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Abstract

We consider the problem of building high-
level, class-specific feature detectors from
only unlabeled data. For example, is it pos-
sible to learn a face detector using only unla-
beled images? To answer this, we train a 9-
layered locally connected sparse autoencoder
with pooling and local contrast normalization
on a large dataset of images (the model has
1 billion connections, the dataset has 10 mil-
lion 200x200 pixel images downloaded from
the Internet). We train this network using
model parallelism and asynchronous SGD on
a cluster with 1,000 machines (16,000 cores)
for three days. Contrary to what appears to
be a widely-held intuition, our experimental
results reveal that it is possible to train a face
detector without having to label images as
containing a face or not. Control experiments
show that this feature detector is robust not
only to translation but also to scaling and
out-of-plane rotation. We also find that the
same network is sensitive to other high-level
concepts such as cat faces and human bod-
ies. Starting with these learned features, we
trained our network to obtain 15.8% accu-
racy in recognizing 22,000 object categories
from ImageNet, a leap of 70% relative im-
provement over the previous state-of-the-art.
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1. Introduction

The focus of this work is to build high-level, class-
specific feature detectors from unlabeled images. For
instance, we would like to understand if it is possible to
build a face detector from only unlabeled images. This
approach is inspired by the neuroscientific conjecture
that there exist highly class-specific neurons in the hu-
man brain, generally and informally known as “grand-
mother neurons.” The extent of class-specificity of
neurons in the brain is an area of active investigation,
but current experimental evidence suggests the possi-
bility that some neurons in the temporal cortex are
highly selective for object categories such as faces or
hands (Desimone et al., 1984), and perhaps even spe-
cific people (Quiroga et al., 2005).

Contemporary computer vision methodology typically
emphasizes the role of labeled data to obtain these
class-specific feature detectors. For example, to build
a face detector, one needs a large collection of images
labeled as containing faces, often with a bounding box
around the face. The need for large labeled sets poses
a significant challenge for problems where labeled data
are rare. Although approaches that make use of inex-
pensive unlabeled data are often preferred, they have
not been shown to work well for building high-level
features.

This work investigates the feasibility of building high-
level features from only unlabeled data. A positive
answer to this question will give rise to two significant
results. Practically, this provides an inexpensive way
to develop features from unlabeled data. But perhaps
more importantly, it answers an intriguing question as
to whether the specificity of the “grandmother neuron”
could possibly be learned from unlabeled data. Infor-
mally, this would suggest that it is at least in principle
possible that a baby learns to group faces into one class
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because it has seen many of them and not because it
is guided by supervision or rewards.

Unsupervised feature learning and deep learning have
emerged as methodologies in machine learning for
building features from unlabeled data. Using unlabeled
data in the wild to learn features is the key idea be-
hind the self-taught learning framework (Raina et al.,
2007). Successful feature learning algorithms and their
applications can be found in recent literature using
a variety of approaches such as RBMs (Hinton et al.,
2006), autoencoders (Hinton & Salakhutdinov, 2006;
Bengio et al., 2007), sparse coding (Lee et al., 2007)
and K-means (Coates et al., 2011). So far, most of
these algorithms have only succeeded in learning low-

level features such as “edge” or “blob” detectors. Go-
ing beyond such simple features and capturing com-
plex invariances is the topic of this work.

Recent studies observe that it is quite time intensive
to train deep learning algorithms to yield state of the
art results (Ciresan et al., 2010). We conjecture that
the long training time is partially responsible for the
lack of high-level features reported in the literature.
For instance, researchers typically reduce the sizes of
datasets and models in order to train networks in a
practical amount of time, and these reductions under-
mine the learning of high-level features.

