
Building Large-Scale Internet Services

Jeff Dean
jeff@google.com

mailto:jeff@google.com
mailto:jeff@google.com
mailto:jeff@google.com
mailto:jeff@google.com

Plan for Today

• Google’s computational environment
– hardware
– system software stack & its evolution

• Techniques for building large-scale systems
– decomposition into services
– common design patterns

• Challenging areas for current and future work

Computing shifting to really small and really big devices

UI-centric devices

Large consolidated computing farms

Implications

• Users have many devices
– expect to be able to access their data on any of them
– devices have wide range of capabilities/capacities

• Disconnected operation
– want to provide at least some functionality when disconnected
– bigger problem in short to medium term

• long term we’ll be able to assume network connection (almost) always available

• Interactive apps require moving at least some computation to client
– Javascript, Java, native binaries, ...

• Opportunity to build interesting services:
– can use much larger bursts of computational power than strictly client-

side apps

Google’s data center at The Dalles, OR

The Machinery

Servers
• CPUs
• DRAM
• Disks

Racks
• 40-80 servers
• Ethernet switch

Clusters

The Joys of Real Hardware
Typical first year for a new cluster:

~1 network rewiring (rolling ~5% of machines down over 2-day span)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~5 racks go wonky (40-80 machines see 50% packetloss)
~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)
~3 router failures (have to immediately pull traffic for an hour)
~dozens of minor 30-second blips for dns
~1000 individual machine failures
~thousands of hard drive failures
slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

The Joys of Real Hardware
Typical first year for a new cluster:

~1 network rewiring (rolling ~5% of machines down over 2-day span)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~5 racks go wonky (40-80 machines see 50% packetloss)
~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)
~3 router failures (have to immediately pull traffic for an hour)
~dozens of minor 30-second blips for dns
~1000 individual machine failures
~thousands of hard drive failures
slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

• Reliability/availability must come from software!

• Cluster is 1000s of machines, typically one or handful of configurations
• File system (GFS or Colossus) + cluster scheduling system are core

services
• Typically 100s to 1000s of active jobs (some w/1 task, some w/1000s)

• mix of batch and low-latency, user-facing production jobs

Google Cluster Software Environment

...

Linux

chunk
server

scheduling
slave

Commodity HW

job 1
task

job 3
task

job 12
task

Linux

chunk
server

scheduling
slave

Commodity HW

job 7
task

job 3
task

job 5
task

Machine 1

...

Machine N

scheduling
master

GFS
master

Chubby
lock service

Some Commonly Used Systems Infrastructure at Google

• GFS & Colossus (next gen GFS)
– cluster-level file system (distributed across thousands of nodes)

• Cluster scheduling system
– assigns resources to jobs made up of tasks

• MapReduce
– programming model and implementation for large-scale computation

• Bigtable
– distributed semi-structured storage system
– adaptively spreads data across thousands of nodes

MapReduce

• A simple programming model that applies to many large-scale
computing problems

• Hide messy details in MapReduce runtime library:
– automatic parallelization
– load balancing
– network and disk transfer optimizations
– handling of machine failures
– robustness
– improvements to core library benefit all users of library!

Typical problem solved by MapReduce

•Read a lot of data
•Map: extract something you care about from each record
•Shuffle and Sort
•Reduce: aggregate, summarize, filter, or transform
•Write the results

Outline stays the same,
map and reduce change to fit the problem

Example: Rendering Map Tiles

Input Map Shuffle Reduce Output
Emit each to all

overlapping latitude-
longitude rectangles

Sort by key
(key= Rect. Id)

Render tile using
data for all enclosed

features
Rendered tiles

Geographic
feature list

I-5

Lake Washington

WA-520

I-90

(0, I-5)

(0, Lake Wash.)

(0, WA-520)

(1, I-90)

(1, I-5)

(1, Lake Wash.)

(0, I-5)

(0, Lake Wash.)

