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Abstract

We present a system that automatically recommends tags
for YouTube videos solely based on their audiovisual con-
tent. We also propose a novel framework for unsupervised
discovery of video categories that exploits knowledge mined
from the World-Wide Web text documents/searches. First,
video content to tag association is learned by training clas-
sifiers that map audiovisual content-based features from
millions of videos on YouTube.com to existing uploader-
supplied tags for these videos. When a new video is up-
loaded, the labels provided by these classifiers are used to
automatically suggest tags deemed relevant to the video.
Our system has learned a vocabulary of over 20,000 tags.
Secondly, we mined large volumes of Web pages and search
queries to discover a set of possible text entity categories
and a set of associated is-A relationships that map individ-
ual text entities to categories. Finally, we apply these is-A
relationships mined from web text on the tags learned from
audiovisual content of videos to automatically synthesize a
reliable set of categories most relevant to videos – along
with a mechanism to predict these categories for new up-
loads. We then present rigorous rating studies that establish
that: (a) the average relevance of tags automatically recom-
mended by our system matches the average relevance of the
uploader-supplied tags at the same or better coverage and
(b) the average precision@K of video categories discovered
by our system is 70% with K=5.

1. Introduction

The documents indexed by the larger Web search en-
gines are usually accessible via textual search interfaces,
which allow Web users to enter terms or phrases in natu-
ral language in order to retrieve the documents that are au-
tomatically deemed to best match the queries. The match-
ing can be roughly approximated as a comparison between
terms from the textual query on one hand and terms from
the documents on the other. Non-textual Web search (such

as image search or video search) relies heavily or solely on
textual content surrounding or otherwise explicitly accom-
panying the images or videos. While such an approach is in-
expensive, practical and often highly effective (e.g., in Web
image search), it can reliably retrieve only those items that
are accompanied by sufficient, relatively high-quality tex-
tual content, and leads to false matches when the textual
content is irrelevant or spam.

Popular video-sharing websites such as YouTube or
MetaCafe ask the uploaders to specify textual content to
accompany each of the thousands of videos that are col-
lectively uploaded daily. Although uploaders can provide
textual information in several forms including a title, a de-
scription and a set of free-form tags, there still are meta-
data deserts – videos whose titles are too short or whose
descriptions and tags are either brief or missing. More-
over, the true semantics of the uploaded video is often only
partly captured by the uploader-supplied text. For example,
a YouTube video including scenes from a user’s jet ski ad-
venture might mention the user’s name in the description
and the terms waverunner, big jump, superman and porn in
the tags (in a typical scenario). Yet the knowledge that the
video is about water sports is not encompassed in any of
these uploader-supplied tags. As such, serving such a video
to a user searching for water sports would be impossible.

In this context, the main contributions of the method de-
scribed in this paper are twofold. First, it assigns additional
tags to existing, already-uploaded videos. Building upon
the work of Aradhye et al.[1], it trains classifiers based
on the correspondence between content (audiovisual) fea-
tures and uploader-supplied metadata, avoiding any addi-
tional manual annotation of videos. The audiovisual fea-
ture set used here is much richer and was computed on a far
larger corpus of videos, leading to a much larger vocabulary
of learned tags. Feedback from human raters indicates that
the average relevance of the automatically-assigned tags,
which increases the scope of queries for which the individ-
ual videos can be retrieved, is comparable to that of tags as-
signed manually by the users who upload the videos. Sec-
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ond, videos deemed similar based on these recommended
tags are identified and grouped together into sets labeled
with textual categories (e.g., videos corresponding to water
sports), where the categories do not have to appear in the
textual description or the individual video or even of other
similar videos. For this purpose, we constructed a repos-
itory of categorized instances (e.g., pairs such as <jet ski,
water sports> or <honda s2000, sports cars>) from the
unstructured text on the Web to bridge the gap between the
user-assigned tags, the content features and the larger se-
mantic space of categories to which user queries may refer,
and to which videos may belong. The categories simulta-
neously fit the videos into a larger, dynamic, text-derived
conceptual hierarchy, and add a useful level of generality
(e.g., from jet ski to water sports). This can be directly ex-
ploited during video search, e.g., as the added categories
can be matched against the input queries, allowing for an
expanded set of videos to be ranked and potentially re-
trieved per query, and also changing the relative ranking of
the videos. Furthermore, the categories enable new brows-
ing options. Experimental results indicate that 70% of the
videos are assigned to meaningful text-derived categories,
thus confirming the usefulness of the first (to our knowl-
edge) attempt to bring together content-based features de-
rived from non-textual media and lexical knowledge derived
from text.