We address this problem by scaling up the core compo-
nents involved in training deep networks: the dataset,
the model, and the computational resources. First,
we use a large dataset generated by sampling random
frames from random YouTube videos.1 Our input data
are 200x200 images, much larger than typical 32x32
images used in deep learning and unsupervised fea-
ture learning (Krizhevsky, 2009; Ciresan et al., 2010;
Le et al., 2010; Coates et al., 2011). Our model, a
deep autoencoder with pooling and local contrast nor-
malization, is scaled to these large images by using
a large computer cluster. To support parallelism on
this cluster, we use the idea of local receptive fields,
e.g., (Raina et al., 2009; Le et al., 2010; 2011b). This
idea reduces communication costs between machines
and thus allows model parallelism (parameters are dis-
tributed across machines). Asynchronous SGD is em-
ployed to support data parallelism. The model was
trained in a distributed fashion on a cluster with 1,000
machines (16,000 cores) for three days.

Experimental results using classification and visualiza-
tion confirm that it is indeed possible to build high-
level features from unlabeled data. In particular, using
a hold-out test set consisting of faces and distractors,
we discover a feature that is highly selective for faces.

1This is different from the work of (Lee et al., 2009) who
trained their model on images from one class.

This result is also validated by visualization via nu-
merical optimization. Control experiments show that
the learned detector is not only invariant to translation
but also to out-of-plane rotation and scaling.

Similar experiments reveal the network also learns the
concepts of cat faces and human bodies.

The learned representations are also discriminative.
Using the learned features, we obtain significant leaps
in object recognition with ImageNet. For instance, on
ImageNet with 22,000 categories, we achieved 15.8%
accuracy, a relative improvement of 70% over the state-
of-the-art. Note that, random guess achieves less than
0.005% accuracy for this dataset.

2. Training set construction

Our training dataset is constructed by sampling frames
from 10 million YouTube videos. To avoid duplicates,
each video contributes only one image to the dataset.
Each example is a color image with 200x200 pixels.

A subset of training images is shown in Ap-
pendix A. To check the proportion of faces in
the dataset, we run an OpenCV face detector on
60x60 randomly-sampled patches from the dataset
(http://opencv.willowgarage.com/wiki/). This exper-
iment shows that patches, being detected as faces by
the OpenCV face detector, account for less than 3% of
the 100,000 sampled patches

3. Algorithm

In this section, we describe the algorithm that we use
to learn features from the unlabeled training set.

3.1. Previous work

Our work is inspired by recent successful algo-
rithms in unsupervised feature learning and deep
learning (Hinton et al., 2006; Bengio et al., 2007;
Ranzato et al., 2007; Lee et al., 2007). It is strongly
influenced by the work of (Olshausen & Field, 1996)
on sparse coding. According to their study, sparse
coding can be trained on unlabeled natural im-
ages to yield receptive fields akin to V1 simple
cells (Hubel & Wiesel, 1959).

One shortcoming of early approaches such as sparse
coding (Olshausen & Field, 1996) is that their archi-
tectures are shallow and typically capture low-level
concepts (e.g., edge “Gabor” filters) and simple invari-
ances. Addressing this issue is a focus of recent work in
deep learning (Hinton et al., 2006; Bengio et al., 2007;
Bengio & LeCun, 2007; Lee et al., 2008; 2009) which
build hierarchies of feature representations. In partic-
ular, Lee et al (2008) show that stacked sparse RBMs
can model certain simple functions of the V2 area of
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the cortex. They also demonstrate that convolutional
DBNs (Lee et al., 2009), trained on aligned images of
faces, can learn a face detector. This result is inter-
esting, but unfortunately requires a certain degree of
supervision during dataset construction: their training
images (i.e., Caltech 101 images) are aligned, homoge-
neous and belong to one selected category.

Figure 1. The architecture and parameters in one layer of
our network. The overall network replicates this structure
three times. For simplicity, the images are in 1D.

