in U chosen (a) arbitrarily and
(b) randomly, both fail to achieve competitive ratio better than 1

2 . Their solution is an elegant
randomized algorithm called Ranking that works as follows: it begins by picking a uniformly ran-
dom permutation of the vertices in U (called the “ranking” of the vertices). Then, as a vertex in
V arrives, it is matched to the highest-ranked unmatched neighbor. Surprisingly, this idea of us-
ing correlated randomness for all the arriving vertices achieves the optimal competitive ratio of 1− 1

e
.

How do we generalize Ranking in presence of unrestricted weights bu? The natural Greedy al-
gorithm which matches an arriving vertex to the highest-weighted unmatched neighbor, achieves
a competitive ratio of 1

2 (see Appendix B for a proof). No deterministic algorithm can do bet-
ter. While the optimality of Ranking for unweighted matching suggests choosing random ranking
permutations of U , Ranking itself can do as badly as factor 1

n
for some weighted instances.

The main challenge in solving this problem is that a good algorithm must follow very different
strategies depending on the weights in the input instance. Greedy and Ranking are both subop-
timal for this problem, but both have ideas which are essential to its solution. In particular, they
perform well on distinct classes of inputs, namely, Greedy on highly skewed weights and Rank-

ing on equal weights. The following observation about Ranking helps us bridge the gap between
these two approaches: Suppose we perturb each weight bu identically and independently and then
sort the vertices in the order of decreasing perturbed weights. When all the weights are equal,
the resulting order happens to be a uniformly random permutation of U and thus, Ranking on
unweighted instances can be thought of as Greedy on perturbed weights! We use this insight to
construct our solution to the vertex-weighted matching problem. While the nature of perturbation
used did not matter in the above discussion, we need a very specific perturbation procedure for
general vertex-weights.

Our algorithm is defined below:

Algorithm 1: Perturbed-Greedy

For each u ∈ U , pick a number xu uniformly at random from [0, 1].
Define the function ψ(x) := 1− e−(1−x).
foreach arriving v ∈ V do

Match v to the unmatched neighbor u ∈ U with the highest value of buψ(xu). Break ties
consistently, say by vertex id.

Remarks: It is not obvious, and indeed is remarkable in our opinion, that it suffices to perturb each
weight bu completely independently of other weights. In Appendix C, we provide intuition as to why
such is the case. Also, the particular form of the function ψ is not a pre-conceived choice, but rather
an artifact of our analysis. This combined with the discussion in Section 1.2 seems to suggest that ψ
is the ‘right’ perturbation function. We note that we can also choose the function ψ(x) to be 1−e−x,
which keeps the algorithm and results unchanged. Finally, we note that the multipliers yu = ψ(xu)
are distributed according to the density function f(y) = 1

1−y for y ∈
[

0, 1− 1
e

]

. Therefore, we
could have equivalently stated our algorithm as: For each u ∈ U , choose a random multiplier
yu ∈

[

0, 1− 1
e

]

from the above distribution, and use buyu as the perturbed weight.
Our main result is the following theorem. The second part of the theorem follows from the

optimality of Ranking for unweighted matching [KVV90].

Theorem 1 Perturbed-Greedy achieves a competitive ratio of 1 − 1/e for the vertex-weighted
online bipartite matching problem. No (randomized) algorithm has a better competitive ratio.

In addition to the basic idea (from the proof of Ranking) of charging unmatched vertices in
some probabilistic events to matched vertices in other events, our analysis needs to handle the new

complexity introduced due to the weights on vertices. At a very high level, just like the algorithm,
our analysis also manages to pull together the essence of the analyses of both Greedy and Ranking.

1.2 Implications of the Result

Finding the optimal distribution over permutations of U : Since Perturbed-Greedy also
chooses ranking orders through randomization, we can interpret it as a non-uniform Ranking,
where it chooses permutations of U from the ‘optimal’ distribution. But we could have posed
the following question, without the knowledge of our algorithm: How do we find an optimal non-
uniform distribution over permutations of U? As a start, let us consider the case of 2×2 graphs. By
exhaustive search over all 2×2 graphs, we can figure out the best Ranking like algorithm for 2×2
graphs (Figure 2 in Appendix D shows the only two potentially ‘hard’ instances in 2 × 2 graphs).
This algorithm picks the permutation (u1, u2) with probability α

1+α and the permutation (u2, u1)

with probability 1
1+α (where α = bu1/bu2), and then proceeds to match to the highest neighbor.

This algorithm gives a factor of α2+α+1
(α+1)2 , which is minimized at α = 1, giving a factor of 3/4 (in

which case the algorithm is simply the same as Ranking).
An attempt to generalize this idea to larger graphs fails due to a blow-up in complexity. In

general, we need a probability variable pσ for every permutation σ of U . The expected weight of the
matching produced by the algorithm on a graph G, is a linear expression ALGG(pσ1 , pσ2 , ...). Thus,
the optimal distribution over permutations is given by the optimal solution of a linear program in
the pσ variables. But this LP has exponentially many variables (one per permutation) and con-
straints (one per “canonical graph instance”). Therefore, our algorithm can be thought of as solving
this extremely large LP through a very simple process.

General capacities / Matching u ∈ U multiple times: Consider the following generalization of
the online vertex-weighted bipartite matching problem: Apart from a weight bu, each vertex u ∈ U
has a capacity cu such that u can be matched to at most cu vertices in V . The capacities allow us to
better model ‘budgets’ in many practical situations, e.g., in online advertising. Our algorithm easily
handles general capacities: For each u ∈ U , make cu copies of u and solve the resulting instance
with unit capacities: It is easy to verify that the solution is

(

1− 1
e

)

-approximate in expectation for
the original problem with capacities.

Online budgeted allocation :- The single bids case vs. the small bids case: As noted
earlier and proved in Appendix A, the special case of the online budgeted allocation problem with
all the non-zero bids of an agent being equal (bij = bi or 0), reduces to our vertex-weighted matching
problem. Since each agent provides a single bid value for all items, let us call this restriction the
single bids case.

