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Abstract

As the web continues to play an ever increasing role in information exchange, so too is it
becoming the prevailing platform for infecting vulnerable hosts. In this paper, we provide a
detailed study of the pervasiveness of so-called drive-by downloads on the Internet. Drive-by
downloads are caused by URLs that attempt to exploit their visitors and cause malware to be
installed and run automatically. Our analysis of billions of URLs over a 10 month period shows
that a non-trivial amount, of over 3 million malicious URLs, initiate drive-by downloads. An even
more troubling finding is that approximately 1.3% of the incoming search queries to Google’s
search engine returned at least one URL labeled as malicious in the results page. We also explore
several aspects of the drive-by downloads problem. We study the relationship between the user
browsing habits and exposure to malware, the different techniques used to lure the user into the
malware distribution networks, and the different properties of these networks.
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1 Introduction

It should come as no surprise that our increasing reliance on the Internet for many facets of our
daily lives (e.g., commerce, communication, entertainment, etc.) makes the Internet an attrac-
tive target for a host of illicit activities. Indeed, over the past several years, Internet services
have witnessed major disruptions from attacks, and the network itself is continually plagued with
malfeasance [12]. While the monetary gains from the myriad of illicit behaviors being perpetrated
today (e.g., phishing, spam) is just barely being understood [9], it is clear that there is a general
shift in tactics—wide-scale attacks aimed at overwhelming computing resources are becoming less
prevalent, and instead, traditional scanning attacks are being replaced by other mechanisms. Chief
among these is the exploitation of the web, and the services built upon it, to distribute malware.

This change in the playing field is particularly alarming, as unlike traditional scanning attacks
that use push-based infection to increase their population, web-based malware infection follows a
pull-based model. For the most part, the techniques in use today for delivering web-malware can
be divided into two main categories. In the first case, attackers use various social engineering tech-
niques to entice the visitors of a website to download and run malware. The second, more devious
case, involves the underhanded tactic of targeting various browser vulnerabilities to automatically
download and run—i.e., unknowingly to the visitor—the binary upon visiting a website. When
popular websites are exploited, the potential victim base from these so-called drive-by downloads
can be far greater than other forms of exploitation because traditional defenses (e.g., firewalls, dy-
namic addressing, proxies) pose no barrier to infection. While social engineering may, in general, be
an important malware spreading vector, in this work we restrict our focus and analysis to malware
delivered via drive-by downloads.

Recently, Provos et al. [17] provided insights on this new phenomenon, and presented a cursory
overview of web-based malware. Specifically, they described a number of server- and client-side
exploitation techniques that are used to spread malware, and elucidated the mechanisms by which
a successful exploitation chain can start and continue to the automatic installation of malware. In
this paper, we present a detailed analysis of the malware serving infrastructure on the web using a
large corpus of malicious URLs collected over a period of ten months. Using this data, we estimate
the global prevalence of drive-by downloads, and identify several trends for different aspects of the
web malware problem. Our results reveal an alarming contribution of Chinese-based web sites to
the web malware problem– overall, 67% of the malware distribution servers and 64% of the web
sites that link to them are located in China. These results raise serious question about the security
practices employed by web site administrators.
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Additionally, we study several properties of the malware serving infrastructure, and show that
(for the most part) the malware serving networks are composed of tree-like structures with strong
fan-in edges leading to the main malware distribution sites. These distribution sites normally
deliver the malware to the victim after a number of indirection steps traversing a path on the
distribution network tree. More interestingly, we show that several malware distribution networks
have linkages that can be attributed to various relationships.

In general, the edges of these malware distribution networks represent the hop-points used to lure
users to the malware distribution site. By investigating these edges, we reveal a number of causal
relationships that eventually lead to browser exploitation. More troubling, we show that drive-by
downloads are being induced by mechanisms beyond the conventional techniques of controlling
the content of compromised websites. In particular, our results reveal that ad serving networks
are increasingly being used as hops in the malware serving chain. We attribute this increase to
syndication, a common practice which allows advertisers to rent out part of their advertising space
to other parties. These findings are problematic as they show that even protected web-servers can
be used as vehicles for transferring malware. Additionally, we also show that contrary to common
wisdom, the practice of following “safe browsing” habits (i.e., avoiding gray content) by itself is
not an effective safeguard against exploitation.

