Maya Gupta
- Research Area(s)
- Machine Intelligence
- Algorithms and Theory
- Machine Perception
Co-Authors
Gupta joined Google Research in 2012. Before Google, Gupta was an Associate Professor of Electrical Engineering at the University of Washington (2003-2012), tenured in 2009. Her research group focused on statistical learning algorithms for signal processing and color image processing. In 2007, Gupta received the PECASE award from Pres. George Bush for her work in classifying uncertain (e.g. random) signals, and received the 2007 Office of Naval Research YIP Award. Gupta graduated 9 Ph.D. students and 7 M.S students. Her Ph.D. in Electrical Engineering is from Stanford University (2003), where she was a National Science Foundation Graduate Fellow and worked with Bob Gray, Rob Tibshirani, and Richard Olshen. Before 2003, Gupta worked for Ricoh Research, NATO's Undersea Research Center, HP R&D, AT&T Labs, and Microsoft. Gupta also runs Artifact Puzzles, the second largest US maker of wooden jigsaw puzzles, a company she founded in 2009.
Google Publications
-
Revisiting Stein's Paradox: Multi-Task Averaging
Sergey Feldman, Maya R. Gupta, Bela A. Frigyik
Journal Machine Learning Research, vol. 15 (2014)
-
Training Highly Multi-class Linear Classifiers
Maya R. Gupta, Samy Bengio, Jason Weston
Journal Machine Learning Research (JMLR) (2014), 1461-−1492
-
Classifying with Confidence From Incomplete Test Data
Nathan Parris, Hyrum S. Anderson, Maya R. Gupta, Dun Yu Hsaio
Journal Machine Learning Research (JMLR), vol. 14 (2013)
-
Similarity-based Clustering by Left-Stochastic Matrix Factorization
Raman Arora, Maya R. Gupta, Amol Kapila, Maryam Fazel
Journal Machine Learning Research (JMLR), vol. 14 (2013), pp. 1715-1746
Previous Publications
-
Bounds on the Bayes Error Given Moments
Bela Frigyik, Maya R. Gupta
IEEE Trans. Information Theory, vol. 58 (2012), pp. 3606-3612
-
Dimensionality Reduction by Local Discriminative Gaussians
Nathan Parrish, Maya R. Gupta
ICML (2012)
-
Multi-Task Averaging
Sergey Feldman, Maya R. Gupta, Bela A. Frigyik
NIPS (2012), pp. 1178-1186
-
Optimized Regression for Efficient Function Evaluation
Eric K. Garcia, Raman Arora, Maya R. Gupta
IEEE Transactions on Image Processing, vol. 21 (2012), pp. 4128-4140
-
Reliable early classification of time series
Hyrum S. Anderson, Nathan Parrish, Kristi Tsukida, Maya R. Gupta
ICASSP (2012), pp. 2073-2076
-
Channel-Robust Classifiers
Hyrum S. Anderson, Maya R. Gupta, Eric Swanson, Kevin G. Jamieson
IEEE Transactions on Signal Processing, vol. 59 (2011), pp. 1421-1434
-
Clustering by Left-Stochastic Matrix Factorization
Raman Arora, Maya R. Gupta, Amol Kapila, Maryam Fazel
ICML (2011), pp. 761-768
-
Clutter rejection by clustering likelihood-based similarities
Evan Hanusa, David W. Krout, Maya R. Gupta
FUSION (2011), pp. 1-6
-
Minimizing bearing bias in tracking by de-coupled rotation and translation estimates
Raman Arora, Maya R. Gupta
FUSION (2011), pp. 1-7
-
Completely Lazy Learning
Eric K. Garcia, Sergey Feldman, Maya R. Gupta, Santosh Srivastava
IEEE Trans. Knowl. Data Eng., vol. 22 (2010), pp. 1274-1285
-
Estimation of position from multistatic Doppler measurements
Evan Hanusa, David W. Krout, Maya R. Gupta
FUSION (2010), pp. 1-7
-
Parametric Bayesian Estimation of Differential Entropy and Relative Entropy
Maya R. Gupta, Santosh Srivastava
Entropy, vol. 12 (2010), pp. 818-843
-
Robust sequential classification of tracks
Nathan Parrish, Hyrum S. Anderson, Maya R. Gupta
FUSION (2010), pp. 1-8
-
Shadow Dirichlet for Restricted Probability Modeling
Bela A. Frigyik, Maya R. Gupta, Yihua Chen
NIPS (2010), pp. 613-621
-
Theory and Use of the EM Algorithm
Maya R. Gupta, Yihua Chen
Foundations and Trends in Signal Processing, vol. 4 (2010), pp. 223-296
-
Training a support vector machine to classify signals in a real environment given clean training data
Kevin G. Jamieson, Maya R. Gupta, Eric Swanson, Hyrum S. Anderson
ICASSP (2010), pp. 2214-2217
-
A Quasi EM Method for Estimating Multiple Transmitter Locations
Jill K. Nelson, Maya R. Gupta, Jaime E. Almodovar, William H. Mortensen
IEEE Signal Process. Lett., vol. 16 (2009), pp. 354-357
-
Estimating multiple transmitter locations from power measurements at multiple receivers
Jill K. Nelson, Jaime E. Almodovar, Maya R. Gupta, William H. Mortensen
ICASSP (2009), pp. 2761-2764
-
Filtering web text to match target genres
Marius A. Marin, Sergey Feldman, Mari Ostendorf, Maya R. Gupta
ICASSP (2009), pp. 3705-3708
-
Fusing similarities and Euclidean features with generative classifiers
Luca Cazzanti, Maya R. Gupta, Santosh Srivastava