Corollary 2 Perturbed-Greedy achieves a competitive ratio of 1− 1/e for the single bids case
of the online budgeted allocation problem.

Note that the small bids case (bij ≪ Bi) studied in [MSVV05, BJN07] does not reduce to or
from the single bids case. Yet, as it turns out, Perturbed-Greedy is equivalent to the algorithm
of [MSVV05] - let us call it MSVV - on instances that belong to the intersection of the two cases.
When every agent has a single small bid value, the problem corresponds to vertex-weighted matching
with large capacities cu for every vertex u. Recall that we handle capacities on u ∈ U by making
cu copies u1, u2, ..., ucu of u. For each of these copies, we choose a random xui ∈ [0, 1] uniformly
and independently. In expectation, the xui ’s are uniformly distributed in the interval [0, 1]. Also
observe that Perturbed-Greedy will match u1, u2, ..., ucu in the increasing order of xui ’s, if at
all. Therefore, at any point in the algorithm, if ui is the unmatched copy of u with smallest xui
(and consequently highest multiplier ψ(xui)) then xui is in expectation equal to the fraction of the
capacity cu used up at that point. But MSVV uses exactly the scaling factor ψ(T) where T is the

fraction of spent budget at any point. We conclude that in expectation, Perturbed-Greedy tends
to MSVV as the capacities grow large, in the single small bids case.

It is important to see that this phenomenon is not merely a consequence of the common choice
of function ψ. In fact, the function ψ is not a matter of choice at all - it is a by-product of both
analyses (Refer to the remark at the end of Section 3). The fact that it happens to be the exact
same function seems to suggest that ψ is the ‘right’ function. Moreover, the analyses of the two
algorithms do not imply one-another. Our variables are about expected gains and losses over a
probability space, while the algorithm in [MSVV05] is purely deterministic.

This smooth ‘interface’ between the seemingly unrelated single bids and small bids cases hints
towards the existence of a unified solution to the general online budgeted allocation problem.

1.3 Other Related Work

Our problem is a special case of online bipartite matching with edge weights, which has been studied
extensively in the literature. With general edge weights and vertices arriving in adversarial order,
every algorithm can be arbitrarily bad (see Appendix G). There are two ways to get around this
hardness: (a) assume that vertices arrive in a random order, and/or (b) assume some restriction on
the edge weights.

When the vertices arrive in random order, it corresponds to a generalization of the secretary
problem to transversal matroids [BIK07]. Dimitrov and Plaxton [DP08] study a special case where
the weight of an edge (u, v) depends only on the vertex v – this is similar to the problem we study,
except that it assumes a random arrival model (and assumes vertex weights on the online side).
Korula and Pal [KP09] give an 1

8 -competitive algorithm for the problem with general edge weights
and for the general secretary problem on transversal matroids.

If one does not assume random arrival order, every algorithm can be arbitrarily bad with general
edge weights or even with weights on arriving vertices. [KP93] introduce the assumption of edge
weights coming from a metric space and give an optimal deterministic algorithm with a competitive
factor of 1

3 . As far as we know, no better randomized algorithm is known for this problem.
Finally, there has been other recent work [DH09, GM08, FMMM09], although not directly re-

lated to our results, which study online bipartite matching and budgeted allocations in stochastic
arrival settings.

Roadmap: The rest of the paper is structured as follows: In Section 2 we set up the preliminaries
and provide a warm up analysis of a proof of Ranking in the unweighted special case. Section 3
contains the proof of Theorem 1.

2 Preliminaries

2.1 Problem Statement

Consider an undirected bipartite graph G(U, V,E). The vertices of U , which we will refer to as the
offline side, are known from the start. We are also given a weight bu for each vertex u ∈ U . The
vertices of V , referred to as the online side, arrive one at a time (in an arbitrary order). When
a vertex v arrives, all the edges incident to it are revealed, and at this point, the vertex v can be
matched to one of its unmatched neighbors (irrevocably) or left permanently unmatched. The goal
is to maximize the sum of the weights of matched vertices in U .

Let permutation π represent the arrival order of vertices in V and let M be the subset of
matched vertices of U at the end. Then for the input (G,π), the gain of the algorithm, denoted by
ALG(G,π), is

∑

u∈M bu.
We use competitive analysis to analyze the performance of an algorithm. Let M∗(G) be an

optimal (offline) matching, i.e. one that maximizes the total gain for G (note that the optimal
matching depends only on G, and is independent of π), and let OPT(G) be the total gain achieved

by M∗(G). Then the competitive ratio of an algorithm is minG,π
ALG(G,π)
OPT(G) . Our goal is to devise an

online algorithm with a high competitive ratio.

Definition 1 (M∗(G)) For a given G, we will fix a particular optimal matching, and refer to it as
the optimal offline matching M∗(G).

Definition 2 (u∗) Given a G, its optimal offline matching M∗(G) and a u ∈ U that is matched in
M∗(G), we define u∗ ∈ V as its partner in M∗(G).

2.2 Warm-up: Analysis of Ranking for Unweighted Online Bipartite Matching

Recall that online bipartite matching is a special case of our problem in which the weight of each
vertex is 1, i.e. bu = 1 for all u ∈ U . [KVV90] gave an elegant randomized algorithm for this
problem and showed that it achieves a competitive ratio of (1−1/e) in expectation. In this section,
we will re-prove this classical result as a warm-up for the proof of the main result. The following
proof is based on those presented by [BM08, GM08] previously.

Algorithm 2: Ranking

Choose a random permutation σ of U uniformly from the space of all permutations.
foreach arriving v ∈ V do

Match v to the unmatched neighbor in u which appears earliest in σ.

Theorem 3 ([KVV90]) In expectation, the competitive ratio of Ranking is at least 1− 1
e
.