The remainder of this paper is organized as follows. In Section 2, we provide background
information on how vulnerable computer systems can be compromised solely by visiting a malicious
web page. Section 3 gives an overview of our data collection infrastructure and in Section 4
we discuss the prevalence of malicious web sites on the Internet. In Section 5, we explore the
mechanisms used to inject malicious content into web pages. We analyze several aspects of the web
malware distribution networks in Section 6. In Section 7 we provide an overview of the impact of
the installed malware on the infected system. Section 8 presents related work. Finally, we conclude
in Section 9.

2 Background

Unfortunately, there are a number of existing exploitation strategies for installing malware on a
user’s computer. One common technique for doing so is by remotely exploiting vulnerable network
services. However, lately, this attack strategy has become less successful (and presumably, less
profitable). Arguably, the proliferation of technologies such as Network Address Translators (NATs)
and Firewalls make it difficult to remotely connect and exploit services running on users’ computers.
This, in turn, has lead attackers to seek other avenues of exploitation. An equally potent alternative
is to simply lure web users to connect to (compromised) malicious servers that subsequently deliver
exploits targeting vulnerabilities of web browsers or their plugins.

Adversaries use a number of techniques to inject content under their control into benign websites.
In many cases, adversaries exploit web servers via vulnerable scripting applications. Typically, these
vulnerabilities (e.g., in phpBB2 or InvisionBoard) allow an adversary to gain direct access to the
underlying operating system. That access can often be escalated to super-user privileges which in
turn can be used to compromise any web server running on the compromised host. In general,
upon successful exploitation of a web server the adversary injects new content to the compromised
website. In most cases, the injected content is a link that redirects the visitors of these websites
to a URL that hosts a script crafted to exploit the browser. To avoid visual detection by website
owners, adversaries normally use invisible HTML components (e.g., zero pixel IFRAMEs) to hide the
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Figure 1: A typical Intercation with of drive-by download victim with a landing URL .

injected content.
Another common content injection technique is to use websites that allow users to contribute

their own content, for example, via postings to forums or blogs. Depending on the site’s configu-
ration, user contributed content may be restricted to text but often can also contain HTML such
as links to images or other external content. This is particularly dangerous, as without proper
filtering in place, the adversary can simply inject the exploit URL without the need to compromise
the web server.

Figure 1 illustrates the main phases in a typical interaction that takes place when a user visits
a website with injected malicious content. Upon visiting this website, the browser downloads the
initial exploit script (e.g., via an IFRAME). The exploit script (in most cases, javascript) targets
a vulnerability in the browser or one of its plugins. Interested readers are referred to Provos et
al. [17] for a number of vulnerabilities that are commonly used to gain control of the infected
system. Successful exploitation of one of these vulnerabilities results in the automatic execution of
the exploit code, thereby triggering a drive-by download. Drive-by downloads start when the exploit
instructs the browser to connect to a malware distribution site to retrieve malware executable(s).
The downloaded executable is then automatically installed and started on the infected system.

Finally, attackers use a number of techniques to evade detection and complicate forensic anal-
ysis. For example, the use of randomly seeded obfuscated javascript in their exploit code is not
uncommon. Moreover, to complicate network based detection attackers use a number or redirection
steps before the browser eventually contacts the malware distribution site.

3 Infrastructure and Methodology

Our primary objective is to identify malicious web sites (i.e., URLs that trigger drive-by downloads)
and help improve the safety of the Internet. Before proceeding further with the details of our
data collection methodology, we first define some terms we use throughout this paper. We use the
terms landing pages and malicious URLs interchangeably to denote the URLs that initiate drive-by
downloads when users visit them. In our subsequent analysis, we group these URLs according to
their top level domain names and we refer to the resulting set as the landing sites. In many cases,
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the malicious payload is not hosted on the landing site, but instead loaded via an IFRAME or a
SCRIPT from a remote site. We call the remote site that hosts malicious payloads a distribution
site. In what follows, we detail the different components of our data collection infrastructure.

Pre-processing Phase. As Figure 2 illustrates, the data processing starts from a large web
repository maintained by Google. Our goal is to inspect URLs from this repository and identify the
ones that trigger drive-by downloads. However, exhaustive inspection of each URL in the repository
is prohibitively expensive due to the large number of URLs in the repository (on the order of billions).
Therefore, we first use light-weight techniques to extract URLs that are likely malicious then subject
them to a more detailed analysis and verification phase.

Figure 2: URL selection and verification workflow.