2. Related Work
Tag-to-Tag Recommendations: Tagging has become a
popular way to organize content on the Web in order to
simplify access to documents. Several websites offer the
possibility to tag singers/bands [11] or images [20]. A de-
tailed description of different forms of tagging is presented
in [15] including an analysis of user tagging behavior for
images. Traditionally, the activity of tagging was reserved
to an authority, such as a librarian. With the advent of the
Web, every user is able to tag resources. Golder et al. dis-
cuss the difficulties of tagging systems in this scenario [6].
In particular, they point out the problems of polysemy (mul-
tiple words can be used to represent the same concept), syn-
onymy (a word may have multiple meanings) and the differ-
ent “basic level” of abstraction in describing a resource. In
order to assist the users with the tedious task of tagging, sev-
eral researchers addressed the problem of tag recommenda-
tion. Sigurbjörnsson and Zwol presented a tag recommen-
dation method for the Flicker photo sharing website [24].
The system is based on the photo meta-data and uses a user
provided tag list to determine additional tags based on tag
co-occurrence statistics. Since the co-occurences are com-
puted on the whole photo collection, the method is based
on the collective knowledge available within the collection.
Similarly Kern et al. study the problem of extending folk-
sonomies, i.e. collaboratively created sets of metadata, with

additional metadata [10] and they apply the method to rec-
ommend tags for Flickr images.
Collaborative Tagging: The use of collective knowledge
is further developed in collaborative tagging systems. In
fact, in the case of sites like del.icio.us and last.fm, users
are allowed to tag all resources (this is known as free-for-all
tagging) and the system can exploit the coherence among
users in order to recommend tags. Marinho et al. present the
problem of collaborative tag recommendation in the more
general context of recommender systems [14]. They de-
duce algorithms that are based on the user-tag and the user-
resource profiles and they apply them to data taken from
last.fm. Byde et al. apply a similar method based on the
user-resource profile similarity and propose a method for
tag recommendation for del.icio.us [3]. YouTube allows
users to tag only the videos that they have uploaded. There-
fore, collaborative tagging is not directly possible. The sys-
tem that we propose is based on the collective knowledge,
similar to the approach in [24] but analyzing the video con-
tent instead of the metadata.
Image Annotation: In the context of content-based multi-
media information retrieval, researchers use visual features
to search large image collections [12]. In particular, image
annotation aims at associating labels to images in order to
allow query-by-text retrieval. An elegant method to solve
the problem consists in using a generative model that de-
scribes the joint occurrences of labels, features, and latent
concepts. Li et al. propose a system of this type that is able
to classify the scene, segment each object, and annotate the
image with a list of tags [13]. Ulges et al. apply a gener-
ative model to build a system for tag recommendation of
videos [28]. The results corresponding to a certain query
can be ranked according to some confidence scores associ-
ated to the words that form the query. In the case of genera-
tive models, the value of the joint probability of visual fea-
tures and labels are used to compute the scores [9]. Grang-
ier et al. propose a discriminative ranking model to solve the
query-by-text problem, without solving an intermediate an-
notation problem [7]. In contrast with these approaches, we
apply a method that is completely data-driven. This means
that the set of possible labels and the family of the joint
probabilities of labels and features is not determined a pri-
ori. This is an important feature for the heterogeneous cor-
pus that we consider. Moreover, the method is perfectly
scalable and adaptive. For instance, if a new tag becomes
popular, it is possible to train the system to add it to the list
of the possible recommended labels without retraining the
whole recommendation system.
Mining of Categorized Instances: Existing methods for
extracting categorized instances from text acquire sets of
instances that are either unlabeled (e.g., [21]) or associated
with a category (e.g., [8, 2, 19]). The repository of catego-
rized instances described in this paper is larger than simi-



