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ABSTRACT
The existing literature on optimal auctions focuses on op-
timizing the expected revenue of the seller, and is appropri-
ate for risk-neutral sellers. In this paper, we identify good
mechanisms for risk-averse sellers. As is standard in the eco-
nomics literature, we model the risk-aversion of a seller by
endowing the seller with a monotone, concave utility func-
tion. We then seek robust mechanisms that are approxi-
mately optimal for all sellers, no matter what their levels of
risk-aversion are.

We have two main results for multi-unit auctions with
unit-demand bidders whose valuations are drawn i.i.d. from
a regular distribution. First, we identify a posted-price
mechanism called the Hedge mechanism, which gives a uni-
versal constant factor approximation; we also show for the
unlimited supply case that this mechanism is in a sense the
best possible. Second, we show that the VCG mechanism
gives a universal constant factor approximation when the
number of bidders is even a small multiple of the number
of items. Along the way we point out that Myerson’s char-
acterization [11] fails to extend to utility-maximization for
risk-averse sellers, and establish interesting properties of reg-
ular distributions and monotone hazard rate distributions.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Economics, Theory, Algorithms
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Auction theory (cf. [11, 1]) typically seeks to optimize
the seller’s expected revenue, which presumes that the seller
is risk-neutral. The focus of this work is to identify good
auction mechanisms for sellers who care about the riskiness
of the revenue in addition to the magnitude of the revenue1.

There is an inherent trade-off between the magnitude and
riskiness of revenue. Consider the auction of a single-item
to a bidder whose valuation is drawn from the uniform dis-
tribution over the interval [0, 1]. Recall that every truthful
single-bidder mechanism offers the bidder a take-it-or-leave-
it price. If the seller is risk-neutral and cares about mean
revenue, we must select a price p that maximizes the prod-
uct of the price p times the probability of sale 1 − p. The
price p = 1/2 is optimal here, achieving a mean revenue of
1/4, but it yields zero revenue with probability 1/2. Prices
lower than 1/2 reduce the expected revenue, but increase
the certainty with which positive revenue is obtained.

A systematic and standard (cf. Stiglitz and Rothschild [14])
way to express a bidder’s trade-off between the magnitude
and riskiness of revenue is to endow the seller with a con-
cave utility function u : [0,∞) → [0,∞) and seek to maxi-
mize the seller’s expected utility. We will assume throughout
that this utility function is monotone and normalized in the
sense that u(0) = 0. Let Rev(M,v) denote the revenue of
mechanism M for the input bid-profile v, then the expected
utility of M w.r.t. a utility function u is Ev[u(Rev(M,v))].
The concavity of the utility function models risk-aversion—
For instance, the optimal single-bidder mechanism for the
utility function u(x) =

√
x sets a price p = 1/3 and maxi-

mizes the expected utility
√

p · (1 − p). Increasing the con-
cavity of the utility function increases the emphasis on risk-
aversion—the optimal price for the cube-root utility function
is p = 1/4. The linear utility function u(x) = x models a
risk-neutral seller. The goal of this paper is to identify truth-
ful mechanisms that are simultaneously good for the class of
all risk-averse agents, i.e. we look for mechanisms that yield
near-optimal expected utility for all possible concave utility
functions.

A useful side-effect of such a guarantee is that we do not
need to know the seller’s utility function in order to deploy
the mechanism—this is useful when the auctioneer is con-
ducting the auction on behalf of a seller (think eBay), when
the seller does not know its utility function precisely, or when

1We seek ex-post incentive compatible mechanisms.This is
in contrast to the standard Bayesian auction theory liter-
ature (cf. [11, 1]) that studies Bayesian incentive compati-
ble mechanisms. Bidders will therefore maximize utility by
truth-telling, and do not have to deal with uncertainty or
risk; our model of risk applies only to sellers.



the seller’s risk attitude changes with time.
The following example illustrates the challenge in the con-

text of a single-item single-bidder auction. Consider two sell-
ers with utility functions urisk-neutral(x) = x, which expresses
risk-neutrality, and urisk-averse(x) = min(x, ǫ) for some very
small ǫ > 0, which expresses strong risk-aversion. Sup-
pose, as before, that there is a single bidder whose valuation
is drawn from the uniform distribution with support [0, 1].
The unique optimal mechanism for the first utility function
makes a take-it-or-leave-it offer of 1/2. This gives the first
seller a utility of 1/4, and gives the second seller a utility
of ǫ · (1 − F (1/2)) = ǫ/2. Lowering the price to ǫ improves
the second seller’s utility to (1 − ǫ) · ǫ, but reduces the first
seller’s utility from 1/4 to (1−ǫ) ·ǫ. Our challenge in general
is to identify mechanisms that simultaneously appease sellers
with different levels risk-aversion—ranging from risk-neutral
sellers who care about expected revenue to very risk-averse
ones who only care about the certainty with which a positive
revenue is obtained.

1.1 Organization
Section 2 describes our auction model, our distributional

assumptions and formalizes our auction objective. Section 3
describes the difficulty in characterizing our benchmark and
defines a stronger, simpler benchmark. Section 4 identifies
universally approximate posted-price mechanisms for unlim-
ited and limited supply. Section 5 bounds the universal ap-
proximation of the VCG mechanisms for multi-unit auctions
as a function of the ratio of the number of bidders to the
number of items. Section 6 concludes with open directions.