In this warm-up exercise, we will simplify the analysis by making the following assumptions:
|U | = |V | = n and G has a perfect matching. These two assumptions imply that OPT = n and
that the optimal matching M∗(G) is a perfect matching.

For any permutation σ, let Ranking(σ) denote the matching produced by Ranking when the
randomly chosen permutation happens to be σ. For a permutation σ = (u1, u2, ..., un) of U , we say
that a vertex u = ut has rank σ(u) = t. Consider the random variable

yσ,i =

{

1 If the vertex at rank i in σ is matched by Ranking(σ).
0 Otherwise

Definition 3 (Qt, Rt) Qt is defined as the set of all occurrences of matched vertices in the proba-
bility space.

Qt = { (σ, t) : yσ,t = 1 }

Similarly, Rt is defined as the set of all occurrences of unmatched vertices in the probability space.

Rt = { (σ, t) : yσ,t = 0 }

Let xt be the probability that the vertex at rank t in σ is matched in Ranking(σ), over the

random choice of permutation σ. Then, xt = |Qt|
n! and 1 − xt = |Rt|

n! . The expected gain of the
algorithm is ALGG,π =

∑

t xt.

Definition 4 (σiu) For any σ, let σiu be the permutation obtained by removing u from σ and insert-
ing it back into σ at position i.

Lemma 4 If the vertex u at rank t in σ is unmatched by Ranking(σ), then for every 1 ≤ i ≤ n,
u∗ is matched in Ranking(σiu) to a vertex u′ such that σiu(u

′) ≤ t.

Proof: Refer to Lemma 5 in the analysis of Perturbed-Greedy for the proof of a more general
version of this statement. �

In other words, for every vertex that remains unmatched in some event in the probability space,
there are many matched vertices in many different events in the space. In the remaining part of
this section, we quantify this effect by bounding 1− xt, which is the probability that the vertex at
rank t in σ (chosen randomly by Ranking) is unmatched, in terms of some of the xts.

Definition 5 (Charging map f(σ, t)) f is a map from bad events (where vertices remain un-
matched) to good events (where vertices get matched). For each (σ, t) ∈ Rt,

f(σ, t) = {(σiu, s) : 1 ≤ i ≤ n, σ(u) = t and Ranking(σiu) matches u∗ to u′ where σiu(u
′) = s}

In other words, let u be the vertex at rank t in σ. Then f(σ, t) contains all (σ′, s), such that σ′

can be obtained from σ by moving u to some position and s is the rank of the vertex to which u∗,
the optimal partner of u, is matched in σ′.

For every (σ, t) ∈ Rt, (π, s) ∈ f(σ, t) implies yπ,s = 1 for some s ≤ t. Therefore,
⋃

(σ,t)∈Rt

f(σ, t) ⊆
⋃

s≤t

Qs

Claim 1 If (ρ, s) ∈ f(σ, t) and (ρ, s) ∈ f(σ, t), then σ = σ.

Proof: Let u′ be the vertex in ρ at rank s. Let u∗ be the vertex to which u′ is matched by Ranking.

Then it is clear from the definition of the map f that ρ = σ
ρ(u)
u = σ

ρ(u)
u , implying σ = σ. �

The claim proves that for a fixed t, the set-values f(σ, t) are disjoint for different σ. Therefore,

1− xt =
|Rt|

n!
=

1

n
·

∣

∣

∣

⋃

(σ,t)∈Rt
f(σ, t)

∣

∣

∣

n!
≤

1

n
·

∣

∣

∣

⋃

s≤tQs

∣

∣

∣

n!
=

1

n

∑

s≤t

|Qs|

n!
=

∑

s≤t xs

n

Therefore, the probabilities xt’s obey the equation 1 − xt ≤ 1
n

∑

s≤t xs for all t. Since any
vertex with rank 1 in any of the random permutations will be matched, x1 = 1. One can make
simple arguments [KVV90, BM08, GM08] to prove that under these conditions, ALGG,π =

∑

t xt ≥
(

1− 1
e

)

n =
(

1− 1
e

)

OPT , thereby proving Theorem 3.

3 Proof Of Theorem 1

In this section, we will assume that |U | = |V | = n and that G has a perfect matching. In Appendix
F we will show how this assumption can be removed.

Recall that our algorithm works as follows: For each u ∈ U , let σ(u) be a number picked
uniformly at random from [0, 1] (and independent of other vertices) Now, when the next vertex
v ∈ V arrives, match it to the available neighbor u with the maximum value of buψ(σ(u)), where
ψ(x) := 1− e−(1−x).

For ease of exposition, we will prove our result for a discrete version of this algorithm. For every
u ∈ U we will choose a random integer σ(u) uniformly from {1, ..., k} where k is the parameter of dis-

cretization. We will also replace the function ψ(x) by its discrete version ψ(i) = 1−
(

1− 1
k

)−(k−i+1)
.

The discrete version of our algorithm also matches each incoming vertex v ∈ V to the available neigh-
bor u with the maximum value of buψ(σ(u)). Notice that ψ is a decreasing function, so ψ(s) ≥ ψ(t)
if s ≤ t. As k → ∞, the discrete version tends to our original algorithm.

We begin with some definitions, followed by an overview of the proof.
We will denote by σ ∈ [k]n, the set of these random choices. We will say that u is at position t

in σ if σ(u) = t. As a matter of notation, we will say that position s is lower (resp. higher) than t
if s ≤ t (resp. s ≥ t).

Definition 6 (u is matched in σ) We say that u is matched in σ if our algorithm matches it
when the overall choice of random positions happens to be σ.

Let yσ,t be the indicator variable denoting that the vertex at position t is matched in σ.

Definition 7 (Qt, Rt) Qt is defined as the set of all occurrences of matched vertices in the proba-
bility space.