(0, WA-520)

(1, I-90)

0

1 (1, I-5)

(1, Lake Wash.)

…

…

…

…

Parallel MapReduce

Map Map Map Map

Input

data

Reduce

Shuffle

Reduce

Shuffle

Reduce

Shuffle

Partitioned
output

Master

Parallel MapReduce

Map Map Map Map

Input

data

Reduce

Shuffle

Reduce

Shuffle

Reduce

Shuffle

Partitioned
output

Master

For large enough problems, it’s more about disk and
network performance than CPU & DRAM

MapReduce Usage Statistics Over Time

Number of jobs
Aug, ‘04

29K
Mar, ‘06

171K
Sep, '07
2,217K

May, ’10
4,474K

Average completion time (secs) 634 874 395 748
Machine years used 217 2,002 11,081 39,121
Input data read (TB) 3,288 52,254 403,152 946,460
Intermediate data (TB) 758 6,743 34,774 132,960
Output data written (TB) 193 2,970 14,018 45,720
Average worker machines 157 268 394 368

MapReduce in Practice

•Abstract input and output interfaces
–lots of MR operations don’t just read/write simple files

• B-tree files
• memory-mapped key-value stores
• complex inverted index file formats
• BigTable tables
• SQL databases, etc.
• ...

•Low-level MR interfaces are in terms of byte arrays
–Hardly ever use textual formats, though: slow, hard to parse
–Most input & output is in encoded Protocol Buffer format

• See “MapReduce: A Flexible Data Processing Tool” (CACM, 2010)

• Lots of (semi-)structured data at Google
– URLs:

• Contents, crawl metadata, links, anchors, pagerank, …

– Per-user data:
• User preference settings, recent queries/search results, …

– Geographic locations:
• Physical entities (shops, restaurants, etc.), roads, satellite image data, user

annotations, …

• Scale is large
– billions of URLs, many versions/page (~20K/version)
– Hundreds of millions of users, thousands of q/sec
– 100TB+ of satellite image data

BigTable: Motivation

• Distributed multi-dimensional sparse map
 (row, column, timestamp) → cell contents

Rows

Columns

• Rows are ordered lexicographically
• Good match for most of our applications

Basic Data Model

• Distributed multi-dimensional sparse map
 (row, column, timestamp) → cell contents

“www.cnn.com”

“contents:”

Rows

Columns

“<html>…”

• Rows are ordered lexicographically
• Good match for most of our applications

Basic Data Model

• Distributed multi-dimensional sparse map
 (row, column, timestamp) → cell contents

“www.cnn.com”

“contents:”

Rows

Columns

Timestamps

t17“<html>…”

• Rows are ordered lexicographically
• Good match for most of our applications

Basic Data Model

• Distributed multi-dimensional sparse map
 (row, column, timestamp) → cell contents

“www.cnn.com”

“contents:”

Rows

Columns

Timestamps

t11
t17“<html>…”

• Rows are ordered lexicographically
• Good match for most of our applications

Basic Data Model

• Distributed multi-dimensional sparse map
 (row, column, timestamp) → cell contents

“www.cnn.com”

“contents:”

Rows

Columns

Timestamps

t3
t11

t17“<html>…”

• Rows are ordered lexicographically
• Good match for most of our applications

Basic Data Model

Tablets & Splitting

…

“cnn.com”

“contents:”

“<html>…”

“language:”

 EN

“cnn.com/sports.html”

“zuppa.com/menu.html”

…

“website.com”

“aaa.com”

Tablets & Splitting

…
Tablets

“cnn.com”

“contents:”

“<html>…”

“language:”

 EN

“cnn.com/sports.html”

“zuppa.com/menu.html”

…

“website.com”

“aaa.com”

Tablets & Splitting

…
Tablets

“cnn.com”

“contents:”

“<html>…”

“language:”

 EN

“cnn.com/sports.html”