We employ the mapreduce [7] framework to process billions of web pages in parallel. For
each web page, we extract several features, some of which take advantage of the fact that many
landing URLs are hijacked to include malicious payload(s) or to point to malicious payload(s) from
a distribution site. For example, we use “out of place” IFRAMEs, obfuscated JavaScript, or IFRAMEs
to known distribution sites as features. Using a specialized machine-learning framework [5], we
translate these features into a likelihood score. We employ five-fold cross-validation to measure the
quality of the machine-learning framework. The cross-validation operates by splitting the data set
into 5 randomly chosen partitions and then training on four partitions while using the remaining
partition for validation. This process is repeated five times. For each trained model, we create an
ROC 1 curve and use the average ROC curve to estimate the overall accuracy. Using this ROC
curve, we estimate the false positive and detection rate for different thresholds. Our infrastructure
pre-processes roughly one billion pages daily. In order to fully utilize the capacity of the subsequent
detailed verification phase, we choose a threshold score that results in an outcome false positive
rate of about 10−3 with a corresponding detection rate of approximately 0.6. This amounts to
about one million URLs that we subject to the computationally more expensive verification phase.

In addition to analyzing web pages in the crawled web repository, we also regularly select several
hundred thousands URLs for in-depth verification. These URLs are randomly sampled from popular
URLs as well as from the global index. We also process URLs reported by users.

Verification Phase. This phase aims to verify whether a candidate URL from the pre-processing
phase is malicious (i.e., initiates a drive-by download). To do that, we developed a large scale
web-honeynet that simultaneously runs a large number of Microsoft Windows images in virtual
machines. Our system design draws on the experience from earlier work [22], and includes unique
features that are specific to our goals. In what follows we discuss the details of the URL verification
process.

Each honeypot instance runs an unpatched version of Internet Explorer. To inspect a candidate
URL , the system first loads a clean Windows image then automatically starts the browser and

1ROC stands for receiver operating characteristic which plots the false-positive rate against the detection rate.
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instructs it to visit the candidate URL . We detect malicious URLs using a combination of execution
based heuristics and results from anti-virus engines. Specifically, for each visited URL we run the
virtual machine for approximately two minutes and monitor the system behavior for abnormal
state changes including file system changes, newly created processes and changes to the system’s
registry. Additionally, we subject the HTTP responses to virus scans using multiple anti-virus
engines. To detect malicious URLs , we develop scoring heuristics used to determines the likelihood
that a URL is malicious. We determine a URL score based on a combined measure of the different
state changes resulting from visiting the URL . Our heuristics score URLs based on the number of
created processes, the number of observed registry changes and the number of file system changes
resulting from visiting the URL .

To limit false positives, we choose a conservative decision criteria that uses an empirically derived
threshold to mark a URL as malicious. This threshold is set such that it will be met if we detect
changes in the system state, including the file system as well as creation of new processes. A visited
URL is marked as malicious if it meets the threshold and one of the incoming HTTP responses is
marked as malicious by at least one anti-virus scanner. Our extensive evaluation shows that this
criteria introduces negligible false positives. Finally, a URL that meets the threshold requirement
but has no incoming payload flagged by any of the anti-virus engines, is marked as suspicious.

On average, the detailed verification stage processes about one million URLs daily, of which
roughly 25, 000 new URLs are flagged as malicious. The verification system records all the network
interactions as well as the state changes. In what follows, we describe how we process the net-
work traces associated with the detected malicious URLs to shed light on the malware distribution
infrastructure.

Constructing the Malware Distribution Networks. To understand the properties of the web
malware serving infrastructure on the Internet, we analyze the recorded network traces associated
with the detected malicious URLs to construct the malware distribution networks. We define a
distribution network as the set of malware delivery trees from all the landing sites that lead to a
particular malware distribution site. A malware delivery tree consists of the landing site, as the leaf
node, and all nodes (i.e., web sites) that the browser visits until it contacts the malware distribution
site (the root of the tree). To construct the delivery trees we extract the edges connecting these
nodes by inspecting the Referer header from the recorded successive HTTP requests the browser
makes after visiting the landing page. However, in many cases the Referer headers are not sufficient
to extract the full chain. For example, when the browser redirection results from an external script
the Referrer, in this case, points to the base page and not the external script file. Additionally,
in many cases the Referer header is not set (e.g., because the requests are made from within a
browser plugin or newly-downloaded malware).