Qt = {(σ, t, u) : σ(u) = t and yσ,t = 1}

Similarly, Rt is defined as the set of all occurrences of unmatched vertices in the probability space.

Rt = {(σ, t, u) : σ(u) = t and yσ,t = 0}

Let xt be the expected gain at t, over the random choice of σ. Then,

xt =

∑

(σ,t,u)∈Qt
bu

kn
(1)

The expected gain of the algorithm is ALGG,π =
∑

t xt. Also note that the optimal gain at any

position t is B = OPT(G)
k

since each vertex in U appears at position t with probability 1/k and is
matched in the optimal matching. Therefore,

B − xt =

∑

(σ,t,u)∈Rt
bu

kn
(2)

Definition 8 (σiu) For any σ, σiu ∈ [k]n is obtained from σ by changing the position of u to i, i.e.
σiu(u) = i and σiu(u

′) = σ(u′) for all u′ 6= u.

Observation 1 For all (σ, t, u) ∈ Rt and 1 ≤ i ≤ k, our algorithm matches u∗ to some u′ ∈ U in
σiu.

The above observation follows from Lemma 5. We’ll use it to define a map from bad events to good
events as follows.

Definition 9 (Charging Map f(σ, t, u)) For every (σ, t, u) ∈ Rt, define the set-valued map

f(σ, t, u) = {(σiu, s, u
′) : 1 ≤ i ≤ k, and the algorithm matches u∗ to u′ in σiu where σiu(u

′) = s}

Observation 2 If (ρ, s, u′) ∈ f(σ, t, u), then (ρ, s, u′) ∈ Qs.

Now we are ready to give an overview of the proof.

Overview of the proof

The key idea in the analysis of Ranking in Section 2.2 was that we can bound the number of
occurrences of unmatched vertices - the bad events - in the entire probability space by a careful
count of the matched vertices - the good events. The charging map f defined above is an attempt
to do this. We’ll show in Lemma 5 that if (σiu, s, u

′) ∈ f(σ, t, u), then the scaled (by ψ) gain due
to u′ in σiu is no less than the scaled loss due to u in σ. However, s may be higher or lower than t,
unlike Ranking where s ≤ t. This implies that the bound is in terms of events in

⋃

sQs, 1 ≤ s ≤ k,
which is very weak (as many of the events in the union are not used).

One idea is to bound the sum of losses incurred at all positions, thereby using almost all the
events in

⋃

sQs. However, if we do this, then the charging map loses the disjointness property, i.e.
if (σ, t, u) ∈ Rt and (σiu, i, u) ∈ Ri then f value of both these occurrences is the same. Thus, each
event in

⋃

sQs gets charged several times (in fact a non-uniform number of times), again making
the bound weak. To this end, we introduce the idea of marginal loss (Definition 10), which helps us
define a disjoint map and get a tight bound.

Next, we formalize the above.

Formal proof

We begin by proving an analogue of Lemma 4.

Lemma 5 If the vertex u at position t in σ is unmatched by our algorithm, then for every 1 ≤ i ≤ k,
the algorithm matches u∗ in σiu to a vertex u′ such that ψ(t)bu ≤ ψ

(

σiu(u
′)
)

bu′.

Proof: Case 1 (i ≥ t): Let v1, ..., vn be the order of arrival of vertices in V . Clearly, v1 will see
the same choice of neighbors in σiu as in σ, except the fact that the position of u is higher in σiu
than in σ. Since we did not match v1 to u in σ, v1 will retain its match from σ even in σiu. Now
assuming that v1, ..., vl all match the same vertex in σiu as they did in σ, vl+1 will see the same
choice of neighbors in σiu as in σ with the exception of u. Since vl+1 did not match u in σ either, it
will retain the same neighbor in σiu and by induction every vertex from V , specifically u∗ keeps the
same match in σiu as in σ. Since σ(u′) = σiu(u

′), we conclude ψ(t)bu ≤ ψ
(

σiu(u
′)
)

bu′ .

Case 2 (i < t): For a vertex v ∈ V , let mσ(v) and mσiu
(v) be the vertices to which v is matched in

σ and σiu respectively, if such a match exists and null otherwise. Intuitively, since ψ(i) ≥ ψ(t), the
scaling factor of bu only improves in this case, while that of any other vertex in U remains the same.
Therefore, we can expect u to be more likely to be matched in σiu and the ψ

(

σiu
(

mσiu
(v)

))

bm
σi
u
(v) ≥

ψ (σ (mσ(v))) bmσ(v) to hold for all v ∈ V . In fact, something more specific is true. The symmetric
difference of the two matchings produced by the algorithm for σ and σiu is exactly one path starting
at u that looks like (u, v1, mσ(v1), v2, mσ(v2), ...), where (v1, v2, ...) appear in their order of
arrival. In what follows we prove this formally.

Let V ′ = {v ∈ V : mσ(v) 6= mσiu
(v)} be the set of vertices in V with different matches in σ

and σiu. Index the members of V ′ as v1, ..., vl in the same order as their arrival, i.e. v1 arrives the
earliest. For simplicity, let uj = mσ(vj) and wj = mσiu

(vj).
We assert that the following invariant holds for 2 ≤ j ≤ l: Both uj and uj−1 are unmatched in

σiu when vj arrives and vj matches uj−1, i.e. wj = uj−1.
For base case, observe that the choice of neighbors for v1 in σiu is the same as in σ, except u, which

has moved to a lower position. Since by definition v1 does not match u1 in σiu, w1 = u. Now consider
the situation when v2 arrives. All the vertices arriving before v2 - with the exception of v1 - have
been matched to the same vertex in σiu as in σ, and v1 has matched to u, leaving u1 yet unmatched.
Let Uσ(v2) and Uσiu(v2) be the sets of unmatched neighbors of v2 in σ and σiu respectively at the
moment when v2 arrives. Then from above arguments, Uσiu(v2) = (Uσ(v2) ∪ {u1}) − {u}. Since u
was unmatched in σ, u2 6= u. Since v2 ∈ V ′, w2 6= u2. This is only possible if w2 = u1. And hence
the base case is true.