3.2. Architecture

Our algorithm is built upon these ideas and can be
viewed as a sparse deep autoencoder with three impor-
tant ingredients: local receptive fields, pooling and lo-
cal contrast normalization. First, to scale the autoen-
coder to large images, we use a simple idea known as
local receptive fields (LeCun et al., 1998; Raina et al.,
2009; Lee et al., 2009; Le et al., 2010). This biologi-
cally inspired idea proposes that each feature in the
autoencoder can connect only to a small region of the
lower layer. Next, to achieve invariance to local defor-
mations, we employ local L2 pooling (Hyvärinen et al.,
2009; Gregor & LeCun, 2010; Le et al., 2010) and lo-
cal contrast normalization (Jarrett et al., 2009). L2
pooling, in particular, allows the learning of invariant
features (Hyvärinen et al., 2009; Le et al., 2010).

Our deep autoencoder is constructed by replicating
three times the same stage composed of local filtering,
local pooling and local contrast normalization. The
output of one stage is the input to the next one and
the overall model can be interpreted as a nine-layered
network (see Figure 1).

The first and second sublayers are often known as fil-
tering (or simple) and pooling (or complex) respec-
tively. The third sublayer performs local subtractive
and divisive normalization and it is inspired by bio-

logical and computational models (Pinto et al., 2008;
Lyu & Simoncelli, 2008; Jarrett et al., 2009).2

As mentioned above, central to our approach is the use
of local connectivity between neurons. In our experi-
ments, the first sublayer has receptive fields of 18x18
pixels and the second sub-layer pools over 5x5 over-
lapping neighborhoods of features (i.e., pooling size).
The neurons in the first sublayer connect to pixels in all
input channels (or maps) whereas the neurons in the
second sublayer connect to pixels of only one channel
(or map).3 While the first sublayer outputs linear filter
responses, the pooling layer outputs the square root of
the sum of the squares of its inputs, and therefore, it
is known as L2 pooling.

Our style of stacking a series of uniform mod-
ules, switching between selectivity and toler-
ance layers, is reminiscent of Neocognition and
HMAX (Fukushima & Miyake, 1982; LeCun et al.,
1998; Riesenhuber & Poggio, 1999). It has also
been argued to be an architecture employed by the
brain (DiCarlo et al., 2012).

Although we use local receptive fields, they are
not convolutional: the parameters are not shared
across different locations in the image. This is
a stark difference between our approach and pre-
vious work (LeCun et al., 1998; Jarrett et al., 2009;
Lee et al., 2009). In addition to being more biolog-
ically plausible, unshared weights allow the learning
of more invariances other than translational invari-
ances (Le et al., 2010).

In terms of scale, our network is perhaps one of the
largest known networks to date. It has 1 billion train-
able parameters, which is more than an order of magni-
tude larger than other large networks reported in liter-
ature, e.g., (Ciresan et al., 2010; Sermanet & LeCun,
2011) with around 10 million parameters. It is
worth noting that our network is still tiny com-
pared to the human visual cortex, which is 106

times larger in terms of the number of neurons and
synapses (Pakkenberg et al., 2003).

3.3. Learning and Optimization

Learning: During learning, the parameters of the
second sublayers (H) are fixed to uniform weights,

2The subtractive normalization removes the
weighted average of neighboring neurons from the
current neuron gi,j,k = hi,j,k −

∑

iuv
Guvhi,j+u,i+v

The divisive normalization computes yi,j,k =
gi,j,k/max{c, (

∑

iuv
Guvg

2
i,j+u,i+v)

0.5}, where c is set
to be a small number, 0.01, to prevent numerical errors.
G is a Gaussian weighting window. (Jarrett et al., 2009)

3For more details regarding connectivity patterns and
parameter sensitivity, see Appendix B and E.
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whereas the encoding weights W1 and decoding
weights W2 of the first sublayers are adjusted using
the following optimization problem

minimize
W1,W2

m
∑

i=1

(

∥

∥W2W
T
1 x(i) − x(i)

∥

∥

2

2
+

λ

k
∑

j=1

√

ǫ+Hj(WT
1 x(i))2

)

. (1)

Here, λ is a tradeoff parameter between sparsity and
reconstruction; m, k are the number of examples and
pooling units in a layer respectively; Hj is the vector of
weights of the j-th pooling unit. In our experiments,
we set λ = 0.1.