Figure 1: Overview of the proposed method for video cate-
gory discovery.

lar repositories extracted from unstructured text as part of
recent work. In particular, the number of useful extracted
categories (e.g., categories associated with 10 instances or
more) is at least one order of magnitude larger than in the
repositories described in [19] and [26].

3. Approach
In Section 3.1 we describe the features that were ex-

tracted from each video. Next, in Section 3.2, we present
a method for learning tags associated to video content. Sec-
tion 3.3 summarizes the collection of text categories from
the Web, while Section 3.4 presents the matching of the
tags with the categories learned from text, the creation of
video-specific category classifiers, and the rejection of the
categories that cannot be adequately described by our fea-
tures. An overview of the method is depicted in Figure 1.

3.1. Feature Extraction

To be able to process a very large number of videos fea-
ture extraction has to be fast. This requirement has guided
us toward implementing not necessarily the most reliable
video features, but a fast set. We process both the audio sig-
nal as well as the video frames. On a typical 1-CPU work-
station, videos are processed at 45 frames per second, after
resizing the frames to 160x120.
Multiscale Decomposition: Most of our features are
treated as time series over the length of the video. In case of
features with multiple dimensions, we treat each dimension
independently as described in [5]. We apply an 8-level 1D
Haar wavelet transform on each time series. At each scale
and for each of the H and L filters we compute the following
moments: mean, standard deviation, min and max. This al-
lows us to represent an arbitrarily long 1D signal with fixed

set of coefficients. The signals are sampled at 0.3 seconds,
unless otherwise specified, leading to scales ranging from
0.3 seconds to 76.8 seconds.
Audio Spectrogram and Volume: For every audio frame
we compute a 32-bin audio spectrogram. In addition, we
compute the volume of the audio stream, which is repre-
sented as a single floating point value. Since the audio fre-
quency is different from the multiscale sampling frequency,
the multiscale filter performs averaging in order to achieve
its 0.3 second sampling goal.
Video Features: We employ a shot segmentation algorithm
such as [22] to compute a binary signal where a frame with
a shot change was represented as 1 and the rest as zeros.
The maximum value is computed for the entire sampling
interval before computing the multiscale decomposition. In
addition, we compute a rough global motion estimate, com-
puted as the cosine distance between color histograms of
nearby frames.
Global Image-Based Features: An important background
feature is an 8x8 Hue-Saturation histogram. This provides
the ability to get a good estimate on how colors vary over
time in the video, and act as a relatively strong contextual
prior for the classifiers, when combined with local features.
Another important feature for a large number of video cat-
egories is the output of a face detector. We compute several
statistics based on it: the ratio of the largest face to the area
of the image, number of faces, and various statistics based
on the skin pixels. In addition, we compute a sparse texton
histogram over a vocabulary learned from images. All these
are treated as individual 1D signals and the multiscale de-
composition is applied to them. The final feature vector for
this category has 8840 individual values. A more compre-
hensive description of these features is given by Rowley et
al. [23].
Local Features: We employ a custom local descriptor
[27, 16] which consists of Gabor responses at different ori-
entations, spatial scales, and offsets with respect to the in-
terest point. In total, we use 4 orientations and 27 scale-
offset combinations. These are computed at interest points
detected using the local maxima and minima of a Lapla-
cian of Gaussian. This descriptor is computed only on the
intensity values of the image. The color information is dis-
carded. Once the descriptor is computed, we use a code-
book and map it into a histogram. We built the 20K-word
codebook using hierarchical k-means as proposed by Nis-
ter [17]. Since the extraction progress is a relatively ex-
pensive operation, we only perform this operation every 0.9
seconds. The histogram is normalized with respect to the
number of processed frames in the video. The histogram
is thresholded in order to remove codewords which are too
infrequent since they have the potential to be noise.
Final Feature Vector: We concatenate all the feature cate-
gories (sparse and dense) and form the final feature vector