“zuppa.com/menu.html”

…“yahoo.com/kids.html”

“yahoo.com/kids.html\0”

…

…
“website.com”

“aaa.com”

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server …

Bigtable Cell

BigTable System Structure

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server …

performs metadata ops +
load balancing

Bigtable Cell

BigTable System Structure

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server …

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell

BigTable System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

Cluster file systemCluster scheduling system

…

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell

BigTable System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

Cluster file systemCluster scheduling system

…

handles failover, monitoring

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell

BigTable System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

Cluster file systemCluster scheduling system

…

holds tablet data, logshandles failover, monitoring

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell

BigTable System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

Cluster file systemCluster scheduling system

…

holds metadata,
handles master-electionholds tablet data, logshandles failover, monitoring

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell

BigTable System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

Cluster file systemCluster scheduling system

…

holds metadata,
handles master-electionholds tablet data, logshandles failover, monitoring

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell
Bigtable client

Bigtable client
library

BigTable System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

Cluster file systemCluster scheduling system

…

holds metadata,
handles master-electionholds tablet data, logshandles failover, monitoring

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell
Bigtable client

Bigtable client
library

Open()

BigTable System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

Cluster file systemCluster scheduling system

…

holds metadata,
handles master-electionholds tablet data, logshandles failover, monitoring

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell
Bigtable client

Bigtable client
library

Open()read/write

BigTable System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

Cluster file systemCluster scheduling system

…

holds metadata,
handles master-electionholds tablet data, logshandles failover, monitoring

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell
Bigtable client

Bigtable client
library

Open()read/write

metadata ops

BigTable System Structure

BigTable Status

• Production use for 100+ projects:
– Crawling/indexing pipeline
– Google Maps/Google Earth
– My Search History
– Google Print
– Orkut
– Blogger
– …

• Currently ~500 BigTable clusters
• Largest cluster:

–70+ PB data; sustained: 10M ops/sec; 30+ GB/s I/O

BigTable: What’s New Since OSDI’06?

• Lots of work on scaling
• Service clusters, managed by dedicated team
• Improved performance isolation

–fair-share scheduler within each server, better
accounting of memory used per user (caches, etc.)

–can partition servers within a cluster for different users
or tables

• Improved protection against corruption
–many small changes
–e.g. immediately read results of every compaction,

compare with CRC.
• Catches ~1 corruption/5.4 PB of data compacted

BigTable Replication (New Since OSDI’06)

• Configured on a per-table basis

• Typically used to replicate data to multiple bigtable
clusters in different data centers

• Eventual consistency model: writes to table in one cluster
eventually appear in all configured replicas

• Nearly all user-facing production uses of BigTable use
replication

BigTable Coprocessors (New Since OSDI’06)

• Arbitrary code that runs run next to each tablet in table
–as tablets split and move, coprocessor code

automatically splits/moves too

• High-level call interface for clients
– Unlike RPC, calls addressed to rows or ranges of rows

• coprocessor client library resolves to actual locations
– Calls across multiple rows automatically split into multiple

parallelized RPCs

• Very flexible model for building distributed services
– automatic scaling, load balancing, request routing for apps

Example Coprocessor Uses

• Scalable filesystem metadata management for Colossus
(next gen GFS-like file system)

• Distributed language model serving for machine
translation system

• Distributed query processing for full-text indexing support

• Regular expression search support for code repository

• ...