This optimization problem is also known as recon-
struction Topographic Independent Component Anal-
ysis (Hyvärinen et al., 2009; Le et al., 2011a).4 The
first term in the objective ensures the representations
encode important information about the data, i.e.,
they can reconstruct input data; whereas the second
term encourages pooling features to group similar fea-
tures together to achieve invariances.

Optimization: All parameters in our model were
trained jointly with the objective being the sum of the
objectives of the three layers.

To train the model, we implemented model parallelism

by distributing the local weights W1, W2 and H to
different machines. A single instance of the model
partitions the neurons and weights out across 169 ma-
chines (where each machine had 16 CPU cores). A
set of machines that collectively make up a single copy
of the model is referred to as a “model replica.” We
have built a software framework called DistBelief that
manages all the necessary communication between the
different machines within a model replica, so that users
of the framework merely need to write the desired up-
wards and downwards computation functions for the
neurons in the model, and don’t have to deal with the
low-level communication of data across machines.

We further scaled up the training by implementing
asynchronous SGD using multiple replicas of the core
model. For the experiments described here, we di-
vided the training into 5 portions and ran a copy of
the model on each of these portions. The models com-
municate updates through a set of centralized “param-
eter servers,” which keep the current state of all pa-
rameters for the model in a set of partitioned servers
(we used 256 parameter server partitions for training
the model described in this paper). In the simplest

4In (Bengio et al., 2007; Le et al., 2011a), the encod-
ing weights and the decoding weights are tied: W1 = W2.
However, for better parallelism and better features, our
implementation does not enforce tied weights.

implementation, before processing each mini-batch a
model replica asks the centralized parameter servers
for an updated copy of its model parameters. It then
processes a mini-batch to compute a parameter gra-
dient, and sends the parameter gradients to the ap-
propriate parameter servers, which then apply each
gradient to the current value of the model parame-
ter. We can reduce the communication overhead by
having each model replica request updated parame-
ters every P steps and by sending updated gradient
values to the parameter servers every G steps (where
G might not be equal to P). Our DistBelief software
framework automatically manages the transfer of pa-
rameters and gradients between the model partitions
and the parameter servers, freeing implementors of the
layer functions from having to deal with these issues.

Asynchronous SGD is more robust to failure and slow-
ness than standard (synchronous) SGD. Specifically,
for synchronous SGD, if one of the machines is slow,
the entire training process is delayed; whereas for asyn-
chronous SGD, if one machine is slow, only one copy
of SGD is delayed while the rest of the optimization
can still proceed.

In our training, at every step of SGD, the gradient is
computed on a minibatch of 100 examples. We trained
the network on a cluster with 1,000 machines for three
days. See Appendix B, C, and D for more details re-
garding our implementation of the optimization.

4. Experiments on Faces

In this section, we describe our analysis of the learned
representations in recognizing faces (“the face detec-
tor”) and present control experiments to understand
invariance properties of the face detector. Results for
other concepts are presented in the next section.

4.1. Test set

The test set consists of 37,000 images sam-
pled from two datasets: Labeled Faces In the
Wild dataset (Huang et al., 2007) and ImageNet
dataset (Deng et al., 2009). There are 13,026 faces
sampled from non-aligned Labeled Faces in TheWild.5

The rest are distractor objects randomly sampled from
ImageNet. These images are resized to fit the visible
areas of the top neurons. Some example images are
shown in Appendix A.

4.2. Experimental protocols

After training, we used this test set to measure the
performance of each neuron in classifying faces against
distractors. For each neuron, we found its maximum

5http://vis-www.cs.umass.edu/lfw/lfw.tgz
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and minimum activation values, then picked 20 equally
spaced thresholds in between. The reported accuracy
is the best classification accuracy among 20 thresholds.