Now assume that the statement holds for j − 1 and consider the arrival of vj . By induction
hypothesis, v1 has been matched to u and v2, .., vj−1 have been matched to u1, ..., uj−2 respectively.
All the other vertices arriving before vj that are not in V ′ have been matched to the same vertex
in σiu as in σ. Therefore, uj−1 is yet unmatched. Let Uσ(vj) and Uσiu(vj) be the sets of unmatched

neighbors of vj in σ and σiu respectively at the moment when vj arrives. Then from above arguments,
Uσiu(vj) = (Uσ(vj) ∪ {uj−1})− {u}. Since u was unmatched in σ, uj 6= u. Given that wj 6= uj , the
only possibility is wj = uj−1. Hence the proof of the inductive statement is complete.

If u∗ /∈ V ′ then u′ = mσiu
(u∗) = mσ(u

∗) and the statement of the lemma clearly holds since

σ(u′) = σiu(u
′). If u∗ = v1, then u′ = u and ψ

(

σiu(u
′)
)

bu′ = ψ(i)bu ≥ ψ(t)bu since i < t. Now
suppose u∗ = vj for some j ≥ 2. Then u′ = uj−1 and by the invariant above,

ψ
(

σiu(u
′)
)

bu′ = ψ
(

σiu(uj−1)
)

buj−1
≥ ψ

(

σiu(uj)
)

buj (3)

= ψ (σ(uj)) buj (4)

≥ ψ(t)bu (5)

Equation (3) follows from the fact that u∗ = vj was matched in σiu to uj−1 when uj was also
unmatched. The fact that only u changes its position between σ and σiu leads us to (4). Finally,

equation (5) follows from the fact that u∗ was matched to uj in σ when u was also unmatched. �

Using the above lemma, we get the following easy observation.

Observation 3 For all (σ, t, u) ∈ Rt, 1 ≤ t ≤ k, f(σ, t, u) contains k values.

Remark: As noted in the overview, although Lemma 5 looks very similar to Lemma 4, it is
not sufficient to get the result, since the good events pointed to by Lemma 5 are scattered among
all positions 1 ≤ s ≤ k – in contrast to Lemma 4, which pointed to only lower positions s ≤ t,
giving too weak a bound. We try to fix this by combining the losses from all Rt. However we
run into another difficulty in doing so. While for any fixed t, the maps f(σ, t, u) are disjoint for
all (σ, t, u) ∈ Rt, but the maps for two occurrences in different Rts may not be disjoint. In fact,
whenever some u is unmatched in σ at position t, it will also remain unmatched in σju for j > t,
and the sets f(σ, t, u) and f(σju, j, u) will be exactly the same! This situation is depicted in Figure
3 in Appendix E.

This absence of disjointness again renders the bound too weak. To fix this, we carefully select a
subset of bad events from

⋃

tRt such that their set-functions are indeed disjoint, while at the same
time, the total gain/loss can be easily expressed in terms of the bad events in this subset.

Definition 10 (Marginal loss events St) Let St = {(σ, t, u) ∈ Rt : (σt−1
u , t − 1, u) /∈ Rt−1},

where R0 = ∅.

Informally, St consists of marginal losses. If u is unmatched at position t in σ, but matched at
position t− 1 in σt−1

u , then (σ, t, u) ∈ St (See Figure 3 in Appendix E). The following property can
be proved using the same arguments as in Case 1 in the proof of Lemma 5.

Observation 4 For (σ, t, u) ∈ St, u is matched at i in σiu if and only if i < t.

Definition 11 (Expected Marginal Loss αt)

Expected marginal loss at position t = αt =

∑

(σ,t,u)∈St
bu

kn
(6)

Claim 2
∀ t: xt = B −

∑

s≤t

αs (7)

Total loss =
∑

t

(B − xt) =
∑

t

(k − t+ 1)αt (8)

Proof: To prove equation (7), we will fix a t and construct a one-to-one map g : Rt →
⋃

s≤t St.

Given (σ, t, u) ∈ Rt, let i be the lowest position of u such that u remains unmatched in σiu. By
observation 4, i is unique for (σ, t, u). We let g(σ, t, u) = (σiu, i, u). Clearly, (σiu, i, u) ∈ Si. To
prove that the map is one-to-one, suppose (ρ, s, u) = g(σ, t, u) = g(σ, t, u). Then by definition of g,
ρ = σsu = σsu which is only possible if σ = σ. Therefore, |Rt| =

⋃

s≤t St.
Lastly, observe that g maps an element of Rt corresponding to the vertex u being unmatched,

to an element of Si corresponding to the same vertex u being unmatched. From equation (2),

B − xt =

∑

(σ,t,u)∈Rt
bu

kn
=

∑

i≤t

∑

(σiu,i,u)∈Si
bu

kn
=

∑

i≤t

αi

This proves equation (7). Summing (7) for all t, we get (8). �

Now consider the same set-valued map f from Definition 9, but restricted only to the members
of

⋃

t St. We have:

Claim 3 For (σ, t, u) ∈ St and (σ, t, u) ∈ St, if (ρ, s, u′) ∈ f(σ, t, u) and (ρ, s, u′) ∈ f(σ, t, u) then
σ = σ, t = t and u = u.

Proof: If u′ is matched to v in ρ then by definition of f , v = u∗ = u∗, implying u = u. Therefore,
ρ = σiu = σiu for some i. But this implies that σ = σju for some j. This is only possible for j = t since
by definition, if u is unmatched in σ at t, then there exists a unique i for which (σiu, i, u) ∈

⋃

t St.
If j = t, then σ = σ and t = t. �

Armed with this disjointness property, we can now prove our main theorem.