To connect the missing causality links, we interpret the HTML and JavaScript content of the
pages fetched by the browser and extract all the URLs from the fetched pages. Then, to identify
causal edges we look for any URLs that match any of the HTTP fetches that were subsequently
visited by the browser. In some cases, URLs contain randomly generated strings, so some requests
cannot be matched exactly. In these cases, we apply heuristics based on edit distance to identify
the most probable parent of the URL . Finally, for each malware distribution site, we construct its
associated distribution network by combining the different malware delivery trees from all landing
pages that lead to that site.
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Our infrastructure has been live for more than one year, continuously monitoring the web and
detecting malicious URLs . In what follows, we report our findings based on analyzing data collected
during that time period. Again, recall that we focus here on the pervasiveness of malicious activity
(perpetrated by drive-by downloads) that is induced simply by visiting a landing page, thereafter
requiring no additional interaction on the client’s part (e.g., clicking on embedded links). Finally,
we note that due to the large scale of our data collection and some infrastructural constraints,
a number longitudinal aspects of the web malware problem (e.g., the lifetime of the different
malware distribution networks) are beyond the scope of this paper and are a subject of our future
investigation.

4 On the Prevalence of Drive-by Downloads

We provide an estimate of the prevalence of web-malware based on data collected over a period
of ten months (Jan 2007 - Oct 2007). During that period, we subjected over 60 million URLs for
in-depth processing through our verification system. Overall, we detected more than 3 million
malicious URLs hosted on more than 180 thousand landing sites. Overall, we observed more than
9 thousand different distribution sites. The findings are summarized in Table 1. Overall, these
results show the scope of the problem, but do not necessarily reflect the exposure of end-users to
drive-by downloads. In what follows, we attempt to address this question by estimating the overall
impact of the malicious web sites.

Data collection period Jan - Oct 2007
Total URLs checked in-depth 66, 534, 330
Total suspicious landing URLs 3, 385, 889
Total malicious landing URLs 3, 417, 590
Total malicious landing sites 181, 699
Total distribution sites 9, 340

Table 1: Summary of Collected Data.

Apr-2007 May-2007 Jun-2007 Jul-2007 Aug-2007Sep-2007 Oct-2007 Nov-2007Dec-2007Dec-2007 Jan-2008

Date

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
at

io
 (

%
)

Figure 3: Fraction of search queries that resulted in at
least one malicious URL . (7-day running avg.)

4.1 Impact on the end-user

To study the potential impact of malicious web sites on the end-users, we first examine the fraction
of incoming search queries to Google’s search engine that return at least one URL labeled as malicious
in the results page. Figure 3 provides a running average of this fraction. The graph shows an
increasing trend in the search queries that return at least one malicious result, with an average
approaching 1.3% of the overall incoming search queries. This finding is troubling as it shows that
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a significant fraction of search queries return results that may expose the end-user to exploitation
attempts.

To further understand the importance of this finding, we inspect the prevalence of malicious
sites among the links that appear most often in Google search results. From the top one million
URLs appearing in the search engine results, about 6, 000 belong to sites that have been verified as
malicious at some point during our data collection. Upon closer inspection, we found that these
sites appear at uniformly distributed ranks within the top million web sites—with the most popular
landing page having a rank of 1, 588. These results further highlight the significance of the web
malware threat as they show the extent of the malware problem; in essence, about 0.6% of the top
million URLs that appeared most frequently in Google’s search results led to exposure to malicious
activity at some point.

4.2 Geographic locality

One noteworthy result is the geographic locality of web based malware. Tables 2 and 3 show
the geographic breakdown of IP addresses of the malware distribution sites and the landing sites,
respectively. The results show that a significant number of Chinese-based sites contribute to the
drive-by problem. Overall, 67% of the malware distribution sites and 64.6% of the landing sites are
hosted in China. These findings provide more evidence [11] of poor security practices by web site
administrators (e.g., running out-dated and unpatched versions of the web server software).

Finally, we examined the geographic locality of the web-malware distribution networks as a
whole (i.e., the correlation between the location of a distribution site and the landing sites point-
ing to it). Interestingly, the malware distribution networks are highly localized within common
geographical boundaries. Upon closer investigation, we see that this locality varies across differ-
ent countries, and is most evident in China, with 96% of the landing sites pointing to malware
distribution servers hosted in China.