Current Work: Spanner

• Storage & computation system that runs across many datacenters
– single global namespace

• Names are independent of location(s) of data
• Similarities to Bigtable: tables, families, locality groups, coprocessors, ...
• Differences: directories instead of rows, fine-grained replication

configurations

– support mix of strong and weak consistency across datacenters
• Strong consistency implemented with Paxos across tablet replicas
• Full support for distributed transactions across directories/machines

– much more automated operation
• automatically changes replication based on constraints and usage patterns
• automated allocation of resources across entire fleet of machines

• Future scale: ~105 to 107 machines, ~1013 directories,
~1018 bytes of storage, spread at 100s to 1000s of
locations around the world, ~109 client machines

– zones of semi-autonomous control
– consistency after disconnected operation
– users specify high-level desires:

“99%ile latency for accessing this data should be <50ms”
“Store this data on at least 2 disks in EU, 2 in U.S. & 1 in Asia”

Design Goals for Spanner

System Building Experiences and Design Patterns

• Experiences from building a variety of systems

• Not all-encompassing, but a collection of patterns have cropped up
several times across different systems

Many Internal Services

• Break large complex systems down into many services!

• Simpler from a software engineering standpoint
– few dependencies, clearly specified
– easy to test and deploy new versions of individual services
– ability to run lots of experiments
– easy to reimplement service without affecting clients

• Development cycles largely decoupled
– lots of benefits: small teams can work independently
– easier to have many engineering offices around the world

• e.g. google.com search touches 100s of services
–ads, web search, books, news, spelling correction, ...

Protocol Description Language is a Must

• Desires:
–extensible
–efficient
–compact
–easy-to-use
–cross-language
–self-describing

Protocol Buffers

Our solution: Protocol Buffers (in active use since 2000)
 message SearchResult {

 required int32 estimated_results = 1; // (1 is the tag number)

 optional string error_message = 2;

 repeated group Result = 3 {

 required float score = 4;

 required fixed64 docid = 5;

 optional message<WebResultDetails> details = 6;

 …

 }

 };

• Automatically generated wrappers: C++, Java, Python, ...
• Graceful client and server upgrades

– servers ignore tags they don't understand, but pass the information
through (no need to upgrade intermediate servers)

Protocol Buffers (cont)

• Serialization/deserialization
– high performance (200+ MB/s encode/decode)
– fairly compact (uses variable length encodings, binary format)
– format used to store data persistently (not just for RPCs)

• Also allow service specifications:

 service Search {
 rpc DoSearch(SearchRequest) returns (SearchResponse);
 rpc Ping(EmptyMessage) returns (EmptyMessage) {
 protocol=udp; };
 };

• Open source version: http://code.google.com/p/protobuf/

http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/

Designing Efficient Systems

Given a basic problem definition, how do you choose "best" solution?
• Best could be simplest, highest performance, easiest to extend, etc.

Important skill: ability to estimate performance of a system design
– without actually having to build it!

Numbers Everyone Should Know

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Compress 1K w/cheap compression algorithm 3,000 ns

Send 2K bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns

Disk seek 10,000,000 ns

Read 1 MB sequentially from disk 20,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns

Back of the Envelope Calculations

How long to generate image results page (30 thumbnails)?

Design 1: Read serially, thumbnail 256K images on the fly
30 seeks * 10 ms/seek + 30 * 256K / 30 MB/s = 560 ms

Back of the Envelope Calculations

How long to generate image results page (30 thumbnails)?

Design 1: Read serially, thumbnail 256K images on the fly
30 seeks * 10 ms/seek + 30 * 256K / 30 MB/s = 560 ms

Design 2: Issue reads in parallel:
10 ms/seek + 256K read / 30 MB/s = 18 ms

(Ignores variance, so really more like 30-60 ms, probably)

Back of the Envelope Calculations

How long to generate image results page (30 thumbnails)?

Design 1: Read serially, thumbnail 256K images on the fly
30 seeks * 10 ms/seek + 30 * 256K / 30 MB/s = 560 ms

Design 2: Issue reads in parallel:
10 ms/seek + 256K read / 30 MB/s = 18 ms

(Ignores variance, so really more like 30-60 ms, probably)

Lots of variations:
– caching (single images? whole sets of thumbnails?)
– pre-computing thumbnails
– …

Back of the envelope helps identify most promising…

Know Your Basic Building Blocks

Core language libraries, basic data structures, protocol buffers,
GFS, BigTable, indexing systems, MapReduce, …

Not just their interfaces, but understand their
implementations (at least at a high level)

If you don’t know what’s going on, you can’t do
decent back-of-the-envelope calculations!