2. PRELIMINARIES

2.1 Auction Model
Our investigation focuses on multi-unit auctions. We adopt

the following standard auction model. There are n unit-
demand bidders 1, 2, . . . , n, and k identical indivisible items
for sale. A bidder i has a private valuation vi for winning
an item, and 0 for losing. A mechanism M = (x,p) first
collects a bid bi from each bidder i, then determines the
winners by the allocation rule x : b → {0, 1}n, i.e., bidder
i wins an item if and only if xi(b) = 1, and finally uses the
payment rule p : b → [0,∞)n to charge each bidder i a price
pi(b). We will focus our attention on ex post incentive com-
patible, a.k.a., truthful,2 and ex post individual-rational3

mechanisms. Hence we will use the terms bid and valuation
interchangeably. We make the standard assumption that
valuations are drawn i.i.d. from a distribution F . The dis-
tribution F is known to the seller, but the valuations can be
private to buyers.

2.2 Auction Objective
Let Rev(M,v) denote the revenue of mechanism M for

the input bid-profile v. Then the expected revenue of M is
Ev[u(Rev(M,v))]—notice that the expectation is over the
bids (or valuations)—which is the standard auction objec-
tive in Bayesian revenue maximization. We model the risk-
attitude of a specific seller by endowing the seller with a

2For any possible bids b−i of the other bidders, bidder i
always maximizes her utility vi · xi(b) − pi(b), by setting
her bid bi to be her true valuation vi.
3A bidder is never charged more than her bid, and is only
charged when she wins.

concave utility function u : [0,∞) → [0,∞). We will as-
sume throughout that this utility function is monotone and
normalized in the sense that u(0) = 0. Then the expected
utility of M w.r.t. a utility function u is Ev[u(Rev(M,v))].
As discussed in the introduction, the concavity of the utility
function models risk-aversion.

Recall that the goal of this paper is to identify truth-
ful mechanisms that are simultaneously good for the class
of all risk-averse agents, i.e. we look for mechanisms that
yield near-optimal expected utility for all possible concave
normalized utility functions. More precisely, for each risk-
averse seller, the truthful mechanism M∗

u that maximizes
the seller’s expected utility is a benchmark against which
we measure our proposed mechanism (say M)–we quantify
the goodness of this mechanism for this seller by the ap-
proximation ratio U(M)/U(M∗

u), where U(X) denotes the
expected utility of mechanism X. The goodness of the mech-
anism is then the worst-case approximation ratio over all
concave utility functions, i.e. ρ = minuU(M)/U(M∗

u); in
this case, we will say that the mechanism is a universal ρ-
approximation. For each of the auction settings we consider,
we will try to find a mechanism M that maximizes ρ.

2.3 Distributional Assumptions
For technical convenience, we will assume that the distri-

bution F has a smooth positive density function, and has
non-negative support. We will in addition assume that the
distribution F from which the valuation is drawn satisfies a
standard regularity condition (cf. [11], [1]).

Every distribution function F corresponds to a revenue
function R from domain [0, 1] (or (0, 1] if the support of F is
infinite) to the non-negative reals defined as follows: for all
q, RF (q) = q ·F−1(1−q). (we will drop the subscript when it
is clear from the context) Note that R(0) = 0 and R(1) = 0,
and we can often define a distribution F by specifying the
corresponding RF (·) function. We say a distribution F is
regular if the revenue function RF (·) w.r.t. F is strictly con-
cave. This is also equivalent to the more commonly used
definition that virtual valuation φF (v) = v − 1/h(v) is non-

decreasing in v, where h(v) = f(v)
1−F (v)

is the hazard rate func-

tion w.r.t. F . We say F satisfies the monotone hazard rate
condition (or simply F is m.h.r.), if h(v) is nondecreasing
in v. Many important distributions are regular and m.h.r,
including uniform, exponential, normal, while other distri-
butions such as some power-law distributions are regular but
not m.h.r. [6].

To justify our use of the regularity assumption, the follow-
ing example shows that no universal constant factor approx-
imation is possible without assumptions on the distribution
F .

Example 1. Recall the utility functions urisk-neutral and
urisk-averse defined in the introduction. Define R as R(0) =
R(1) = 0, R(ǫ) = 1, R(2ǫ) = ǫ, R(1 − ǫ) = ǫ, and let R
be linear in all four intervals between these five points; here
’ǫ’ refers to the quantity in the definition of urisk-averse (see
introduction). Smoothen R by a negligible amount such that
the corresponding F function satisfies our smoothness as-
sumption on distributions. Consider a single bidder whose
valuation function is drawn from F , which is clearly an ir-
regular distribution.

Thus to achieve a constant fraction of optimal utility for
urisk-neutral means that we have to sell at probability at price



at least 1/2, which implies that we get at most 2ǫ2 utility for
urisk-averse, compared to ǫ(1 − ǫ) at the price ǫ/(1 − ǫ).