Malware Dist. site % of all
hosting country distribution sites

China 67.0%
United States 15.0%
Russia 4.0%
Malaysia 2.2%
Korea 2.0%
Panama 1.1%
Germany 1.0%
Hong Kong 0.8%
Turkey 0.7%
France 0.7%
Other 5.7%

Table 2: Hosting countries for the distribution sites.

Landing site % of all
hosting country landing sites

China 64.4%
United States 15.6%
Russia 5.6%
Korea 2.0%
Germany 2.0%
Czech Republic 0.9%
Ukraine 0.8%
Taiwan 0.8%
Poland 0.7%
Canada 0.6%
Other 6.5%

Table 3: Hosting countries for the landing sites.

4.3 Impact of browsing habits

To examine the potential impact of users’ browsing habits on their exposure to web exploitation,
where possible, we map the set of detected landing URLs to the DMOZ functional categories [1]2. We

2This mapping is readily available at Google.
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examined two different data sets: the first is a sample of 7.2 million randomly selected URLs and
the second is all 3.3 million malicious URLs found during the course of this study. Of the two
URL sets, we were able to categorize about 50% and 30%, respectively. Figure 4 shows the top
DMOZ categories for the inspected URLs. While the DMOZ categorization is far from perfect,
the results in Figure 4.a show that browsing gray content, such as adult web pages, may increase
the risk of exploitation. Among the set of landing pages detected in the random set of URLs , we
found that approximately 0.24% were adult web pages whereas the other categories were as low
as 0.018%. That said, as Figure 4.b shows, the total number of drive-by downloads on such pages
is much lower compared to the other categories, demonstrating that ordinary web pages are also
contributors to web exploitation. Therefore, even if someone was to avoid adult web pages, s/he
would still be exposed to risk. As we show later, this can be explained by the mechanisms being
used to distribute web malware.
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Figure 4: Distribution of malicious URLs in DMOZ categories.

5 Malicious Content Injection

In Section 4, we showed that exposure to web-malware is not strongly tied to a particular browsing
habit. Our assertion is that this is due, in part, to the fact that drive-by downloads are triggered
by visiting staging sites that are not necessarily of malicious intent but have content that lures the
visitor into the malware distribution network.

In this section, we validate this conjecture by studying the properties of the web sites that
participate in the malware delivery trees. As discussed in Section 2, attackers use a number of
techniques to control the content of benign web sites and turn them into nodes in the malware
distribution networks. These techniques can be divided into two categories: web server compromise
and third party contributed content (e.g., blog posts). Unfortunately, it is generally difficult to
determine the exact contribution of either category. In fact, in some cases even manual inspection
of the content of each web site may not lead to conclusive evidence regarding the manner in which
the malicious content was injected into the web site. Instead, in this section we provide insights
into some features of these web sites that may explain their presence in the malware delivery trees.
We only focus on the features that we can determine in an automated fashion. Specifically, where
possible, we first inspect the version of the software running on the web server for each landing site.
Additionally, we explore one important angle that we discovered which contributes significantly to
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the distribution of web malware—namely, drive-by downloads via Ads.

5.1 Web Server Software

We first begin by examining (where possible) the software running on the web-servers for all the
landing sites that lead to the malware distribution sites. Specifically, we collected all the “Server”
and “X-Powered-By” header tokens from each landing page (see Table 4). Not surprisingly, of
those servers that reported this information, a significant fraction were running outdated versions
of software with well known vulnerabilities 3. For example, 38.1% of the Apache servers and 39.9%
of servers with PHP scripting support reported a version with security vulnerabilities. Overall,
these results reflect the weak security practices applied by the web site administrators. Clearly,
running unpatched software with known vulnerabilities increases the risk of content control via
server exploitation.

Server Software Servers Unknown version Up-to-date Old version

Apache 55,088 14,569 (26.45%) 19,527 (35.45%) 20,992 (38.1%)
Microsoft IIS 113,905 n/a n/a n/a

Unknown 12,706 n/a n/a n/a

Scripting Software

PHP 27,873 2,361 (8.5%) 14,379 (51.6%) 11,133 (39.9%)

Table 4: Server version for landing sites. In the case of Microsoft IIS, we could not verify their version.