Know Your Basic Building Blocks

Core language libraries, basic data structures, protocol buffers,
GFS, BigTable, indexing systems, MapReduce, …

Not just their interfaces, but understand their
implementations (at least at a high level)

If you don’t know what’s going on, you can’t do
decent back-of-the-envelope calculations!

• Corollary: implementations with unpredictable
1000X variations in performance are not very
helpful if latency or throughput matters
–e.g. VM paging

Designing & Building Infrastructure
Identify common problems, and build software systems to

address them in a general way

• Important not to try to be all things to all people
– Clients might be demanding 8 different things
– Doing 6 of them is easy
– …handling 7 of them requires real thought
– …dealing with all 8 usually results in a worse system

• more complex, compromises other clients in trying to satisfy everyone

Don't build infrastructure just for its own sake
• Identify common needs and address them
• Don't imagine unlikely potential needs that aren't really there
• Best approach: use your own infrastructure (especially at first!)

– (much more rapid feedback about what works, what doesn't)

Design for Growth

Try to anticipate how requirements will evolve
keep likely features in mind as you design base system

Don’t design to scale infinitely:
~5X - 50X growth good to consider
>100X probably requires rethink and rewrite

Pattern: Single Master, 1000s of Workers
• Master orchestrates global operation of system

– load balancing, assignment of work, reassignment when
machines fail, etc.

– ... but client interaction with master is fairly minimal

• Examples:
– GFS, BigTable, MapReduce, Transfer Service, cluster

scheduling system, ...

Client

Misc. servers
Re

pl
ica

s
Masters

Master

Master
Client

Worker 1 Worker 2 Worker N

Client

Pattern: Single Master, 1000s of Workers (cont)

• Often: hot standby of master waiting to take over
• Always: bulk of data transfer directly between clients and workers

• Pro:
– simpler to reason about state of system with centralized master

• Caveats:
– careful design required to keep master out of common case ops
– scales to 1000s of workers, but not 100,000s of workers

Pattern: Canary Requests

• Problem: odd requests sometimes cause server process to crash
– testing can help reduce probability, but can’t eliminate

• If sending same or similar request to 1000s of machines:
– they all might crash!
– recovery time for 1000s of processes pretty slow

• Solution: send canary request first to one machine
– if RPC finishes successfully, go ahead and send to all the rest
– if RPC fails unexpectedly, try another machine

(might have just been coincidence)
– if fails K times, reject request

• Crash only a few servers, not 1000s

• Problem: Single machine sending 1000s of RPCs overloads NIC
on machine when handling replies
– wide fan in causes TCP drops/retransmits, significant latency
– CPU becomes bottleneck on single machine

Pattern: Tree Distribution of Requests

Root

Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leaf 5 Leaf 6

• Solution: Use tree distribution of requests/responses
– fan in at root is smaller
– cost of processing leaf responses spread across many parents

• Most effective when parent processing can trim/combine leaf data
– can also co-locate parents on same rack as leaves

Pattern: Tree Distribution of Requests

Root

Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leaf 5 Leaf 6

Parent Parent

Pattern: Backup Requests to Minimize Latency

• Problem: variance high when requests go to 1000s of machines
– last few machines stretch out latency tail

• Often, multiple replicas can handle same kind of request
• When few tasks remaining, send backup requests to other replicas
• Whichever duplicate request finishes first wins

– useful when variance is unrelated to specifics of request
– increases overall load by a tiny percentage
– decreases latency tail significantly

Pattern: Backup Requests to Minimize Latency

• Problem: variance high when requests go to 1000s of machines
– last few machines stretch out latency tail