Theorem 6 As k → ∞,
∑

t

xt ≥

(

1−
1

e

)

OPT(G) (9)

Proof: Using Lemma 5 and Observation 3, we have for every (σ, t, u) ∈ St,

ψ(t)bu ≤
1

k

∑

(σiu,s,u
′)∈f(σ,t,u)

ψ(s)bu′ (10)

If we add the equation (10) for all (σ, t, u) ∈ St and for all 1 ≤ t ≤ n, then using Claim 3 and
Observation 2, we arrive at

∑

t

ψ(t)

∑

(σ,t,u)∈St
bu

kn
≤

1

k

∑

t

ψ(t)

∑

(σ,t,u)∈Qt
bu

kn

∑

t

ψ(t)αt ≤
1

k

∑

t

ψ(t)xt (11)

=
1

k

∑

t

ψ(t)

B −
∑

s≤t

αs

 (12)

Equation (11) follows from (6) and (1). Equation (12) uses Claim 2.
We now rearrange terms to get

∑

t

αt

(

ψ(t) +

∑

s≥t ψ(s)

k

)

≤
B

k

∑

t

ψ(t) (13)

When ψ(t) = 1 −
(

1− 1
k

)k−t+1
, observe that ψ(t) +

∑
s≥t ψ(s)

k
≥ (k−t+1)

k
and

∑

t ψ(t) = k
e

as
k → ∞. Using Claim 2,

Total loss =
∑

t

(B − xt) =
∑

t

(k − t+ 1)αt

≤ k
∑

t

αt

(

ψ(t) +

∑

s≥t ψ(s)

k

)

≤ B
∑

t

ψ(t)

=
kB

e
as k → ∞

=
OPT(G)

e

Hence, as k → ∞,

Total gain ≥

(

1−
1

e

)

OPT(G)

Remark: Observe that we substituted for ψ(t) only after equation (13) - up until that point, any
choice of a non-increasing function ψ would have carried the analysis through. In fact, the chosen
form of ψ is a result of trying to reduce the left hand side of equation (13) to the expected total
loss. To conclude, the ‘right’ perturbation function is dictated by the analysis and not vice versa.

�

References

[BIK07] M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and online
mechanisms. In SODA, 2007.

[BJN07] N. Buchbinder, K. Jain, and J.S. Naor. Online Primal-Dual Algorithms for Maximizing
Ad-Auctions Revenue. In Algorithms–ESA 2007 15th Annual European Symposium,
Eilat, Israel, October 8-10, 2007: Proceedings, page 253. Springer, 2007.

[BM08] B. Birnbaum and C. Mathieu. On-line bipartite matching made simple. 2008.

[DH09] N. Devanur and T Hayes. The adwords problem: Online keyword matching with bud-
geted bidders under random permutations. In ACM Conference on Electronic Com-
merce, 2009.

[DP08] Nedialko B. Dimitrov and C. Greg Plaxton. Competitive weighted matching in transver-
sal matroids. In ICALP (1), pages 397–408, 2008.

[FMMM09] Jon Feldman, Aranyak Mehta, Vahab S. Mirrokni, and S. Muthukrishnan. Online
stochastic matching: Beating 1-1/e. In FOCS, pages 117–126, 2009.

[GKP01] Rahul Garg, Vijay Kumar, and Vinayaka Pandit. Approximation algorithms for budget-
constrained auctions. In APPROX ’01/RANDOM ’01: Proceedings of the 4th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Prob-
lems and 5th International Workshop on Randomization and Approximation Techniques
in Computer Science, pages 102–113, London, UK, 2001. Springer-Verlag.

[GM08] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models
with applications to adwords. In SODA, pages 982–991, 2008.

[KP93] Bala Kalyanasundaram and Kirk Pruhs. Online weighted matching. J. Algorithms,
14(3):478–488, 1993.

[KP09] Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hy-
pergraphs. In ICALP (2), pages 508–520, 2009.

[KV07] Erik Krohn and Kasturi Varadarajan. Private communication. 2007.

[KVV90] R.M. Karp, U.V. Vazirani, and V.V. Vazirani. An optimal algorithm for online bi-
partite matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, 1990.

[LLN01] B. Lehman, D. Lehman, and N. Nisan. Combinatorial auctions with decreasing
marginal utilities. In Proceedings of the 3rd ACM conference on Electronic Commerce,
pages 18 –28, 2001.

[MSVV05] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and
generalized online matching. In FOCS, 2005.

A The Reduction from Online Budgeted Allocation with Single

Bids

In this section, we will show that the single bids case of the online budgeted allocation problem
reduces to online vertex-weighted bipartite matching. Let us first define these problems.

Online budgeted allocation: We have n agents and m items. Each agent i specifies a
monetary budget Bi and a bid bij for each item j. Items arrive online, and must be immediately
allocated to an agent. If a set S of items is allocated to agent i, then the agent pays the minimum
of Bi and

∑

j∈S bij . The objective is to maximize the total revenue of the algorithm.

Single bids case: Any bid made by agent i can take only two values: bi or 0. In other words,
all the non-zero bids of an agent are equal.

Claim 4 Online budgeted allocation with single bids reduces to online vertex-weighted bipartite
matching.

Proof: Given an instance of online budgeted allocation where agent i has budget Bi and single bid
value bi, we will construct an input instance G(U, V,E, {bu}u∈U) of online vertex-weighted bipartite
matching. The set V consists of one vertex corresponding to every item. The set U will contain
one or more vertices for every agent.

For every agent i, let ni be the largest integer such that nibi ≤ Bi and let ri = Bi−nibi. Clearly,
ri < bi. We will construct a set Ui of ni vertices, each with weight bi. In addition, if ri > 0, then
we will construct a vertex ūi with weight ri and add it to Ui. For all u ∈ Ui and v ∈ V , the edge
uv ∈ E if and only if agent i makes a non-zero bid on the item corresponding to v.