5.2 Drive-by Downloads via Ads

Today, the majority of Web advertisements are distributed in the form of third party content to
the advertising web site. This practice is somewhat worrisome, as a web page is only as secure as
it’s weakest component. In particular, even if the web page itself does not contain any exploits,
insecure Ad content poses a risk to advertising web sites. With the increasing use of Ad syndication
(which allows an advertiser to sell advertising space to other advertising companies that in turn can
yet again syndicate their content to other parties), the chances that insecure content gets inserted
somewhere along the chain quickly escalates. Far too often, this can lead to web pages running
advertisements to untrusted content. This, in itself, represents an attractive avenue for distributing
malware, as it provides the adversary with a way to inject content to web sites with large visitor
base without having to compromise any web server.

To assess the extent of this behavior, we estimate the overall contribution of Ads to drive-by
downloads. To do so, we construct the malware delivery trees from all detected malicious URLs fol-
lowing the methodology described in Section 3. For each tree, we examine every intermediary node
for membership in a set of 2, 000 well known advertising networks. If any of the nodes qualify,
we count the landing site as being infectious via Ads. Moreover, to highlight the impact of the
malware delivered via Ads relative to the other mechanisms, we weight the landing sites associated
with Ads based on the frequency of their appearance in Google search results compared to that

3We consider a version as outdated if it is older than the latest corresponding version released by January, 2007
(the start date for our data collection).
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of all landing sites. Figure 5 shows the percentage of landing sites belonging to Ad networks. On
average, 2% of the landing sites were delivering malware via advertisements. More importantly, the
overall weighted share for those sites was substantial—on average, 12% of the overall search results
that returned landing pages were associated with malicious content due to unsafe Ads. This result
can be explained by the fact that Ads normally target popular web sites, and so have a much wider
reach. Consequently, even a small fraction of malicious Ads can have a major impact (compared
to the other delivery mechanisms).

Another interesting aspect of the results shown in Figure 5 is that Ad-delivered drive-by down-
loads seem to appear in sudden short-lived spikes. This is likely due to the fact that Ads appearing
on several advertising web sites are centrally controlled, and therefore allow the malicious content
to appear on thousands of web sites sites almost instantaneously. Similarity, once detected, these
Ads are removed simultaneously, and so disappear as quickly as they appeared. For this reason,
we notice that drive-by downloads delivered by other content injection techniques (e.g., individual
web servers compromise) have more lasting effect compared to Ad delivered malware, as each web
site must be secured independently.
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The general practice of Ad syndication contributes significantly to the rise of Ad delivered
malware. Our results show that overall 75% of the landing sites that delivered malware via Ads use
multiple levels of Ad syndication. Inspecting the delivery trees that featured syndication reveals a
total of 55 unique Ad networks participating in these trees. We further studied the relative role
of the different networks by evaluating the frequency of appearance of each Ad network in the
malware delivery trees. Interestingly, our results show that few networks appear in most of the
malware delivery trees. In particular, one network appeared in 60% of the chains that delivered
malware via Ads. Closer inspection revealed that this network belongs to a major Ad provider.
Consequently, the high involvement of this network is likely due to its general prominence in the
market.

To further understand how far trust would have to extend in order to limit the Ad delivered
drive-by downloads, we plot the distribution of the path length from the landing site leading to
the malware distribution sites for each delivery tree. The edges connecting the nodes in these
paths reflect the number of redirects a browser has to follow before receiving the final payload.
Hence, for syndicated Ads that delivered malware the path length is indicative of the number of
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syndication steps before reaching the final Ad; in our case, the malware payload. Figure 6 shows
the distribution of the number of redirects for syndicated Ads that delivered malware relative to
the other malicious landing URLs . The results are quite telling: malware delivered via Ads exhibits
longer delivery chains, in 50% percent of all cases, more than 6 redirection steps were required
before receiving the malware payload. Clearly, it is increasingly difficult to maintain trust along
such long delivery chains.

Finally we further elucidate this problem via an interesting example from our data corpus.
The landing page in our example refers to a Dutch radio station’s web site. The radio station in
question was showing a banner advertisement from a German advertising site. Using JavaScript,
that advertiser redirected to a prominent advertiser in the US, which in turn redirected to yet
another advertiser in the Netherlands. That advertiser redirected to another advertisement (also
in the Netherlands) that contained obfuscated JavaScript, which when un-obfuscated, pointed to
yet another JavaScript hosted in Austria. The final JavaScript was encrypted and redirected the
browser via multiple IFRAMEs to adxtnet.net, an exploit site hosted in Austria. This resulted in
the automatic installation of multiple Trojan Downloaders. While it is unlikely that the initial
advertising companies were aware of the malware installations, each redirection gave another party
control over the content on the original web page—with predictable consequences.