Automated Tags Metadata Explanation of Tags Thumbnail

uccello, fauna, elastica, wla, multimedia, blinking,
hatching, praying mantis, textile, oiseau

birds french
kissing

The tags include the words for bird
in Italian and French. The video
shows two birds in a cage.

fence, warszawa, galerie, barras, docks, berlino,
varanasi, erfurt, purdue, duomo, olsztyn, bingham-
ton, krakow, wrexham, tarragona, stilts, bridgeport,
southend, coney, benevento, cedar, piazza, walking
down, chimes, veneza, san martin, venezia

celebracion
del real jaen

The tags suggest mostly city
names, and “gallery” (as in a gath-
ering of supporters). The video is
actually about a gathering of peo-
ple in an urban setting.

Table 1: Examples of videos and their associated tags, and a brief explanation of the tags.

which is used for classification. On average, per video, the
number of sparse local features is 2, 324 out of 20, 000 pos-
sible “visual words”, each requiring an index and a floating
point value pair. The number of dense features is 12, 308
floating point values per video.

3.2. Video Tag Learning

Our method aims to learn an association between videos
and meaningful words. At the core of our tag recommen-
dation system is an algorithm that can transform audiovi-
sual features into a set of human-understandable words. We
present a tag-learning system which builds on the work in-
troduced in our prior work [1]. The authors proposed an
iterative tag learning scheme which uses forward feedback.
For the sake of simplicity, we only used a single iteration
in this work. The audiovisual feature set used here is much
richer on a far larger corpus of videos, leading to a much
larger vocabulary of learned tags.
Setup: When uploading a video to YouTube, the user is re-
quested to populate some structured information (although
this is not mandatory) such as title, description and a set
of associated tags. The description of a video can have an
arbitrarily long length, and as such, it may contain informa-
tion that may or may not be related to the video. The title
and tags are much more succinct, and as such they are more
likely to have correct information about the content of the
video. We segment the title and tags of each video indepen-
dently and extract n-grams up to a length of 4 from both the
title and the tags. We then construct a lookup table map-
ping each possible n-gram to a set of videos that contain it
in their metadata. We discard the n-grams that correspond
to too few or too many videos.
Training: We then attempt to train tag-recommender clas-
sifiers, using one classifier for each n-gram (alternatively
referred to as a “tag” from this point on). We use the above
formed lookup table to find the “positive” samples for this
tag. We select a random subset of YouTube videos that
do not contain this tag in their metadata as negative sam-
ples. For each tag, we consider a set of up to 20K training

videos with up to 50% positive examples. We split the set
into a training-validation partition of 70-30%. We used an
AdaBoost classifier [4] with the number of stumps linearly
proportional to the number of positive training samples.

It is important to note that our method differs from the
traditional learning problems on video, such as those de-
scribed in the TRECVID [25] in the sense that we do not
have a “constrained” number of labels. In fact, our method
attempts to learn all possible labels (n-grams) that appear
on the site. In addition, due to the heterogeneous nature of
YouTube, the videos used vary in length from a few seconds
to possibly over one hour and a half in the case of presenta-
tions. In spite of this variation, our only assumption is that
the target label (or tag) to be learned can be associated with
the entirety of each video.