2.4 Results and Techniques
We first show that the ’virtual-value’ based approach em-

ployed by Myerson [11] for the risk-neutral case extends to
risk-averse single-item auctions, but not (to the best of our
knowledge) to auctions of two or more items (see Section 3).
We then present three results. First, when the supply is un-
limited (or equivalently, the number of items k is equal to
the number of bidders n), we identify a mechanism called
the Hedge mechanism that is a universal 1/2-approximation
(see Theorem 6). The ratio improves to nearly 0.7 with the
assumption that the distribution satisfies a standard hazard
rate condition. The Hedge mechanism is a posted pricing
mechanism, which offers every bidder a take-it-or-leave-it
offer p. We choose the price p to be less than the opti-
mal price for a risk-neutral seller so as to guarantee a good
probability of sale to any bidder at a good revenue level.
Moreover, this mechanism is the best possible in the sense
that no mechanism can be a universal ρ-approximation for
ρ > 1/2 (see Theorem 8)—this impossibility result identifies
a certain heavy-tailed regular distribution, called the left-
triangle distribution that exhibits the worst-case trade-off
between riskiness and magnitude of revenue over all regular
distributions. Second, when there is limited supply (number
of items k is less than the number of bidders n), we identify a
sequential posted pricing mechanism that gives a universal
1/8-approximation by modifying the Hedge mechanism to
handle the supply constraint (see Theorem 12). The key to
this modification is to use a certain limited supply auction
to guide the choice of the posted price. Third, we will show
that the VCG mechanism [16, 3, 8] yields a universal ap-
proximation ratio close to 1/4 under moderate competition,
i.e., when n is a reasonable multiple of k (see Theorem 15).
Recall that for a k-item auction the VCG mechanism is a
k + 1-st price auction, in which the top k bidders win and
get charged the k + 1-st highest bid. We prove our result
by establishing a probability bound for the k + 1-st order
statistic of n i.i.d. draws from a regular distribution.

2.5 Related Work
Myerson [11] identifies the optimal single-item mechanism

for a risk-neutral seller and has inspired much work (cf.
Chapter 13 from [12]).

There is some work that tackles risk in the context of
auctions. Eso [5] identifies an optimal mechanism for a
risk-averse seller, which always provides the same revenue
at every bid vector by modifying Myerson’s optimal mech-
anism; unfortunately, this mechanism does not satisfy ex-
post (or even ex-interim) individual rationality, and charges
bidders even when they lose. Maskin and Riley [10] iden-
tify the optimal Bayesian-incentive compatible mechanism
for a risk-neutral seller when the bidders are risk-averse. In
our model, we identify mechanisms that are ex-post incen-
tive compatible. So the buyers optimize their utility bidding
truthfully for every realization of the valuations, and thus
have no uncertainty or risk to deal with. Hu et al. [9] study
risk-aversion in single-item auctions. Specifically, they show
for both the first and second price mechanisms that the op-
timal reserve price reduces as the level of risk-aversion of the
seller increases. In contrast, we identify the optimal truthful
mechanism for a risk-averse seller in Section 3 (it happens

to be a second price mechanism with a reserve), study auc-
tions of two or more items and identify mechanisms that are
simultaneously approximate for all risk-averse sellers.

An alternative, simpler a model of auction-risk compared
to the one we adopt is to optimize for a trade-off between the
mean and the variance of the auction revenue, i.e., E[R] −
t · V ar[R]. However, as Section 2A in Stiglitz and Roth-
schild [15] shows, this approach does not capture all the
types of behavior intuitively consistent with risk-aversion,
because this approach restricts the form of seller utility func-
tions. Our model of risk-aversion is inspired in part by
Stiglitz and Rothschild [14].

There is significant literature on prior-free optimal auc-
tions (see Chapter 13 from [12]). In this framework, the
benchmark (in the unlimited supply case, the revenue from
the optimal price for that bid vector constrained to serve at
least 2 bidders) is defined independently for each bid vector,
and the performance of the mechanism is measured worst-
case over all bid-vectors. In contrast, in our framework, as
in all Bayesian auction theory, the mechanism’s performance
is measured in expectation over the distribution of the bids.
However, we believe that it is worth investigating the risk
properties of the mechanisms proposed in this literature,
which ought to yield universal constant factor approxima-
tions in several auction settings.

Finally, we mention papers that inspire our proof tech-
niques. Chawla et al. [2] identifies posted price mechanisms—
they use an auction mechanism to guide the selection of the
prices. We use a similar idea in Section 4.2. Bulow and
Klemperer [1] shows that the VCG mechanism with k ex-
tra bidders yields better expected revenue than the optimal
mechanism so long as the bidder valuations are drawn i.i.d.
from a regular distribution. Dughmi et al. [4] extends the
result of Bulow and Klemperer [1] to matroid settings, and
introduces the problem of designing markets with good rev-
enue properties. We use ideas from these papers to bound
the performance of the VCG mechanism in Section 5.

3. ON UTILITY-OPTIMAL MECHANISMS
Recall from the introduction that we would like to design

mechanisms that yield a good approximation of the optimal
expected utility for each utility function. Our benchmark for
a specific utility function u is the truthful, individually ra-
tional mechanism that maximizes the expected utility w.r.t.
u—in this section we focus on getting a handle on such a
mechanism for a fixed utility function u. We show that the
result of Myerson [11] can be extended to identify the opti-
mal mechanism for the single item case, but not for auctions
of two or more items. For the rest of the paper, we use the
stronger, simpler benchmark from Fact 3.

Myerson’s characterization says that the expected revenue
of any truthful mechanism equals the expected total virtual
valuation served by the mechanism. It generates a prescrip-
tion for the allocation and payments of the optimal risk-
neutral truthful mechanism on a specific input bid vector.
In the single-item case, to generalize Myerson’s character-
ization to auctions with risk-averse sellers, we generalize
the notion of virtual valuation to take risk-aversion into ac-
count: given a distribution F and a concave utility function
u, we define the virtual utility function as φu

F (v) = u(v) −
u′(v)/h(v). As in the case of virtual valuations, the virtual
utility φu

F (v) is the derivative d
d(1−F (v))

u(v) (1 − F (v)) of the

expected utility from a bid-independent take-it-or-leave-it



offer v to a single bidder. We then have the following:

Lemma 2. In a single-item auction, for any mechanism
M = (x,p) and concave utility function u, the expected util-
ity of the mechanism, Ev[u(Rev(M,v))], is equal to the ex-
pected virtual valuation served Ev[

P

i φu
F (vi) · xi(v)].