4.3. Recognition

Surprisingly, the best neuron in the network performs
very well in recognizing faces, despite the fact that no
supervisory signals were given during training. The
best neuron in the network achieves 81.7% accuracy in
detecting faces. There are 13,026 faces in the test set,
so guessing all negative only achieves 64.8%. The best
neuron in a one-layered network only achieves 71% ac-
curacy while best linear filter, selected among 100,000
filters sampled randomly from the training set, only
achieves 74%.

To understand their contribution, we removed the lo-
cal contrast normalization sublayers and trained the
network again. Results show that the accuracy of
best neuron drops to 78.5%. This agrees with pre-
vious study showing the importance of local contrast
normalization (Jarrett et al., 2009).

We visualize histograms of activation values for face
images and random images in Figure 2. It can be seen,
even with exclusively unlabeled data, the neuron learns
to differentiate between faces and random distractors.
Specifically, when we give a face as an input image, the
neuron tends to output value larger than the threshold,
0. In contrast, if we give a random image as an input
image, the neuron tends to output value less than 0.

Figure 2. Histograms of faces (red) vs. no faces (blue).
The test set is subsampled such that the ratio between
faces and no faces is one.

4.4. Visualization

In this section, we will present two visualization tech-
niques to verify if the optimal stimulus of the neuron is
indeed a face. The first method is visualizing the most
responsive stimuli in the test set. Since the test set
is large, this method can reliably detect near optimal
stimuli of the tested neuron. The second approach
is to perform numerical optimization to find the op-
timal stimulus (Berkes & Wiskott, 2005; Erhan et al.,
2009; Le et al., 2010). In particular, we find the norm-
bounded input x which maximizes the output f of the

tested neuron, by solving:

x∗ = argmin
x

f(x;W,H), subject to ||x||2 = 1.

Here, f(x;W,H) is the output of the tested neuron
given learned parameters W,H and input x. In our
experiments, this constraint optimization problem is
solved by projected gradient descent with line search.

These visualization methods have complementary
strengths and weaknesses. For instance, visualizing
the most responsive stimuli may suffer from fitting to
noise. On the other hand, the numerical optimization
approach can be susceptible to local minima. Results,
shown in Figure 3, confirm that the tested neuron in-
deed learns the concept of faces.

Figure 3. Top: Top 48 stimuli of the best neuron from the
test set. Bottom: The optimal stimulus according to nu-
merical constraint optimization.

4.5. Invariance properties

We would like to assess the robustness of the face de-
tector against common object transformations, e.g.,
translation, scaling and out-of-plane rotation. First,
we chose a set of 10 face images and perform distor-
tions to them, e.g., scaling and translating. For out-
of-plane rotation, we used 10 images of faces rotating
in 3D (“out-of-plane”) as the test set. To check the ro-
bustness of the neuron, we plot its averaged response
over the small test set with respect to changes in scale,
3D rotation (Figure 4), and translation (Figure 5).6

6Scaled, translated faces are generated by standard
cubic interpolation. For 3D rotated faces, we used 10 se-
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Figure 4. Scale (left) and out-of-plane (3D) rotation (right)
invariance properties of the best feature.

Figure 5. Translational invariance properties of the best
feature. x-axis is in pixels

The results show that the neuron is robust against
complex and difficult-to-hard-wire invariances such as
out-of-plane rotation and scaling.

Control experiments on dataset without faces:

As reported above, the best neuron achieves 81.7% ac-
curacy in classifying faces against random distractors.
What if we remove all images that have faces from the
training set?

We performed the control experiment by running a
face detector in OpenCV and removing those training
images that contain at least one face. The recognition
accuracy of the best neuron dropped to 72.5% which
is as low as simple linear filters reported in section 4.3.