3.3. Categorized Instances from the Web

Validation: Once the training process is completed, each
classifier’s performance is evaluated on the validation parti-
tion. We discard all classifiers that have an equal-error rate
(EER) larger than 30%. The intuition behind choosing a
relatively large EER is that many videos on YouTube are
not labeled properly by the uploaders. Therefore, it is pos-
sible that the classifier trigger on videos that do not present
the corresponding n-gram/tag in the metadata field. Table 1
depicts two videos and the tags for which the classifiers’
outputs were above the decision threshold. The thresholds
were selected such that tags will be suggested for 80% of
the videos.
Category Extraction: Similarly to [18], the extraction of
categories relies on patterns widely used in literature on ex-
traction of conceptual hierarchies from text [8, 2], such as
〈[..] C [such as|including|e.g.|like] I [and|,|.]〉,

where I is a potential instance and C is a potential category.
For instance, in the sentence: “Investors will also keep an
eye on results from European banks such as BNP Paribas
[..]”, a potential instance is I=BNP Paribas and a potential
category is C=European banks.

In the patterns, the boundaries of potential categories C



are simply approximated from the part-of-speech tags of the
sentence words, as a base (i.e., non-recursive) noun phrase
identified as a sequence of adjectives or nouns ending in
a plural-form noun. In the example sentence from above,
the category is European banks, which consists of a plural-
form noun and a preceding modifier. If no such phrase is
found, the pattern match is discarded. In comparison, the
right boundaries of the instances I in the extraction pat-
terns are identified by checking that the sequence of words
within the pattern that corresponds to the potential instance
I (BNP Paribas, in the example sentence) can be found as
an entire query in query logs. During matching, all string
comparisons are case-insensitive. If no such query is found,
the pattern match is discarded [18].

The score S(I, C) of a pair of an instance I and a cate-
gory C, which determines the relative rank of the category
for the instance, is computed according to

S(I, C) = Size({Pattern(I, C)})2 × Freq(I, C). (1)
Thus, a category C is deemed more relevant for an

instance I if the size of the set of extraction patterns
{Pattern(I, C)} that acquire the pair is higher, and the
original frequency-based score of C is higher.
Dataset: The repository extracted from a sample of 100
million documents in English contains hundreds of thou-
sands of categories each associated with at least 10 in-
stances. Comparatively, a previously published repository
of categorized instances extracted from a similarly-sized
Web document collection [19], after a weighted intersec-
tion of pairs extracted with patterns and clusters of distri-
butionally similar phrases, contains a total of 9,080 cate-
gories associated with instances. Subsequent extensions of
the repository, using data derived from tables within Web
documents, increase instance coverage, but not the number
of categories [26].

3.4. Transferring Web Categories to Video

Since some of the video tags are instances, the extracted
repository of categorized instances can bridge the gap be-
tween tags available in videos, and categories not available
in videos but present in the repository. We now propose
a new method to transfer the categories extracted from the
Web to videos. The categories acquired from the Web are a
superset of the categories in which videos can be classified.
More specifically, the classifiers that are learned for the tags
are a small subset of the set of all possible n-grams found
on the Web. This implies that there exists a large set of cat-
egories that are simply implausible to find in the videos.
Filtering: In order to identify a smaller, more useful set of
text-derived categories that can be assigned to the available
video tags, the ranked lists of top 10 categories (e.g., cars,
closest competitors, models, vehicles), if any, are retrieved
from the repository of categorized instances, for each tag
(e.g., honda s2000). Given a tag, the relative ranking of the

retrieved class labels is determined by the scoring formula
described earlier. Categories retrieved for fewer than 5 tags
are discarded as too specific (e.g., niche vehicles) and there-
fore unreliable, whereas categories associated with many
instances in the repository of categorized instances are dis-
carded as too general (e.g., topics and factors) and therefore
relatively less useful.