Proof. The expected utility of the mechanism is:

Ev[u(Rev(M,v))] = Ev[u(
X

i

pi(v))]

=
X

i

Ev−i
[Evi

[u(pi(v))]]

=
X

i

Ev−i
[Evi

[φu
F (vi) · xi(v)]]

= Ev[
X

i

φu
F (vi) · xi(v)]

Here the second equality holds because we sell to at most 1
bidder. The third equality holds because when v−i is fixed,
the mechanism induces a fixed offer price, say p′, for bidder
i— so Evi

[u(pi(v))] = u(p′) (1 − F (p′)), which is equal to
R

∞

p′
(u(v) − u′(v)/h(v)) f(v)dv, which is Evi

[φu
F (vi) · xi(v)],

the expected virtual utility we get from bidder i.

We can now use the lemma to show that the optimal mech-
anism for a seller with utility function u is a second price auc-
tion with a reserve price—a mechanism that is well-known
to be truthful. Consider the second price mmechanism with
a reserve r∗u, where r∗u solves that φu

F (r∗u) = 0. When the
distribution is regular, the virtual utility function is nonde-
creasing in the valuation (see Lemma 19 in the appendix).
So the above mechanism allocates the item to the bidder
with the highest virtual utility, so long as there is at least
one bidder with non-negative virtual utility. (When the dis-
tribution is not regular, and in particular when the virtual
utility function is not monotone, one can apply the ironing
procedure of Myerson to identify the optimal mechanism
as the one that maximizes the total ironed virtual utility
served.)

In Section 5 we will present another application of the
above characterization that shows that the single-item Vick-
rey auction has good revenue properties. However, this char-
acterization does not extend to auctions where more than
one items are for sale. The first step of the proof of Lemma 2,
which sums the contributions of the bidders independently,
only works because a single-item auction sells to and charges
at most one bidder. When there are more than one items
for sale, that step is still sound if the utility function is lin-
ear (the risk-neutral case), enabling Myerson’s theory to be
very general, but it does not work for strictly concave utility
functions.

We now identify an upper bound on the expected utility
of utility-optimal mechanism that applies to auction settings
beyond single-item auctions. We will use this upper bound
as a benchmark for analysis. For any mechanism M and
concave utility function u, the expected utility of the mech-
anism Ev[u(Rev(M,v))] is upper-bounded by the utility
function applied to the expected revenue u(Ev[Rev(M,v)])
by Jensen’s inequality, which is then upper-bounded by the
utility function applied to the expected revenue of Myerson’s
revenue-optimal mechanism Mye, u(Ev[Rev(Mye,v)]), be-
cause a utility function is monotone. So we have the follow-
ing:

Fact 3. For any mechanism M4, and any concave utility
function u, the expected utility of M is upper-bounded by the
utility function applied to the expected revenue of Myerson’s
mechanism, i.e., Ev[u(Rev(M,v))] ≤ u(Ev[Rev(Mye,v)]).

4. UNIVERSALLY APPROXIMATE SEQUEN-
TIAL POSTED PRICING MECHANISMS

In this section we propose sequential posted pricing mech-
anisms (or SPM in short) for multi-unit auctions. In an
SPM, a take-it-or-leave-it price is offered to each bidder one
by one in arbitrary order, as long as supply lasts. An obvious
advantage of such mechanisms is that they can be applied
to both offline and online settings and are collusion-resistant
in the sense of Goldberg and Hartline [7].

4.1 The Unlimited Supply Case
Fix a regular distribution F from which the valuations

are drawn i.i.d. We now identify an SPM that offers every
bidder the same take-it-or-leave-it offer p, and show that this
mechanism is 1/2-approximate for all regular distributions,
and 0.69-approximate for all m.h.r. distributions. Let p∗

is the optimal price that maximizes p(1 − F (p)), and q∗ =
1−F (p). Setting the offer price p to be p∗ yields the optimal
expected revenue, but the probability of sale for each bidder
can be very low. Intriguingly, we find that reducing the
offer price to p∗q∗ is optimal, i.e., the discount factor is
precisely the probability of sale at the optimal price for a
risk-neutral seller in a single item-single bidder auction. We
call this the Hedge Mechanism. Theorem 6 shows that this
achieves a 1/2 approximation for regular distributions (≈
0.7-approximation for m.h.r. distributions), and Theorem 8
shows that we cannot do better.

To analyze the performance of the Hedge mechanism, the
following property of regular distributions is crucial.

Lemma 4. For all regular distribution F , we have 1 −
F (p∗q∗) ≥ 1/2.

Proof. Let q = 1 − F (p∗q∗). Note that q ≥ q∗ because
p∗q∗ ≤ p∗. Let R(·) be F ’s revenue function, which is con-
cave by regularity. The fact that q ≥ 1/2 follows from the
following inequalities:

4We shall only work with deterministic mechanisms, but in
fact we can allow the mechanism here to be randomized.



q = R(q)/(p∗q∗)

≥
„

R(q∗)
1 − q

1 − q∗
+ R(1)

q − q∗

1 − q∗

«

/(p∗q∗)

≥
„

(p∗q∗)
1 − q

1 − q∗

«

/(p∗q∗)

=
1 − q

1 − q∗

≥ 1 − q

The first step is by the definition of q. The second step
is by the concavity of R. (In the above figure, note that
(q, R(q)) is above the line segment connecting (q∗, R(q∗))
and (1, R(1))). The third step is because R(q∗) = p∗q∗ and
R(1) is non-negative.

When the distribution F is further assumed to be m.h.r.,
we can improve the constant to e−1/e.

