

Engineering Reliability into
Web Sites: Google SRE

Alex Perry
alex.perry@google.com

Santa Monica SRE, Google

Abstract

This talk introduces Site Reliability Engineering
(SRE) at Google, explaining its purpose and

describing the challenges it addresses.

SRE teams in Mountain View, Zürich, New York,
Santa Monica, Dublin and Kirkland manage

Google's many services and websites.
They draw upon the Linux based computing
resources that are distributed in data centers

around the world.

Outline

Dividing team responsibilities by site
Failures and instability consuming manpower
Engineering being applied to avoid future work
Migration of new projects into an SRE team
Planning for rapid growth in user community
Estimating the ideal size for an SRE team

Please ask directly relevant questions inline ...

Site – an integrated deployment

Teams ensure user-visible uptime and quality
Need authority over relevant software and systems

In depth knowledge of the details is necessary
Steep learning curve, mostly due to complexity
Continuous retraining, sites always being improved

Specializations for shared Grid infrastructure
Ensure those components have good reliability

Reliability – it just works

Responsible for minimizing manpower usage
Team manages monitoring and develops automation
Implies use of scripting and data analysis tools
Most failures need automated recoveries in place

Elevated risk during convenient working hours
Learn of age mortality risk during preceding workday
Infant mortality ideally also avoids Google meals

Engineering – not administration

Rigor in writing alert and notification definitions
Holes may cause outage before notification occurs
Routinely use multiple layers, levels and viewpoints
Design the manual and automatic escalation paths

Responsible for enabling growth and scaling
Plan for requirements, identify inefficiencies
File bugs and, where appropriate, fix them too

New idea, part time developer?

Sole contributor working one day per week
Elsewhere, in the evenings or at the weekends
Google engineers have 20% time for such projects

The developer probably has another idea too ...
Quickly regrets how much work the old site needs!
SREs have 20% time – is the project interesting?

Initially, sites are high maintenance

SRE gives guidance in automating routine tasks
Reduces workload by eliminating administrivia

SRE points out errors, omissions in documents
Developer might then beg others for assistance

SRE suggests additional long term monitors
These fill in coverage gaps and track performance
Administrators need sufficient, trustworthy monitoring

Launching a site is an opportunity

You shouldn't have to regret your new 20% site
The pager may alert far more often than you'd like

(By default, site doesn't care about your working hours)

But, within weeks, SRE's expertise has its effect
The developer's workload probably drops below 1%

The remaining 1% can be recovered any time
Just write good docs so others can take over
Many engineers choose to keep the pager instead

Handing off a site to SRE

The decisions become progressively longer term
Daily task workload for a site is getting reduced
Software improvements are tuning and analysis

The developer still has a short term viewpoint
Working on the next release, fixing known bugs
The old live releases start to be a distraction
An obvious incentive to request site transfer to SRE

On call – more than quick fixes

SRE team members take turns in the rota
Fix any problem whose solution is not yet automated
Accumulate occurrence counts to identify priorities
Document the effective diagnostics and solutions

The permanent solution takes a lot more time
File bug, develop patch, test, code review, submit
Schedule for integration, release and deployment
Why spend many hours or days doing all that?

Popularity – lots and lots of users

Site stability must not be impaired by growth
Architecture will usually be scalable and robust
These are key skills for Google software developers

Algorithm performance has a scale multiplier
So do bugs, as well as monitoring and automation

Actual workload often scales with the issue itself
Available manpower is limited to staff on hand ...

O(): Scaling of issues – more users

Engineering issues may scale up with users “u”
New features not yet implemented in software: O(1)
Server down after routine hard drive failure: O(u)
Cosmic ray in RAM, new user hash is valid: O(u2)
Bits flip in Ethernet, packet passes all CRC: O(u3)

Higher order issues are initially very unlikely
Effectively invisible and therefore cannot be fixed
But their occurrence grows more rapidly with time

First occurrence – to every hour

Imagine doubling users served every ten days

Consider an order O(u3) issue within the site
instantaneous paging rate = exp (date / 5) / k
cumulative count = exp (date / 5) 5 / k

After you receive the first page for that issue
Expected first page date = 5 ln (k / 5)
In three weeks, it would be paging every hour

How fast can the site scale up?

This is primarily limited by issue resolution
How long it takes to identify and then fix each one

Finding the bug, early, requires good tools
Remote diagnostics and assertion logging
Start developing solution before the second alert

Fixing the bug, only once, requires fast testing
Ensure that old bugs don't come back again

False positives, false negatives

Cautious alerts each become a crisis
Lead to fixing immediate problems under pressure
The opposite costs engineer time, and irritates

Analysis of archive data enables tuning
Monitoring systems are routinely (correctly) silent
New growing issues are then much easier to see
Site can grow faster if issues are detected sooner

Lower bound on SRE team size

1 day per week: Non-assigned 20% project work
1 day: Vacation, company events, volunteer, sick
1 day: Site specific training, learning changes

Total per-site training cost is proportional to team size

2 days: Site analysis, planning, maintenance, etc
How many man-days per week does the site require?
This determines the lower bound on team size

Estimating on call coverage needs

Can we risk engineers not responding to an alert?
Probably not, so we need to implement redundancy

What is the failure rate of your paging services?
Hopefully better than 10%, unlikely to achieve 1%
eg: 5% with four way redundant paths is 99.999%

Only one engineer responds to any given alert
Use a priority or election rule to avoid wasted effort
The other SREs on call are unlikely to be disturbed

Do sites need to be aggregated?

Compare site's engineering and on-call needs
May place multiple sites into a single SRE team rota
Training cost: Each engineer has to learn every site

This aggregation is always the long term goal
At some point, every site is going to stop growing
Afterward, engineers address low order issues
For such a site, maintenance tends towards zero
But the on call coverage requirement is constant

Summary

Site Reliability needs ongoing engineering effort
Longer timescale than software implementation
Working on both short and long deadlines is hard

Large sites may have a team of administrators
If they're usually busy, there is no margin for growth
Sharing one team over many sites is cost effective

Write / modify software instead of administering
Automation's benefits grow as the site scales up

Teams should be small, each has an ideal size

Thank you for your interest

Now, are there any questions ?

Or later?
alex.perry@google.com