(1) Given a solution to the budgeted allocation problem where a set Si of items is allocated to agent
i, let us see how to construct a solution to the vertex-weighted matching problem with the same
total value.

• If agent i pays a total of |Si| · bi, then we know that |Si| ≤ ni. Hence, for every item in Si,
we will match the corresponding vertex in V to a vertex in Ui − {ūi}. Let Ri be the set of
vertices in Ui thus matched. We have:

∑

u∈Ri

bu = |Ri| · bi = |Si| · bi

• If agent i pays a total amount strictly less than |Si| · bi, then we know that: (a) |Si| ≥ ni+1,
(b) ri > 0 and (3) agent i pays the budget Bi. We can now choose any ni+1 items in Si and
match the corresponding vertices in V to the ni+1 vertices in Ui. The sum of the weights of
matched vertices in Ui,

∑

u∈Ui
bu = Bi.

Summing over all i, the weight of the matching formed is equal to the total revenue of the budgeted
allocation. Let OPTA and OPTM denote the values of the optimal solutions of the budgeted
allocation and the vertex-weighted matching problems respectively. Then we conclude from the
above discussion that:

OPTM ≥ OPTA (14)

(2) Given a solution to the vertex-weighted matching problem where a set R ⊆ U of vertices is
matched, let us see how to construct a solution to the budgeted allocation problem with at least
the same total value. Let Ri = R ∩ Ui. For every v ∈ V that is matched to a vertex in Ri, we will
allocate the corresponding item to agent i. Let Si be the set of items allocated to agent i.

• If |Ri| = |Si| ≤ ni, then agent i pays a total of |Si| · bi and we have:
∑

u∈Ri

bu ≤ |Ri| · bi = |Si| · bi

• If on the other hand, |Ri| = |Si| = ni + 1 then agent i pays a total of Bi and we have:
∑

u∈Ri

bu =
∑

u∈Ui

bu = Bi

Summing over all i, the total revenue of the budgeted allocation is at least the weight of the matching.
Let ALGM be the expected weight of the vertex-weighted matching constructed by Perturbed-

Greedy and ALGA be the expected value of the budgeted allocation constructed using the above
scheme. From the above discussion, we conclude: Therefore,

ALGA ≥ ALGM

≥

(

1−
1

e

)

OPTM (15)

≥

(

1−
1

e

)

OPTA

Here, equation (15) follows from the main result - Theorem 1 - and the last step uses equation
(14). This completes our proof.

�

B Performance of Greedy and Ranking

With non-equal weights, it is clearly preferable to match vertices with larger weight. This leads to
the following natural algorithm.

Algorithm 3: Greedy

foreach arriving v ∈ V do
Match v to the unmatched neighbor in u which maximizes bu (breaking ties arbitrarily);

It is not hard to show that Greedy achieves a competitive ratio of at least 1
2 .

Lemma 7 Greedy achieves a competitive ratio of 1/2 in vertex-weighted online bipartite matching.

Proof: Consider an optimal offline matching, and a vertex u ∈ U that is matched in the optimal
offline matching but not in the greedy algorithm. Now look at a vertex u∗ ∈ V that is matched to
the vertex u in the optimal matching. In Greedy, u∗ must have been matched to a vertex u

′
∈ U ,

s.t. bu ≤ bu′ , since u was unmatched when u∗ was being matched. So we’ll charge the loss of bu
to u

′
. Note that each u

′
does not get charged more than once – it is charged only by the optimal

partner of its partner in the algorithm’s matching. Thus the loss of the algorithm is no more than
the value of the matching output by the algorithm. Hence the claim. �

In fact, this factor 1/2 is tight for Greedy as shown by an instance consisting of many copies
of the following gadget on four vertices, with u1, u2 ∈ U and v1, v2 ∈ V . As ǫ→ 0, the competitive
ratio of Greedy tends to 1

2 .

bu1
= 1 + ǫ

bu2
= 1

u1

u2

v1

v2

u1

u2

v1

v2

u1

u2

v1

v2

GREEDY

matching

Optimal
Graph edge

Matching edge
matching

Notice that this counter-example relies on weights being roughly equal. We, however, know that
Ranking has an expected competitive ratio of (1− 1/e) when the weights are equal. On the other
hand, if the weights are very different, i.e. ǫ is large, in the above example, then Greedy provides
a good competitive ratio. At the same time, if we exchanged the weights on the two vertices in the
example to be bu1 = 1 and bu2 = 1 + ǫ, then as ǫ grows large, the expected competitive ratio of
Ranking drops to 1

2 and on larger examples, it can be as low as 1
n
. To summarize, Greedy tends

to perform well when the weights are highly skewed and Ranking performs well when the weights
are roughly equal.

C Intuition Behind the Sufficiency of Independent Perturbations

Recall that our algorithm perturbs each weight bu independent of the other weights. The fact that
Perturbed-Greedy achieves the best possible competitive ratio is a post-facto proof that such
independence in perturbations is sufficient. Without the knowledge of our algorithm, one could
reasonably believe that the vector of vertex-weights {bu}u∈U - which is known offline - contains
valuable information which can be exploited. In what follows we provide intuition as to why this is
not the case.

Consider the two input instances in Figure 1. Both the connected components in G1 have equal
weights, and hence we know that Ranking achieves the best possible competitive ratio on G1.
Similarly, both connected components in G2 have highly skewed weights, suggesting Greedy as
the optimal algorithm. On the other hand, Ranking and Greedy are far from optimal on G2 and
G1 respectively. Since two instances with identical values of vertex-weights require widely differing
strategies, this exercise suggests that we may not be losing must information by perturbing weights
independently. The optimality of our algorithm proves this suggestion.

1

1

100

100

1

1

100

100

U1 V1 U2 V2

Graph G1 Graph G2

Equal weights ⇒ Ranking Skewed weights ⇒ Greedy

Order of arrival Order of arrival

Figure 1: Two instances with the same vertex-weights, but widely differing optimal strategies.