5. Cat and human body detectors

Having achieved a face-sensitive neuron, we would like
to understand if the network is also able to detect other
high-level concepts. For instance, cats and body parts
are quite common in YouTube. Did the network also
learn these concepts?

To answer this question and quantify selectivity prop-
erties of the network with respect to these concepts,
we constructed two datasets, one for classifying hu-
man bodies against random backgrounds and one for
classifying cat faces against other random distractors.
For the ease of interpretation, these datasets have a
positive-to-negative ratio identical to the face dataset.

The cat face images are collected from the dataset de-

quences of rotated faces from The Sheffield Face Database –
http://www.sheffield.ac.uk/eee/research/iel/research/face.
See Appendix F for a sample sequence.

Figure 6. Visualization of the cat face neuron (left) and
human body neuron (right).

scribed in (Zhang et al., 2008). In this dataset, there
are 10,000 positive images and 18,409 negative images
(so that the positive-to-negative ratio is similar to the
case of faces). The negative images are chosen ran-
domly from the ImageNet dataset.

Negative and positive examples in our human body
dataset are subsampled at random from a benchmark
dataset (Keller et al., 2009). In the original dataset,
each example is a pair of stereo black-and-white im-
ages. But for simplicity, we keep only the left images.
In total, like in the case of human faces, we have 13,026
positive and 23,974 negative examples.

We then followed the same experimental protocols as
before. The results, shown in Figure 6, confirm that
the network learns not only the concept of faces but
also the concepts of cat faces and human bodies.

Our high-level detectors also outperform standard
baselines in terms of recognition rates, achieving 74.8%
and 76.7% on cat and human body respectively. In
comparison, best linear filters (sampled from the train-
ing set) only achieve 67.2% and 68.1% respectively.

In Table 1, we summarize all previous numerical re-
sults comparing the best neurons against other base-
lines such as linear filters and random guesses. To un-
derstand the effects of training, we also measure the
performance of best neurons in the same network at
random initialization.

We also compare our method against sev-
eral other algorithms such as deep autoen-
coders (Hinton & Salakhutdinov, 2006; Bengio et al.,
2007) and K-means (Coates et al., 2011). Results of
these baselines are reported in the bottom of Table 1.

6. Object recognition with ImageNet

We applied the feature learning method to the
task of recognizing objects in the ImageNet
dataset (Deng et al., 2009). We started from a
network that already learned features from YouTube
and ImageNet images using the techniques described
in this paper. We then added one-versus-all logistic
classifiers on top of the highest layer of this network.
This method of initializing a network by unsupervised
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Table 1. Summary of numerical comparisons between our algorithm against other baselines. Top: Our algorithm vs.
simple baselines. Here, the first three columns are results for methods that do not require training: random guess,
random weights (of the network at initialization, without any training) and best linear filters selected from 100,000
examples sampled from the training set. The last three columns are results for methods that have training: the best
neuron in the first layer, the best neuron in the highest layer after training, the best neuron in the network when the
contrast normalization layers are removed. Bottom: Our algorithm vs. autoencoders and K-means.

Concept Random Same architecture Best Best first Best Best neuron without
guess with random weights linear filter layer neuron neuron contrast normalization

Faces 64.8% 67.0% 74.0% 71.0% 81.7% 78.5%
Human bodies 64.8% 66.5% 68.1% 67.2% 76.8% 71.8%
Cats 64.8% 66.0% 67.8% 67.1% 74.6% 69.3%

Concept Our Deep autoencoders Deep autoencoders K-means on
network 3 layers 6 layers 40x40 images

Faces 81.7% 72.3% 70.9% 72.5%
Human bodies 76.7% 71.2% 69.8% 69.3%
Cats 74.8% 67.5% 68.3% 68.5%

Table 2. Summary of classification accuracies for our method and other state-of-the-art baselines on ImageNet.
Dataset version 2009 (∼9M images, ∼10K categories) 2011 (∼14M images, ∼22K categories)