• Often, multiple replicas can handle same kind of request
• When few tasks remaining, send backup requests to other replicas
• Whichever duplicate request finishes first wins

– useful when variance is unrelated to specifics of request
– increases overall load by a tiny percentage
– decreases latency tail significantly

• Examples:
– MapReduce backup tasks (granularity: many seconds)
– various query serving systems (granularity: milliseconds)

Pattern: Multiple Smaller Units per Machine

• Problems:
– want to minimize recovery time when machine crashes
– want to do fine-grained load balancing

• Having each machine manage 1 unit of work is inflexible
– slow recovery: new replica must recover data that is O(machine

state) in size
– load balancing much harder

single
work

chunk

Machine

Pattern: Multiple Smaller Units per Machine

• Have each machine manage many smaller units of work/data
– typical: ~10-100 units/machine
– allows fine grained load balancing (shed or add one unit)
– fast recovery from failure (N machines each pick up 1 unit)

• Examples:
– map and reduce tasks, GFS chunks, Bigtable tablets, query

serving system index shards

C0 C1

C2C5
Machine

C9

C8

C17C6C11

Pattern: Range Distribution of Data, not Hash

• Problem: manage growing set of keys/values in distributed system
– need to spread data out across K machines
– need to adapt to K+1 machines as data grows

• Consistent hashing of keys to map to machines:
– Pro: gives nice even distribution of data across machines
– Con: hard for users to generate or understand locality across multiple

different keys

Pattern: Range Distribution of Data, not Hash

• Problem: manage growing set of keys/values in distributed system
– need to spread data out across K machines
– need to adapt to K+1 machines as data grows

• Consistent hashing of keys to map to machines:
– Pro: gives nice even distribution of data across machines
– Con: hard for users to generate or understand locality across multiple

different keys

• Range distribution: break space of keys into multiple ranges
• Machines manage a small number of different ranges at a time

– e.g. Bigtable tablets
– Con: harder to implement than hashing (string ranges, rather than

simple numeric hashes, location metadata is larger)
– Pro: users can reason about & control locality across keys

Pattern: Elastic Systems

• Problem: Planning for exact peak load is hard
– overcapacity: wasted resources
– undercapacity: meltdown

• Design system to adapt:
– automatically shrink capacity during idle period
– automatically grow capacity as load grows

• Make system resilient to overload:
– do something reasonable even up to 2X planned capacity

• e.g. shrink size of index searched, back off to less CPU
intensive algorithms, drop spelling correction tip, etc.

– more aggressive load balancing when imbalance more severe

Pattern: One Interface, Multiple Implementations

• Example: Google web search system wants all of these:
– freshness (update documents in ~1 second)
– massive capacity (10000s of requests per second)
– high quality retrieval (lots of information about each document)
– massive size (billions of documents)

• Very difficult to accomplish in single implementation

• Partition problem into several subproblems with different
engineering tradeoffs. E.g.
– realtime system: few docs, ok to pay lots of $$$/doc
– base system: high # of docs, optimized for low $/doc
– realtime+base: high # of docs, fresh, low $/doc

Add Sufficient Monitoring/Status/Debugging Hooks

All our servers:
• Export HTML-based status pages for easy diagnosis
• Export a collection of key-value pairs via a standard interface

– monitoring systems periodically collect this from running servers

• RPC subsystem collects sample of all requests, all error requests, all
requests >0.0s, >0.05s, >0.1s, >0.5s, >1s, etc.

• Support low-overhead online profiling
– cpu profiling
– memory profiling
– lock contention profiling

If your system is slow or misbehaving, can you figure out why?

Some Interesting Challenges

• A collection of problems germane to building
large-scale datacenter services

• Again, not all inclusive..

• Some of these problems have substantial
related work, some are relatively new..