Lemma 5. For an m.h.r. distribution F , we have 1 −
F (p∗q∗) ≥ e−1/e ≈ 0.6922.

Proof. W.l.o.g., we can let p∗ = 1 by scaling the valu-
ation space. Let cumulative hazard rate function H(x) be
R x

0
h(t)dt, and note that the monotone hazard rate condi-

tion implies that H(x) is monotone, convex and normalized
(H(0) = 0). Note that at the price p∗ = 1, the virtual valua-
tion is 0, i.e., 1−1/h(1) = 0. So h(1) = 1. Further, the func-

tion h is nondecreasing. So H(1) =
R 1

0
h(t)dt ≤ 1 · h(1) = 1.

Our claim follows from the following inequalities:

q = 1 − F (p∗q∗)

= 1 − F (q∗)

= e−H(q∗)

= e−H(1−F (p∗))

= e−H(e−H(p∗))

= e−H(e−H(1))

≥ e−H(1)e−H(1)

≥ e−1/e

The second and sixth steps are because p∗ = 1. The
third and fifth steps are because the distribution function
can be written in terms of the cumulative hazard rate func-
tion: F (x) = 1 − e−H(x). The seventh step is because

H(e−H(1)) ≤ e−H(1)H(1) by the convexity of H and that
H(1) ≤ 1. The last step holds because e−x ·x is at most 1/e
for x ∈ [0, 1].

We now use the bounds in the previous two lemmas to
complete the proof of the theorem.

Theorem 6. In a multi-unit auction with unlimited sup-
ply, where bidders’ valuations are drawn i.i.d. from a regular
(or m.h.r) distribution F , the Hedge mechanism is a uni-

versal 0.5 (or e−1/e ≈ 0.6922)-approximation.

Proof. We prove for the regular case; for the proof of the
m.h.r. case we simply use the bound from Lemma 5 instead
of the bound from Lemma 4. Fix a concave utility function
u. For each bidder i, let 0-1 random variable Xi indicate
whether bidder i’s bid is at least p∗q∗.

Expected Utility of Hedge = E[u(
X

i

Xi · p∗q∗)]

≥ E[

P

i Xi

n
] · u(np∗q∗)

≥ 0.5 · u(np∗q∗)

≥ 0.5 · Optimal Expected Utility

The first step is because the sale price is p∗q∗. The sec-
ond step is by monotonicity and concavity of u and because
0 ≤ P

i Xi · p∗q∗ ≤ np∗q∗. The third step is by Lemma 4,
and hence E[

P

i Xi] ≥ n/2. Applying Fact 3 completes the
proof.

Remark 7. If bidders’ valuations are drawn from non-
identical but independent regular distributions, we can iden-
tify a distinct offer prices for each bidder i, p∗

i · q∗i , (here p∗

i

is the price that maximizes the expected revenue in a single
bidder-single item auction with bidder i; and q∗i is the sale
probability at that price), such that the guarantee in Theo-
rem 6 holds.

The following lemma shows that the ratios in Theorem 6
cannot be improved. The proof identifies a certain left-
triangle distribution that exhibits worst-case behavior over
regular distributions, and shows that the exponential dis-
tribution exhibits worst-case behavior over all m.h.r. distri-
butions. The proof elucidates why the price p∗q∗ is critical
for the single-bidder case and justifies its use in the Hedge
mechanism.

Theorem 8. There exists a regular (or m.h.r) distribu-
tion such that no mechanism yields a universal approxima-
tion with ratio larger than than 1/2 (or e−1/e ≈ 0.6922) for
a single-bidder single-item auction, respectively.

Proof. Consider a single-item single-bidder auction. Con-
sider two possible seller utility functions, urisk-neutral, and
urisk-averse as defined in the introduction. The optimal utility
w.r.t. urisk-neutral is p∗q∗, achieved at price p∗, and the opti-
mal utility w.r.t. urisk-averse is roughly ǫ (as ǫ → 0), achieved
at price ǫ.

We argue that the sale probability q = 1 − F (p∗q∗) at
the price p∗q∗ is an upper-bound on the best universal ap-
proximation possible. The expected revenue at price p∗q∗ is
qp∗q∗. So, the approximation ratio for the risk-neutral seller
is precisely q. The expected utility for the risk-averse seller
at price p∗q∗ is approximately ǫq. So, the approximation
ratio for this seller is also q. Now suppose a price lower than
p∗q∗ is offered. Then the expected revenue deteriorates, and
the approximation ratio for the risk-neutral seller drops be-
low q. On the other hand, suppose a price higher than p∗q∗

is offered. Then the sale probability drops below q, and so
does the approximation ratio for the risk-averse seller.

Then it suffices to show that there is regular distribution
with sale probability 1/2 at price p∗q∗, and there is an m.h.r.

distribution with sale probability e−1/e at price p∗q∗. First
we define the left-triangle distribution via its revenue func-
tion RL(·) as follows. Let RL(0) = RL(1) = 0, RL(ǫ) = 1
for some small ǫ > 0, and let RL(q) be linear between these
points, and smoothen by a negligible amount to make sure
that the corresponding F is a valid distribution. (It is es-
sentially a shifted Pareto distribution.) So p∗q∗ is 1, and
clearly the sale probability at price 1 is roughly 1/2.



Second, consider the exponential distribution F (p) = 1 −
e−p, which satisfies the monotone hazard rate condition.
p∗ = 1, q∗ = 1/e, and it follows that 1−F (p∗q∗) = e−1/e.