6 Properties of the Malware Distribution Infrastructure

In this section, we explore various properties of the hosting infrastructure for web malware. In
particular, we explore the size of of the malware distribution networks, and examine the distribution
of binaries hosted across sites. We expand on each in turn.

6.1 Size of the Malware Distribution Networks

Recall that a malware distribution network constitutes all the landing sites that point to a sin-
gle malware distribution site. Using the methodology described in Section 3, we identified the
distribution networks associated with each malware distribution site.

We first evaluate their size in terms of the total number of landing sites that point to them.
Figure 7 shows the distribution of sizes for the different distribution networks. The graph reveals
two main types of malware distribution networks: (1) networks that use only one landing site.
These networks make up roughly 45% of all detected malware distribution sites. In about 40% of
these networks the malware is hosted directly on the landing sites (i.e. the landing site is the same
as the distribution site), and (2) networks that have multiple landing sites. As the graph shows,
these networks can grow to have well over 21,000 landing sites pointing to them.

6.2 IP Space Locality

We also examined the network location of the malware distribution servers and the landing sites
linking to them. Figure 8 shows that the malware distribution sites are concentrated in a limited
number of /8 prefixes. About 70% of the malware distribution sites have IP addresses within
58.* -- 61.* and 209.* -- 221.* network ranges. Interestingly, Anderson et al. [3] observed
comparable IP space concentrations for the scam hosting infrastructure. The landing sites, however
exhibit relatively more IP space diversity; Roughly 50% of the landing sites fell in the above ranges.
We further investigated the Autonomous System (AS) locality of the malware distribution sites by
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Figure 7: CDF of the number of landing sites pointing
to a particular malware distribution site.

mapping their IP addresses to the AS responsible for the longest matching prefixes for these IP
addresses. We use the latest BGP snapshot from Routeviews [20] to do the IP to AS mapping.
Our results show that all the malware distribution sites’ IP addresses fall into only 500 ASes.
Figure 9 shows the cumulative fraction of these sites across the 500 ASes hosting them (sorted in
descending order by the number of sites in each AS). The graph further shows the highly nonuniform
concentration of the malware distribution sites— 95% of these sites map to only 210 ASes. Finally,
the results of mapping the landing sites (not shown) produced 2, 517 ASes with 95% of the sites
falling in these 500 ASes.
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Figure 8: The cumulative fraction of malware
distribution sites over the /8 IP prefix space.
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Figure 9: The cumulative fraction of the malware
distribution sites across the different ASes.

6.3 Distribution of Malware Binaries Across Domains

The distribution of malware across domains also gives rise to some interesting insights. Figure 10
shows the distribution of the number of unique malware binaries (as inferred from their MD5
hash) downloaded from each malware distribution site. As the graph shows, approximately 42%
of the distribution sites delivered a single malware binary. The remaining distribution sites hosted
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multiple distinct binaries over their observation period in our data, with 3% of the servers hosting
more than 100 binaries. In many cases, we observed that the multiple payloads reflect deliberate
obfuscation attempts to evade detection. Finally, we observed a number of cases where the same
hash was hosted on multiple distribution servers. This suggests that these distribution servers were
controlled by the same entity. Next, we take a more in-depth analysis by studying the different
forms of relationships among different distribution networks.
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Figure 10: CDF of the number of unique binaries
downloaded from each malware distribution site.

6.4 Relationships Among Different Malware Distribution Networks

We now examine some of the relationships between the different malware distribution networks we
observed throughout our measurement period. Specifically, we investigate the common properties
of the hosting infrastructure across the malware distribution sites. We also evaluate the degree
of overlap among the landing sites linking to the different malware distribution sites. Finally, we
investigate whether the malware content is replicated among different distribution servers.

Malware hosting infrastructure. Throughout our measurement period we detected 9, 430 mal-
ware distribution sites. In 90% of the cases each site is hosted on a single IP address. The remaining
10% sites are hosted on IP addresses that host multiple malware distribution sites. Our results
show IP addresses that hosted up to 210 malware distribution sites. Closer inspection revealed that
these addresses refer to public hosting servers that allow users to create their own accounts. These
accounts appear as sub-folders of the the virtual hosting server DNS name (e.g., 512j.com/akgy,
512j.com/alavin, 512j.com/anti) or in many cases as separate DNS aliases that resolve to the IP
address of the hosting server. We also observed several cases where the hosting server is a public blog
that allows users to have their own pages (e.g., mihanblog.com/abadan2, mihanblog.com/askbox).