D Hard Instances in 2× 2 Graphs

Figure 2 shows the only two potentially ‘hard’ instances in 2× 2 graphs. On all other instances, the
optimal matching is found by any reasonable algorithm that leaves a vertex v ∈ V unmatched only
if all its neighbors are already matched.

bu1
= α

bu2
= 1

u1

u2

v1

v2

bu1
= α

bu2
= 1

u1

u2

v1

v2

Figure 2: Canonical examples for 2×2 graphs.

E Marginal Loss Events

Lower
Positions

Positions of u in σ

Marginal
Loss

Positions of u in σi
u

f (σ, t, u)

f (σ, t′, u)

(σ, t, u) ∈ St
u matched
u unmatched

Figure 3: Marginal Losses

F Graphs with Imperfect Matchings

In Section 3, we proved Theorem 1 for graphs G(U, V,E) such that |U | = |V | and G has a perfect
matching. We can remove these assumptions with just a few modifications to the definitions and
equations involved in the proof. The algorithm remains unchanged, i.e. we just use Perturbed-

Greedy. We will only outline these modifications and the rest of the proof follows easily. Let
M∗(G) be a maximum weight matching in G(U, V,E) and U be the set of vertices in U matched
by M∗(G). Thus we know that OPT(G) =

∑

u∈U bu.
Keeping the definition of Qt the same, we change the definition of Rt to:

Rt = {(σ, t, u) : u ∈ U and σ(u) = t and yσ,t = 0}

The above redefinition conveys the fact that if a vertex u is not matched by M∗(G), then we no
longer consider u being unmatched a bad event. Consequently, equation (2) changes to:

B − xt ≤

∑

(σ,t,u)∈Rt
bu

kn

which in turn yields following counterpart of equation (7):

∀t, xt ≥ B −
∑

s≤t

αs (16)

Let Eq(t) be the version of (16) for t. We then multiply Eq(t) by ψ(t)− ψ(t+ 1) and sum over
1 ≤ t ≤ n to obtain a combined inequality (with ψ(k + 1) = 0):

∑

t

(ψ(t) − ψ(t+ 1)) xt ≥ ψ(1)B −
∑

t

ψ(t)αt

∑

t

ψ(t)αt ≥ ψ(1)
OPT(G)

k
−

∑

t

(1− ψ(t+ 1))

k
xt (17)

Equation (17) used the definition of ψ(t) = 1 −
(

1− 1
k

)(k−t+1)
. Combining equation (17) with

(11), we get:

1

k

∑

t

ψ(t)xt ≥ ψ(1)
OPT(G)

k
−

∑

t

(1− ψ(t+ 1))

k
xt

∑

t

xt ≥ ψ(1)OPT(G)−
∑

t

(ψ(t)− ψ(t+ 1)) xt

≥

(

1−
1

e

)

OPT(G)

as k → ∞, since ψ(1) →
(

1− 1
e

)

and ψ(t) − ψ(t+ 1) = (1−ψ(t+1)
k

→ 0 as k → ∞.

G A Lower Bound for Randomized Algorithms with Edge Weights

In this section, we will sketch the proof of a lower bound for the competitive ratio of a randomized
algorithm, when the graph G(U, V,E) has edge weights and our objective is to find a matching in
G with maximum total weight of edges. Previous studies of this problem have only mentioned that
no constant factor can be achieved when the vertices in V arrive in an online manner. However, we
have not been able to find a proof of this lower bound for randomized algorithms in any literature.
We prove the result when the algorithm is restricted to be scale-free. A scale-free algorithm in this
context produces the exact same matching when all the edge weights are multiplied by the same
factor.

Consider a graph G(U, V,E) such that U contains just one vertex u and each vertex in v ∈ V has
an edge to u of weight bv. Fix v1, v2, ... to be the order in which the vertices of V arrive online. By
Yao’s principle, it suffices for us to produce a probability distribution over bv1 , bv2 , ... such that no
deterministic algorithm can perform well in expectation. We will denote the vector of edge weights in
the same order in which the corresponding vertices in V arrive, i.e. (bv1 , bv2 , ...) and so on. Consider
the following n vectors of edge weights: For every 1 ≤ i ≤ n, bi = (Di,Di+1, ...,Dn, 0, 0, ...) and
so on, where D is a sufficiently large number. Suppose our input distribution chooses each one of
these n vectors of edge weights with equal probability.

Clearly, regardless of the vector which is chosen, OPT(G) = Dn. Since an algorithm is assumed
to be scale-free and online, it makes the exact same decisions after the arrival of first k vertices for
each of the edge weight vectors bj , 1 ≤ j ≤ k. Therefore, it cannot distinguish between b1, ...,bk
after just k steps. Hence, we can characterize any algorithm by the unique k such that it matches
the k’th vertex in V with a positive weight edge.

Let ALG be any deterministic algorithm that matches the k’th incoming vertex with a positive

weight edge to u. Then the expected weight of the edge chosen by ALG is
1

n

∑

i>k

Di. Since D is

large, this is at most c
n
OPT(G), where c is some constant. Applying Yao’s principle, we conclude

that the competitive ratio of the best scale-free randomized algorithm for online bipartite matching
with edge weights is O

(

1
n

)

.

	1 Introduction
	1.1 Overview of the Result
	1.2 Implications of the Result
	1.3 Other Related Work

	2 Preliminaries
	2.1 Problem Statement
	2.2 Warm-up: Analysis of Ranking for Unweighted Online Bipartite Matching

	3 Proof Of Theorem ??
	A The Reduction from Online Budgeted Allocation with Single Bids
	B Performance of Greedy and Ranking
	C Intuition Behind the Sufficiency of Independent Perturbations
	D Hard Instances in 22 Graphs
	E Marginal Loss Events
	F Graphs with Imperfect Matchings
	G A Lower Bound for Randomized Algorithms with Edge Weights