Remark 9. Our bounds in Theorem 8 and Theorem 6 are
worst-case over the number of bidders n, and the mechanism
we propose does not require knowledge of n. In general, the
knowledge of n is useful: As n increases it makes sense to
increase the price from the heavily discounted price p∗q∗ to-
wards the optimal risk-neutral price p∗, because for large n,
the resulting revenue as a random variable is well concen-
trated.

4.2 The Limited Supply Case
In this section we identify an SPM that yields a universal

1/8-approximation for limited supply auctions. In this case,
we have k items to sell, where k can be less than the num-
ber of bidders n, and this allocation constraint imposes an
additional challenge: using the posted price identified in the
previous section will cause us to hit the supply constraint
without having collected enough revenue. To define the price
to use in our posted pricing mechanism in this context, we
apply a trick introduced in [2] as follows. Given a mechanism
that honors the supply constraint, for a fixed bidder, define
the allocation probability q to be the probability that she
wins in running this mechanism, where the randomization
is over all valuation profiles. As the valuations are identi-
cally distributed, q is identical for all bidders. The posted
price to use is then p = F−1(1 − q). This takes care of the
supply constraint. The key for us is then to find the right
mechanism to draw the allocation probability from. Recall
that the optimal risk-neutral mechanism is the VCG mech-
anism with reserve p∗. In order to have better control over
the distribution of the revenue of the mechanism, we derive
the allocation probability from the VCG mechanism with a
discounted reserve r = p∗q∗. By Lemma 4, at least half of
the bidders meet the reserve in expectation, and as we will
show it follows that the allocation probability q is bounded
between k

2n
and k

n
. Moreover, the loss in expected revenue

due to this sub-optimal reserve is bounded. We formalize
these in the following two claims.

Lemma 10. Rev(V CGr=p∗q∗) ≥ 0.5 · Rev(V CGp∗).

Proof. For notational convenience, let R̂(p) = p(1 −
F (p)). Fix a bidder i, fix the bids b−i of the other bidders,
and let t be the threshold induced by the V CG mechanism
(with no reserve) for bidder i. Then the threshold bids of
bidder i in V CGp∗ and V CGr are max{t, p∗} and max{t, r}
respectively. It suffices to show that the expected revenue
of bidder i in V CGr, which is R̂(max{t, r}), is at least half

of that in V CGp∗ , which is R̂(max{t, p∗}), and our claim
follows by summing over i and bi.

There are two cases. If t ≥ p∗, then t ≥ p∗q∗ = r, and
so the offered prices and the expected revenues from the
two auctions are identical. Otherwise, t < p∗, so bidder i is
offered p∗ (with revenue p∗q∗) by V CGp∗ , and a price in the
interval [p∗q∗, p∗] by V CGr. As revenue is monotonically
decreasing as price goes down from p∗ to 0, the revenue
of V CGr is minimized when the offer price is p∗q∗. By
Lemma 4 the resulting revenue p∗q∗ (1 − F (p∗q∗)) is at least
p∗q∗

2
, completing the proof.

Lemma 11. Let q be the allocation probability of any fixed
bidder. Then q lies in the interval [ k

2n
, k

n
].

Proof. Let X be the number of bidders with bids at least
r. The expected number of winners of V CGr is min(k, X).
By definition of q, qn is the expected number of winners in
V CGr. So, qn = E[min(k, X)] and hence, q ≤ k/n.

By definition of r, each bidder’s bid is at least r with
probability at least 0.5, and so, E[X] ≥ 0.5n. Therefore
qn = E[min(k, X)] ≥ E[ k

n
· X] = k

n
0.5n = 0.5k.

Now we can define our Hedge mechanism (for the limited-
supply case). The hedge mechanism is an SPM which makes
a take-it-or-leave-it offer at price p = F−1(1 − q) to bidders
one by one, as long as the supply lasts.

Theorem 12. In a multi-unit auction with k items and
n bidders, where bidders’ valuations are drawn i.i.d. from a
regular distribution F , the Hedge mechanism is a universal
1/8-approximation to optimal expected utility.

Notice that the revenue of Hedge is p · min(Y, k), where
Y is the number of bidders who bid at least p, which is
a binomial variable with parameter (n, q). Hence E[Y ] =
qn ≥ 0.5k. Crucial to our analysis is the following property
about “capped” binomial variables:

Lemma 13. Let Y be a binomial random variable with pa-
rameter (n, q) where qn ≥ 0.5k for some positive integer k,
then E[min(Y, qn)] ≥ 0.25 · qn.

Proof. Clearly E[Y ] = qn ≥ 0.5k.
First let k = 1, and hence 0.5 ≤ qn ≤ 1. Note that

E[min(Y, qn)]/qn = Pr[Y > 0] = 1 − (1 − q)n, which is at
least 1 − (1 − 0.5/n)n ≥ 1 − e−0.5 = 1 − e−0.5 > 0.25.

Next let k > 1, and hence qn ≥ 0.5k ≥ 1. By [13], one of
⌈qn⌉, ⌊qn⌋ is the median of Y , and hence Pr[Y ≥ ⌊qn⌋] ≥
0.5. It follows that E[min(Y, qn)] ≥ Pr[Y ≥ ⌊qn⌋] · ⌊qn⌋ ≥
0.5 · ⌊qn⌋. ⌊qn⌋ ≥ 0.5qn, and our claim follows.

We now complete the proof of Theorem 12.

Proof. (of Theorem 12) The expected utility of Hedge:

Ev[u(p · min(Y, k))] ≥ Ev[u(p · min(Y, qn))]

≥ Ev[u(pqn) · min(Y, qn)

qn
]

≥ 1/4 · u(pqn)

≥ 1/4 · u(Rev(V CGr))

≥ 1/8 · u(Rev(V CGp∗ ))

The second step is by concavity of u, the fourth step is by
monotonicity of the utility function with the following ad-
ditional justification—for any bidder i, she wins with prob-
ability q in V CGr. On the other hand, the optimal way to
maximize expected revenue subject to the constraint that
she wins with probability q is to set a single price p and
get expected revenue qp. The last step is by Lemma 10.
Applying Fact 3 completes the proof.