The filtering process removes the most obvious “bad”
categories, but it still leaves those categories which use n-
grams that were learned from video, but which have a differ-
ent meaning than what one would expect to find on the Web.
As an example, on YouTube there are many videos labeled
with city names, such as paris or budapest. This leads us to
expect that the classifiers which are learned for these words
are in fact some kind of outdoor/city classifiers. In practice,
however, this is not the case. The AdaBoost classifier tries
to learn the best possible match between videos and tags,
but has no concept of meaning associated to tags. For this
particular example, many of the city names have videos that
contain that city name, but which are filmed in bars, night
clubs, and other entertainment venues, usually by means of
cellphones or other low-quality recording devices, and this
is the class of videos which the classifier learns.
Meaning-Based Filtering: The same text term can have a
different predominant meanings in the contexts of Web text
documents and YouTube videos. To alleviate this problem,
we need to ensure that the category in which a n-gram ap-
pears is “consistent”. For a category to be consistent the as-
sociated classifiers need to “agree” by having scores above
a threshold for the same videos (the threshold is determined
by setting a coverage goal of 80%). For example, this ex-
cludes categories which would encompass both city names
and related monuments, as the classifiers that are learned
for monuments produce vastly different scores from those
which are learned for night clubs.

In order to analyze the cluster consistency potential, we
compute the Median Absolute Deviation for each category
(MAD). For a given video sample, we compute the indi-
vidual classifier scores, then when a category has a clas-
sifier that outputs a value that is high enough, we assume
that the category has a hit. Whenever a category has a hit,
we compute the MAD of the scores from all the classifiers
within the category. All categories with an average valida-
tion MAD over 0.15 are discarded. Table 2 depicts some
of the retained categories, and some of the discarded cate-
gories. To the best of our knowledge, the idea of discard-
ing semantic categories where the visual classifiers for sub-
categories don’t give similar responses has not been consid-
ered in published literature in this area.
Category Classifier: The final category classifier score is
simply the arithmetic mean of the component classifiers’
scores. We preferred this type of merging due to the consis-
tency which we impose on the categories: to have a small



Retained
Categories

car manufacturers, animes, guitarists, water
sports, dogs, rapper, classical composers

Discarded
Categories

legumes, smaller communities, application
servers, northern provinces, professional des-
ignations, prestigious awards, offenders

Table 2: Top reliable and top unreliable categories as se-
lected by our method.

Category Components
arcade games air hockey, cvs2, dance competition, foosball,

gauntlet, neogeo, pinball, sfa3, street fighter,
street fighter alpha, virtua fighter

cars bmw, bugatti, fwd, honda s2000, hyundai, im-
ports, indica, lancer evo, lowriders, mdx, mkii,
nissan altima, outlander, palio, prelude, re-
nault, saloon, saxo, sentra

dances balkan, balletto, diablos, fandangos, folk
dance, gaita, garba, hustle, jingle, mambo,
merengue, moonwalk, orishas, polonaise,
radha, reels, salsa, sevillanas, wcs

Table 3: Sample learned categories and a randomly chosen
set of supporting classifiers
intra-classifier difference. Table 3 lists three categories and
a subset of their selected classifier names.

4. Experimental Results
In the video-tag association learning stage we considered

a group of approximately 53M videos split into training and
validation. In addition, we used one 1M as a “hold-out”
set, and it represents the set on which we ran the human
evaluation.
Relevance of Recommended Tags: During the training
time, due to the fact that the features are relatively large,
and the machines which we ran our experiments on had a
limited amount of memory available, for words that have
over 10K occurrences, we randomly sample 10K which
are used for training. For the negative class we randomly
sample from videos which do not have the positive word in
their tags or title. On this set, the video learning algorithm
successfully trained 22, 421 models that had a validation er-
ror of less than 30% EER.

Taking into account the large number of classifiers that
are trained, it is important to assess their quality. In order
to achieve this we conducted the following experiment: In-
dependent third-party raters were asked to watch a video
and rate if a supplied tag was one of these four choices: off
topic, somewhat relevant, relevant, or useful, corresponding
to a numeric relevance score of 0, 0.33, 0.66, and 1. These
scores were aggregated over 500 randomly chosen YouTube
videos by a total of 1500 third-party raters (3 raters eval-
uated each video). To establish a baseline, we first used
uploader-supplied tags from YouTube.com in this relevance
rating framework. The average relevance in this case was
0.43. Note that the raters had no knowledge about the
purpose of the experiment or the source of tags (uploader-

provided or machine generated).
The accuracy of recommended tags depends on the clas-

sifier threshold. A higher threshold yields a higher rele-
vance, but lower coverage. We chose a threshold of 0.94.
We estimate that 100% of videos will have at least one rec-
ommended tag when used with our vocabulary of approxi-
mately 20K tags. The average relevance of recommended
tags generated by our algorithm was 0.30. We estimate that
the average number of unique uploader-supplied tags and
n-grams per video is about 18, whereas the same number
jumps to about 55 with tags recommended by our algorithm.