FUSION (2009), pp. 224-231
-
Fusing similarities and kernels for classification
Yihua Chen, Maya R. Gupta
FUSION (2009), pp. 474-481
-
Gradient estimation in global optimization algorithms
Megan Hazen, Maya R. Gupta
IEEE Congress on Evolutionary Computation (2009), pp. 1841-1848
-
Joint deconvolution and imaging
Hyrum S. Anderson, Maya R. Gupta
Computational Imaging (2009), pp. 72460
-
Lattice Regression
Eric K. Garcia, Maya R. Gupta
NIPS (2009), pp. 594-602
-
Learning kernels from indefinite similarities
Yihua Chen, Maya R. Gupta, Benjamin Recht
ICML (2009), pp. 19
-
Part-of-speech histograms for genre classification of text
Sergey Feldman, Marius A. Marin, Mari Ostendorf, Maya R. Gupta
ICASSP (2009), pp. 4781-4784
-
Regularizing the Local Similarity Discriminant Analysis Classifier
Luca Cazzanti, Maya R. Gupta
ICMLA (2009), pp. 184-189
-
Sequential Bayesian estimation of the probability of detection for tracking
Kevin G. Jamieson, Maya R. Gupta, David W. Krout
FUSION (2009), pp. 641-648
-
Similarity-based Classification: Concepts and Algorithms
Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, Luca Cazzanti
Journal of Machine Learning Research, vol. 10 (2009), pp. 747-776
-
Adaptive Local Linear Regression With Application to Printer Color Management
Maya R. Gupta, Eric K. Garcia, E. Chin
IEEE Transactions on Image Processing, vol. 17 (2008), pp. 936-945
-
Bayesian estimation of the entropy of the multivariate Gaussian
Santosh Srivastava, Maya R. Gupta
ISIT (2008), pp. 1103-1107
-
Cost-sensitive multi-class classification from probability estimates
Deirdre B. O'Brien, Maya R. Gupta, Robert M. Gray
ICML (2008), pp. 712-719
-
Functional Bregman Divergence and Bayesian Estimation of Distributions
Bela A. Frigyik, Santosh Srivastava, Maya R. Gupta
IEEE Transactions on Information Theory, vol. 54 (2008), pp. 5130-5139
-
Functional Bregman divergence
Bela A. Frigyik, Santosh Srivastava, Maya R. Gupta
ISIT (2008), pp. 1681-1685
-
Generative models for similarity-based classification
Luca Cazzanti, Maya R. Gupta, Anjali J. Koppal
Pattern Recognition, vol. 41 (2008), pp. 2289-2297
-
Learning custom color transformations with adaptive neighborhoods
Maya R. Gupta, Eric K. Garcia, Andrey Stroilov
J. Electronic Imaging, vol. 17 (2008), pp. 033005
-
Multiresolutional regularization of local linear regression over adaptive neighborhoods for color management
Nasiha Hrustemovic, Maya R. Gupta
ICIP (2008), pp. 497-500
-
An EM Technique for Multiple Transmitter Localization
Jill K. Nelson, Maya R. Gupta
CISS (2007), pp. 610-615
-
Bayesian Quadratic Discriminant Analysis
Santosh Srivastava, Maya R. Gupta, Bela A. Frigyik
Journal of Machine Learning Research, vol. 8 (2007), pp. 1277-1305
-
Color Management of Printers by Regression over Enclosing Neighborhoods
Erika M. Chin, Eric K. Garcia, Maya R. Gupta
ICIP (2) (2007), pp. 161-164
-
Linear Fusion of Image Sets for Display
Nathaniel P. Jacobson, Maya R. Gupta, Jeff B. Cole
IEEE T. Geoscience and Remote Sensing, vol. 45 (2007), pp. 3277-3288
-
Local similarity discriminant analysis
Luca Cazzanti, Maya R. Gupta
ICML (2007), pp. 137-144
-
OCR binarization and image pre-processing for searching historical documents
Maya R. Gupta, Nathaniel P. Jacobson, Eric K. Garcia
Pattern Recognition, vol. 40 (2007), pp. 389-397
-
SNR-Adaptive Linear Fusion of Hyperspectral Images for Color Display
Nathaniel P. Jacobson, Maya R. Gupta
ICIP (3) (2007), pp. 477-480
-
Functional Bregman Divergence and Bayesian Estimation of Distributions
Bela A. Frigyik, Santosh Srivastava, Maya R. Gupta
CoRR, vol. abs/cs/0611123 (2006)
-
Nonparametric Supervised Learning by Linear Interpolation with Maximum Entropy
Maya R. Gupta, Robert M. Gray, Richard A. Olshen
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28 (2006), pp. 766-781
-
Wavelet Principal Component Analysis and its Application to Hyperspectral Images
Maya R. Gupta, Nathaniel P. Jacobson
ICIP (2006), pp. 1585-1588
-
Custom color enhancements by statistical learning
ICIP (3) (2005), pp. 968-971
-
Design goals and solutions for display of hyperspectral images
Nathaniel P. Jacobson, Maya R. Gupta
ICIP (2) (2005), pp. 622-625
-
Design goals and solutions for display of hyperspectral images
Nathaniel P. Jacobson, Maya R. Gupta
IEEE T. Geoscience and Remote Sensing, vol. 43 (2005), pp. 2684-2692
-
Color conversions using maximum entropy estimation
Maya R. Gupta, Robert M. Gray
ICIP (1) (2001), pp. 118-121
-
Block Color Quantization: A New Method for Color Halftoning
Maya R. Gupta, Michael J. Gormish, David G. Stork
ICIP (2000), pp. 460-463

