Fuchun Peng

Fuchun Peng is a Staff Research Scientist at Google, working on speech recognition and natural language understanding.

Google Publications

Previous Publications

  •  

    Personalize web search results with user's location

    Yumao Lu, Fuchun Peng, Xing Wei, Benoit Dumoulin

    SIGIR (2010)

  •  

    Search with Synonyms: Problems and Solutions

    Xing Wei, Fuchun Peng, Huihsin Tseng, Yumao Lu, Xuerui Wang, Benoit Dumoulin

    COLING (2010)

  •  

    Improving search relevance for implicitly temporal queries

    Donald Metzler, Rosie Jones, Fuchun Peng, Ruiqiang Zhang

    SIGIR (2009), pp. 700-701

  •  

    Analyzing web text association to disambiguate abbreviation in queries

    Xing Wei, Fuchun Peng, Benoit Dumoulin

    SIGIR (2008), pp. 751-752

  •  

    Unsupervised query segmentation using generative language models and wikipedia

    Bin Tan, Fuchun Peng

    WWW (2008), pp. 347-356

  •   

    Context sensitive stemming for web search

    Fuchun Peng, Nawaaz Ahmed, Li Xin, Yumao Lu

    SIGIR (2007), pp. 639-646

  •  

    Coupling feature selection and machine learning methods for navigational query identification

    Yumao Lu, Fuchun Peng, Nawaaz Ahmed

    CIKM (2006)

  •   

    Information extraction from research papers using conditional random fields

    Fuchun Peng, Andrew McCallum

    Information processing & management, vol. 42 (2006), pp. 963-979

  •  

    Combining Deep Linguistics Analysis and Surface Pattern Learning: A Hybrid Approach to Chinese Definitional Question Answering

    Fuchun Peng, Ralph M. Weischedel, Ana Licuanan, Jinxi Xu

    HLT/EMNLP (2005)

  •  

    Combining statistical language models via the latent maximum entropy principle

    Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao

    Machine Learning, vol. 60 (1-3) (2005), pp. 229-250

  •  

    Accurate Information Extraction from Research Papers using Conditional Random Fields.

    Fuchun Peng, Andrew McCallum

    HLT-NAACL (2004)

  •   

    An integrated, conditional model of information extraction and coreference with application to citation matching

    Ben Wellner, Andrew McCallum, Fuchun Peng, Michael Hay

    UAI (2004), pp. 593-601

  •   

    Augmenting naive bayes classifiers with statistical language models

    Fuchun Peng, Dale Schuurmans, Shaojun Wang

    Information Retrieval, vol. 7 (3-4) (2004), pp. 317-345

  •  

    Chinese segmentation and new word detection using conditional random fields

    Fuchun Peng, Fangfang Feng, Andrew McCallum

    Proceedings of COLING (2004)

  •   

    Event threading within news topics

    Ramesh Nallapati, Ao Feng, Fuchun Peng, James Allan

    CIKM (2004), pp. 446-453

  •  

    Learning mixture models with the regularized latent maximum entropy principle

    Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao

    IEEE Transactions on Neural Networks, vol. 15 (4) (2004), pp. 903-916

  •  

    Language and task independent text categorization with simple language models

    Fuchun Peng, Dale Schuurmans, Shaojun Wang

    NAACL-HLT (2003), pp. 110-117

  •  

    Latent Maximum Entropy Approach for Semantic N-gram Language Modeling

    Shaojun Wang, Dale Schuurmans, Fuchun Peng

    AISTATS (2003)

  •  

    Learning Mixture Models with the Latent Maximum Entropy Principle

    Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao

    ICML (2003)

  •  

    Semantic n-gram language modeling with the latent maximum entropy principle

    Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao

    Proceedings of ICASSP'03 (2003)

  •   

    Investigating the relationship between word segmentation performance and retrieval performance in Chinese IR

    Fuchun Peng, Xiangji Huang, Dale Schuurmans, Nick Cercone

    COLING (2002), pp. 1-7

  •  

    Using self-supervised word segmentation in Chinese information retrieval

    Fuchun Peng, Xiangji Huang, Dale Schuurmans, Nick Cercone, Stephen E. Robertson

    SIGIR (2002)

  •  

    Self-supervised Chinese word segmentation

    Fuchun Peng, Dale Schuurmans

    Advances in Intelligent Data Analysis, Springer Berlin Heidelberg (2001), pp. 238-247