Adaptivity in World-Wide Systems

• Challenge: automatic, dynamic world-wide placement of
data & computation to minimize latency and/or cost, given
constraints on:
– bandwidth
– packet loss
– power
– resource usage
– failure modes
– ...

• Users specify high-level desires:
“99%ile latency for accessing this data should be <50ms”
“Store this data on at least 2 disks in EU, 2 in U.S. & 1 in Asia”
“Store three replicas in three different datacenters less than 20ms apart”

Building Applications on top of Weakly
Consistent Storage Systems

• Many applications need state replicated across a wide area
– For reliability and availability

• Two main choices:
– consistent operations (e.g. use Paxos)

• often imposes additional latency for common case

– inconsistent operations
• better performance/availability, but apps harder to write and reason about in

this model

• Many apps need to use a mix of both of these:
– e.g. Gmail: marking a message as read is asynchronous, sending a

message is a heavier-weight consistent operation

Building Applications on top of Weakly
Consistent Storage Systems

• Challenge: General model of consistency choices,
explained and codified
– ideally would have one or more “knobs” controlling performance vs.

consistency
– “knob” would provide easy-to-understand tradeoffs

• Challenge: Easy-to-use abstractions for resolving
conflicting updates to multiple versions of a piece of state
– Useful for reconciling client state with servers after disconnected

operation
– Also useful for reconciling replicated state in different data centers

after repairing a network partition

Distributed Systems Abstractions

• High-level tools/languages/abstractions for building
distributed systems
– e.g. For batch processing, MapReduce handles parallelization,

load balancing, fault tolerance, I/O scheduling automatically
within a simple programming model

• Challenge: Are there unifying abstractions for other
kinds of distributed systems problems?
– e.g. systems for handling interactive requests & dealing with
intra-operation parallelism
• load balancing, fault-tolerance, service location & request

distribution, ...
– e.g. client-side AJAX apps with rich server-side APIs

• better ways of constructing client-side applications?

Sharing in Storage & Retrieval Systems

• Storage and retrieval systems with mix of private,
semi-private, widely shared and public documents
– e.g. e-mail vs. shared doc among 10 people vs. messages in

group with 100,000 members vs. public web pages

• Challenge: building storage and retrieval systems that
efficiently deal with ACLs that vary widely in size
– best solution for doc shared with 10 people is different than

for doc shared with the world
– sharing patterns of a document might change over time

Final Thoughts

• Large-scale datacenters + many client devices offer
many interesting opportunities
– planetary scale distributed systems
– interesting CPU and data intensive services

• Tools and techniques for building such systems are
evolving

• Fun and interesting times are ahead of us!

Thanks! Questions...?

Further reading:
• Ghemawat, Gobioff, & Leung. Google File System, SOSP 2003.

• Barroso, Dean, & Hölzle. Web Search for a Planet: The Google Cluster Architecture, IEEE Micro, 2003.

• Dean & Ghemawat. MapReduce: Simplified Data Processing on Large Clusters, OSDI 2004.

• Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, & Gruber. Bigtable: A Distributed
Storage System for Structured Data, OSDI 2006.

• Burrows. The Chubby Lock Service for Loosely-Coupled Distributed Systems. OSDI 2006.

• Pinheiro, Weber, & Barroso. Failure Trends in a Large Disk Drive Population. FAST 2007.

• Brants, Popat, Xu, Och, & Dean. Large Language Models in Machine Translation, EMNLP 2007.

• Barroso & Hölzle. The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines, Morgan & Claypool Synthesis Series on Computer Architecture, 2009.

• Malewicz et al. Pregel: A System for Large-Scale Graph Processing. PODC, 2009.

• Schroeder, Pinheiro, & Weber. DRAM Errors in the Wild: A Large-Scale Field Study. SEGMETRICS’09.

• Protocol Buffers. http://code.google.com/p/protobuf/

These and many more available at: http://labs.google.com/papers.html

http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://labs.google.com/papers.html
http://labs.google.com/papers.html