We do not have an analog of Theorem 8 for the limited
supply case—we do not know if our analysis is tight or if it
possible to identify a better posted price mechanism.

5. THE VCG MECHANISM
In this section, we quantify the universal approximation

ratio of the VCG mechanism in multi-unit auctions. This is
useful because the VCG mechanism (k + 1-st price auction)
or a slight variation of it is often used in practice.



5.1 The Single-Item Case
We first restrict our attention to the case when the num-

ber of items is 1. The main result of this section is that the
Vickrey mechanism (the second-price mechanism) is a uni-
versal (1 − 1/n)-approximation when there are n bidders.

Theorem 14. For a single item auction with n bidders,
when valuations are drawn i.i.d. from a regular distribu-
tion F , the Vickrey mechanism is a universal (1 − 1/n)-
approximation to optimal expected utility.

This theorem is a generalization of a result of Dughmi et
al. [4], which was for the risk-neutral case; most of the proof
steps are similar, and so we only mention the proof structure,
which is also used in the next section. Let OPT’ be the
mechanism which first runs the utility-optimal mechanism
OPT on the n − 1 bidders, and then allocates the item for
free to the other bidder in case it is still available. Our
theorem follows from three statements. First, the revenue
(and hence utility) of OPT ′ on n bidders is equal to that of
OPT on n− 1 bidders. Second, among all mechanisms that
always sell the item, including Vickrey and OPT ′, Vickrey
maximizes the winner’s valuation and hence virtual utility,
and hence by the characterization Lemma 2, Vickrey on n
bidders has a higher expected utility than that of OPT ′ on
n−1 bidders. Third, as we will show more more generally in
Lemma 18, the optimal expected utility from n − 1 bidders
is at least 1 − 1/n fraction of that from n bidders. These
three statements altogether imply our theorem.

5.2 The Multi-Unit Case
In this section we prove a result analogous to Theorem 14

for multi-unit auctions.

Theorem 15. In a multi-unit auction with k items and
n bidders, where bidders’ valuations are drawn i.i.d. from a
regular distribution F , the VCG mechanism is a universal
(n − k)/4n-approximation to optimal expected utility.

The result implies that as long as the number of bidders
is a small multiple of the number of items, the universal
approximation ratio of VCG mechanism is close to 1/4. The
proof structure is similar to that of Theorem 14, but the
details are different because Lemma 2 does not extend to
the multi-unit case (as discussed in Section 3). Recall that
the revenue of the VCG mechanism is exactly k times the
k + 1-st highest bid (let the n + 1-th highest bid be 0). The
following probability bound on the k + 1-st highest bid is
crucial to our analysis.

Lemma 16. For any regular distribution F , and 1 < t ≤
n, let Y be the t-th largest of n i.i.d. random draws from F ,
and then Pr[Y ≥ E[Y ]] ≥ 1/4.

Proof. Our proof consists of two steps. First, given a
regular distribution F , we construct a slightly non-regular
distribution F̃ such that Pr[Y ≥ E[Y ]] ≥ Pr[Ỹ ≥ E[Ỹ ]],

where Ỹ is the t-th largest valuation of n i.i.d. draws from F̃ .
This new distribution F̃ has corresponding revenue function
such that R̃(q) = a · q + b for q ∈ (0, 1] for some b > 0 and

a + b ≥ 0, and it then suffices to show that Pr[Ỹ ≥ E[Ỹ ]] ≥
1/4 for such distributions.

Given any regular distribution F , let z = 1 − F (E[Y ]),

and consider the distribution F̃ corresponding to the revenue

function R̃ such that R̃(z) = R(z) and R̃′(q) = R′(z) for all

q ∈ (0, 1]. In other words, R̃ is the line segment that is

tangent with R at z. By concavity of R, we have R̃(q) ≥
R(q) for all q ∈ (0, 1],

To aid the analysis, let Qt,n be the t-th order statistics
(i.e., the t-th smallest valuation) of n i.i.d. draws from the
uniform distribution over [0, 1]. Therefore for all y, Pr[Y ≥
y] = Pr[Qt,n ≤ 1−F (y)] and similarly for Ỹ and F̃ . Let z̃ =

1 − F̃ (E[Ỹ ]). Then to show that Pr[Y ≥ E[Y ]] ≥ Pr[Ỹ ≥
E[Ỹ ]], it suffices to show that Pr[Qt,n ≤ z̃] ≤ Pr[Qt,n ≤ z],
or simply that z̃ ≤ z.

Recall that R̃(q) ≥ R(q) for all q. Therefore F̃ (v) ≤ F (v)

for all v, and hence E[Ỹ ] ≥ E[Y ]. Also recall that R̃(z) =

R(z). Therefore F̃−1(1−z) = F−1(1−z) = E[Y ] ≤ E[Ỹ ] =

F̃−1(1 − z̃). So z̃ ≤ z.

Now we prove that Pr[Ỹ ≥ E[Ỹ ]] ≥ 1/4. Let distribution

F̃ be such that the corresponding revenue function is R̃(q) =
a · q + b for some b ≥ 0 and a + b ≥ 0. Let ft,n(q) =

n!
(t−1)!(n−t)!

qt−1(1 − q)n−t be the density function of Qt,n.