State-of-the-art 16.7% (Sanchez & Perronnin, 2011) 9.3% (Weston et al., 2011)
Our method 16.1% (without unsupervised pretraining) 13.6% (without unsupervised pretraining)

19.2% (with unsupervised pretraining) 15.8% (with unsupervised pretraining)

learning is also known as “unsupervised pretraining.”
During supervised learning with labeled ImageNet
images, the parameters of lower layers and the logistic
classifiers were both adjusted. This was done by first
adjusting the logistic classifiers and then adjusting
the entire network (also known as “fine-tuning”). As
a control experiment, we also train a network starting
with all random weights (i.e., without unsupervised
pretraining: all parameters are initialized randomly
and only adjusted by ImageNet labeled data).

We followed the experimental protocols specified
by (Deng et al., 2010; Sanchez & Perronnin, 2011), in
which, the datasets are randomly split into two halves
for training and validation. We report the performance
on the validation set and compare against state-of-the-
art baselines in Table 2. Note that the splits are not
identical to previous work but validation set perfor-
mances vary slightly across different splits.

The results show that our method, starting from
scratch (i.e., raw pixels), bests many state-of-the-art
hand-engineered features. On ImageNet with 10K cat-
egories, our method yielded a 15% relative improve-
ment over previous best published result. On Ima-
geNet with 22K categories, it achieved a 70% relative
improvement over the highest other result of which we
are aware (including unpublished results known to the
authors of (Weston et al., 2011)). Note, random guess
achieves less than 0.005% accuracy for this dataset.

7. Conclusion

In this work, we simulated high-level class-specific neu-
rons using unlabeled data. We achieved this by com-

bining ideas from recently developed algorithms to
learn invariances from unlabeled data. Our implemen-
tation scales to a cluster with thousands of machines
thanks to model parallelism and asynchronous SGD.

Our work shows that it is possible to train neurons to
be selective for high-level concepts using entirely unla-
beled data. In our experiments, we obtained neurons
that function as detectors for faces, human bodies, and
cat faces by training on random frames of YouTube
videos. These neurons naturally capture complex in-
variances such as out-of-plane and scale invariances.

The learned representations also work well for discrim-
inative tasks. Starting from these representations, we
obtain 15.8% accuracy for object recognition on Ima-
geNet with 20,000 categories, a significant leap of 70%
relative improvement over the state-of-the-art.
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A. Training and test images

A subset of training images is shown in Figure 7. As
can be seen, the positions, scales, orientations of faces
in the dataset are diverse. A subset of test images for

Figure 7. Thirty randomly-selected training images (shown
before the whitening step).

identifying the face neuron is shown in Figure 8.

Figure 8. Some example test set images (shown before the
whitening step).

B. Models

Central to our approach in this paper is the use of
locally-connected networks. In these networks, neu-
rons only connect to a local region of the layer below.

In Figure 9, we show the connectivity patterns of the
neural network architecture described in the paper.
The actual images in the experiments are 2D, but for
simplicity, our images in the visualization are in 1D.

Figure 9. Diagram of the network we used with more de-
tailed connectivity patterns. Color arrows mean that
weights only connect to only one map. Dark arrows mean
that weights connect to all maps. Pooling neurons only
connect to one map whereas simple neurons and LCN neu-
rons connect to all maps.

C. Model Parallelism

We use model parallelism to distribute the storage of
parameters and gradient computations to different ma-
chines. In Figure 10, we show how the weights are
divided and stored in different “partitions,” or more
simply, machines (see also (Krizhevsky, 2009)).

D. Further multicore parallelism

Machines in our cluster have many cores which allow
further parallelism. Hence, we split these cores to per-
form different tasks. In our implementation, the cores
are divided into three groups: reading data, sending
(or writing) data, and performing arithmetic compu-
tations. At every time instance, these groups work in
parallel to load data, compute numerical results and
send to network or write data to disks.