A number of cases with low relevance were due to over-
specialized classifiers. An example is when the recom-
mended tag for a music video by Mariah Carey was whitney
houston. Given the close resemblance of the music styles
of these two popular female artists, the high score for the
tag is not surprising, but leads to a relevance of 0 in human
ratings. Given the nature of low level audiovisual features
used in this work, it is not possible to get high precision
artist identifiers. To eliminate this problem, we manually
remapped all proper nouns in our vocabulary of tags used
for testing to their respective immediate superconcepts. For
example, when a classifier for the tag whitney houston fires,
the tag diva is recommended instead. An experiment using
the tag recommendation pipeline with this lookup step in
the same rating framework led to an average relevance of
0.42.

We thus demonstrate that the tags automatically recom-
mended by our algorithm closely match the average rele-
vance of uploader-supplied tags, albeit with a one-time step
of manual remapping of proper nouns. We are currently
investigating linguistic/Web-driven automatic methods to
achieve this remapping.
Impact on Browsing Relevance: The tags associated to the
classifiers supported 3690 categories learned from the Web
(after pruning). We further computed the cluster homogene-
ity measure described in the Section 3.4. After thresholding,
the number of categories that were homogeneous enough
was 235. Table 2 lists the top and bottom categories, as
defined by our mean-MAD measure.

The categories which were too general, such as offend-
ers were removed at this stage. Categories that had a very
specific topic, i.e., rappers or classical composers were
the most homogeneous. A few categories that are gen-
eral yet too specific for the features and classifiers that we
employ are gm vehicles. Although the classifiers and fea-
tures are able to detect videos that contain cars, they are not
able to differentiate between the various car manufacturers.
An inter-category homogeneity measure would help remove
such occurrences, while selecting the most general term for
describing the related categories. In this paper, however, we
limited at raw categories without merging them.

Table 3 lists some categories and a subset of the classi-



fiers which support them. From a linguistic standpoint, the
classifiers chosen for each category seem reasonable most
of the time. In order to evaluate the performance of the cat-
egory classifiers, we applied them to a set of one million
videos which were not used for training or validation. Fig-
ure 2 depicts the top five videos for various categories, on
videos from this set.

In a browsing/discovery scenario, users are presented the
categories which the algorithm has learned. When choos-
ing such a category, they are presented with the top-scoring
videos in the desired category. In order to evaluate this, we
took the top five videos in each learned category and asked
human raters to evaluate the correctness of the classifica-
tion. The raters were presented with a video and a label. A
total of 1175 videos were considered for the test, but only
1123 of them were available at the time of the experiment.
The total number of raters was 1175, and each evaluated
three video-category pairs. After aggregating the results,
we found that for 785 (70%) of these videos the categories
were deemed relevant. As noted earlier, we expected to find
some categories which would be off-topic due to their high
specificity.

5. Conclusion
In this paper we describe a method for automatic tag

recommendation for YouTube uploads. In addition, we
present a framework for combining categorical informa-
tion from the Web with visual tag information learned from
video. The proposed method discovers meaningful video
categories by using video tags. The tags were evaluated
in a human experiment and their immediate-superconcept
meanings were roughly at about the same relevance level as
the user-supplied tags. The categories discovered by the un-
supervised method were demonstrated to improve the abil-
ity of users to browse on YouTube. In summary, our results
indicate that: (a) the average relevance of tags automatically
recommended by our system matches the average relevance
of the uploader-supplied tags at the same or better cover-
age and (b) the average precision@K of video categories
discovered by our system is 70% with K=5.
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