Then

E[Ỹ ] =

Z 1

q=0

ft,n(q) · R̃(q)

q
dq

=

Z 1

q=0

ft,n(q) · (a +
b

q
)dq

= a + b · n

t − 1
,

where we use the facts that 1
q
·ft,n(q) = n

t−1
·ft−1,n−1(q) and

that ft,n and ft−1,n−1 as density functions both integrate to
1. Note that when q = t−1

n
, R̃(q)/q = a + b/q = E[Ỹ ].

Therefore 1 − F̃ (E[Ỹ ]) = t−1
n

, and hence Pr[Ỹ ≥ E[Ỹ ]] =

Pr[Qt,n ≤ t−1
n

].
Note that for n i.i.d. draws from the uniform distribution

over [0, 1], the t-th order statistic is at most t−1
n

if and only

if the number of draws that are at most t−1
n−1

is at least t.
Let B be this number, which is a binomial variable with
parameter n and t−1

n
. Then Pr[Qt,n ≤ t−1

n
] = Pr[B ≥ t],

and by properties of binomial distribution, Pr[B ≥ t] is at
least 1/4, where 1/4 is achieved when t = n = 2.

Based on Lemma 16, we can prove the following approxi-
mate version of the classical result of Bulow and Klemperer
[1]. (We suspect that an exact version holds without the
approximation factor 1/4; to recover the statement original
result, replace ‘utility’ by ‘revenue’ and remove the ‘1/4’.)

Lemma 17. Suppose valuations of bidders are drawn i.i.d.
from a regular distribution. The optimal expected utility
when selling k items to n bidders is at most 1/4 times the
expected utility of the VCG mechanism when selling k items
to n + k bidders.

Proof. We will let superscripts in V CGk,n or Myek,n

denote that we are selling k items to n bidders. By Fact
3, the optimal expected utility of selling k items to n bid-
ders is at most u(Ev[Rev(Myek,n,v)]), which by the clas-
sic Bulow-Klemperer result [1] and the monotonicity of u
is at most u(Ev[Rev(V CGk,n+k,v)]). Note that the rev-
enue of V CGk,n+k is k times Y = F−1(1 − Qk+1,n+k),



where Qk+1,n+k is the k +1-th order statistics of n+ k i.i.d.
draws from a uniform distribution over [0, 1]. By Lemma
16 Pr[Y ≥ E[Y ]] ≥ 1/4. Our lemma follows because the
utility of V CGk,n+k would be at least 1/4 · u(k · E[Y ]) =
1/4 · u(Ev[Rev(V CGk,n+k,v)]).

The following claim bounds the loss of optimal utility in
dropping k bidders.

Lemma 18. Suppose valuations of bidders are drawn i.i.d.
from a regular distribution. The optimal expected utility
when selling k items to n − k bidders is at least 1 − k/n
fraction of the optimal expected utility when selling k bid-
ders to n bidders.

Proof. Let M be a utility-optimal mechanism for selling
k items to n bidders N = {1, 2, . . . , n}. For any subset S of
bidders, let random variable RS be the revenue we collect
from S in M . Then the expected utility of running M on
all bidders is Ev[u(RN )]. Suppose we randomly select a set
S of size n − k. Then we have:

Ev,S[u(RS)]

≥ Ev[ES[u(RN ) · RS

RN
]]

= Ev[u(RN ) · ES[
RS

RN
]]

= Ev[u(RN ) · (1 − k

n
)]

= (1 − k

n
) · Ev[u(RN )]

Here the inequality is by the concavity of u and that RS ≤
RN , and the second equality is due to the fact that every
bidder’s revenue is accounted in RS with probability 1−k/n.
By an averaging argument, for some set S of n − k bidders,
and for some fixed bids v−S of bidders outside of S, the
mechanism M induced on S has expected utility that is at
least 1−k/n fraction of the expected utility of running M on
all bidders. Our lemma follows because the utility-optimal
mechanism on n − k bidders can only do better than this
induced mechanism.

Now Theorem 15 follows by chaining the inequalities from
Lemma 17 and Claim 18.

6. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we identify truthful mechanisms for multi-

unit auctions that offer simultaneous constant-factor ap-
proximations for all risk-averse sellers, no matter what their
levels of risk-aversion are. We hope that this paper spurs
interest in the design and analysis of mechanisms for risk-
averse sellers.

We see several open directions—for instance, identifying
better mechanisms for the auction settings studied in this
paper, identifying mechanisms for more combinatorial auc-
tion settings, and designing online mechanisms that adapt
prices based on previous sales. We conclude by singling out
a specific challenge: can we characterize the utility-optimal
mechanism for a seller with a fixed, known utility function?
How about when the seller’s utility function has additional
structure–for instance, it satisfies constant (absolute or rel-
ative) risk aversion? (Section 3 discusses how the standard
approach from Myerson [11] does not work for multi-item
auctions.)
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APPENDIX

A. MISSING PROOFS

A.1 Proof of Lemma 19

Lemma 19. Let F be a regular distribution. For any con-
cave utility function u, φuF (v) is nondecreasing.

Proof. Since F is regular, φ′

F (v) = (v − 1
h(v)

)′ = 1 +



h′(v)

h2(v)
≥ 0. Then:

dφu
F (v)

dv
= (u(v) − u′(v)

h(v)
)′ (A.1)

= u′(v) − u′′(v)h(v) − u′(v)h′(v)

h2(v)
(A.2)

= u′(v) · (1 +
h′(v)

h2(v)
) − u′′(v)

h(v)
(A.3)

= u′(v) · φ′

F (v) − u′′(v)

h(v)
(A.4)

≥ 0 (A.5)