E. Parameter sensitivity

The hyper-parameters of the network are chosen to
fit computational constraints and optimize the train-
ing time of our algorithm. These parameters can be
changed at the expense of longer training time or more
computational resources. For instance, one could in-
crease the size of the receptive fields at an expense of
using more memory, more computation, and more net-
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Figure 10. Model parallelism with the network architecture
in use. Here, it can be seen that the weights are divided ac-
cording to the locality of the image and stored on different
machines. Concretely, the weights that connect to the left
side of the image are stored in machine 1 (“partition 1”).
The weights that connect to the central part of the image
are stored in machine 2 (“partition 2”). The weights that
connect to the right side of the image are stored in machine
3 (“partition 3”).

work bandwidth per machine; or one could increase the
number of maps at an expense of using more machines
and memories.

These hyper-parameters also could affect the perfor-
mance of the features. We performed control exper-
iments to understand the effects of the two hyper-
parameters: the size of the receptive fields and the
number of maps. By varying each of these parame-
ters and observing the test set accuracies, we can gain
an understanding of how much they affect the perfor-
mance on the face recognition task. Results, shown
in Figure 11, confirm that the results are only slightly
sensitive to changes in these control parameters.
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Figure 11. Left: effects of receptive field sizes on the test
set accuracy. Right: effects of number of maps on the test
set accuracy.

F. Example out-of-plane rotated face

sequence

In Figure 12, we show an example sequence of 3D
(out-of-plane) rotated faces. Note that the faces
are black and white but treated as a color pic-
ture in the test. More details are available at the
webpage for The Sheffield Face Database dataset –
http://www.sheffield.ac.uk/eee/research/
iel/research/face

Figure 12. A sequence of 3D (out-of-plane) rotated face of
one individual. The dataset consists of 10 sequences.

G. Best linear filters

In the paper, we performed control experiments to
compare our features against “best linear filters.”

This baseline works as follows. The first step is to sam-
ple 100,000 random patches (or filters) from the train-
ing set (each patch has the size of a test set image).
Then for each patch, we compute its cosine distances
between itself and the test set images. The cosine dis-
tances are treated as the feature values. Using these
feature values, we then search among 20 thresholds to
find the best accuracy of a patch in classifying faces
against distractors. Each patch gives one accuracy for
our test set.

The reported accuracy is the best accuracy among
100,000 patches randomly-selected from the training
set.

H. Histograms on the entire test set

Here, we also show the detailed histograms for the neu-
rons on the entire test sets.

The fact that the histograms are distinctive for pos-
itive and negative images suggests that the network
has learned the concept detectors.
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Figure 13. Histograms of neuron’s activation values for the
best face neuron on the test set. Red: the histogram for
face images. Blue: the histogram for random distractors.

Figure 14. Histograms for the best human body neuron on
the test set. Red: the histogram for human body images.
Blue: the histogram for random distractors.

I. Most responsive stimuli for cats and

human bodies

In Figure 16, we show the most responsive stimuli for
cat and human body neurons on the test sets. Note
that, the top stimuli for the human body neuron are
black and white images because the test set images are
black and white (Keller et al., 2009).

J. Implementation details for

autoencoders and K-means

In our implementation, deep autoencoders are also lo-
cally connected and use sigmoidal activation function.
For K-means, we downsample images to 40x40 in or-
der to lower computational costs. We also varied the
parameters of autoencoders, K-means and chose them
to maximize performances given resource constraints.
In our experiments, we used 30,000 centroids for K-
means. These models also employed parallelism in a
similar fashion described in the paper. They also used
1,000 machines for three days.

Figure 15. Histograms for the best cat neuron on the test
set. Red: the histogram for cat images. Blue: the his-
togram for random distractors.

Figure 16. Top: most responsive stimuli on the test set for
the cat neuron. Bottom: Most responsive human body
stimuli on the test set for the human body neuron.