Overlapping landing sites. We further evaluate the overlap between the landing sites that
point to the different malware distribution sites. To do so, we calculate the pairwise intersection
between the sets of the landing sites pointing to each of the distribution sites in our data set. For
a distribution network i with a set of landing sites Xi and network j with the set of landing sites
Xj , the normalized pairwise intersection of the two networks, Ci,j , is calculated as,
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Ci,j =
|Xi ∩ Xj|

|Xi|
(1)

Where |X | is the number of elements in the set X. Interestingly, our results showed that 80%
of the distribution networks share at least one landing page. Figure 11 shows the normalized
pair-wise landing sets intersection across these distribution networks. The graph reveals a strong
overlap among the landing sites for the related network pairs. These results suggest that many
landing sites are either shared among multiple distribution networks. For example, in several cases
we observed landing pages with multiple IFRAMEs linking to different malware distribution sites.
Finally, we note that the sudden jump to a pair-wise score of one is mostly due to network pairs in
which the landing sites for one network are a subset of those for the other network.
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Figure 11: CDF of the normalized pairwise in-
tersection between landing sites for the different
malware distribution networks.
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section between malware hashes for the different
malware distribution networks.

Content replication across malware distribution sites. We finally evaluate the extent to
which malware is replicated across the different distribution sites. To do so, we use the same
metric in Equation 1 to calculate the normalized pairwise intersection of the set of malware hashes
served by each pair of distribution sites. Our results show that in 25% of the malware distribution
sites, at least one binary is shared between a pair of sites. While malware hashes exhibit frequent
changes as a result of obfuscation, our results suggest that there is still a level of content replication
across the different sites. Figure 12 shows the normalized pair-wise intersection of the malware sets
across these distribution networks. As the graph shows, binaries are less frequently shared between
distribution sites compared to landing sites.

7 Post Infection Impact

Recall that upon visiting a malicious URL, the browser downloads the initial exploit. The exploit (in
most cases, javascript) targets a vulnerability in the browser or one of its plugins and takes control
of the infected system, after which it retrieves and runs the malware executable(s) downloaded from
the malware distribution site. Rather than inspecting the behavior of each phase in isolation, our
goal is to give an overview of the collective changes that happen to the system state after visiting a
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malicious URL . Figure 13 shows the distribution of the number of Windows executables downloaded
after visiting a malicious URL as observed from monitoring the interaction between the browser and
the malware distribution site. As the graph shows, visiting malicious URLs can lead to a large
number of downloads (8 on average, but as large as 60 in the extreme case).
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Figure 13: CDF of the number of downloaded ex-
ecutables as a result of visiting a malicious URL
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started after visiting a malicious URL

Another noticeable outcome is the increase in the number of running processes on the virtual
machine. This increase is associated with the automatic execution of binaries. For each landing
URL , we collected the number of processes that were started on the guest operating system after
being infected with malware. Figure 14 shows the CDF of the number of processes launched after
the system is infected. As the graph shows visiting malicious URLs produces a noticeable increase in
the number of processes, in some cases, inducing so much overhead that they “crashed” the virtual
machine.

Additionally, we examine the type of registry changes that occur when the malware executes.
Overall, we detected registry changes after visiting 57.5% of the landing pages. We divide these
changes into the following categories: BHO indicates that the malware installed a Browser Helper
Object that can access privileged state in the browser; Preferences means that the browser home
page, default search engine or name server where changed by the malware; Security indicates that
malware changed firewall settings or even disabled automatic software updates; Startup indicates
that the malware is trying to persist across reboots. Notice that these categories are not mutually
exclusive (i.e., a single malicious URL may cause changes in multiple categories). Table 5 summarizes
the percentage of registry changes per category. Notice that “Startup” changes are more prevalent
indicating that malware tries to persist even after the machine is rebooted.

Category BHO Preferences Security Startup

URLs % 6.99% 23.5% 36.18% 51.27%

Table 5: Registry changes from drive-by downloads.

In addition to the registry changes, we analyzed the network activity of the virtual machine
post infection. In our system, the virtual machines are allowed to perform only DNS and HTTP
connections. Table 6 shows the percentage of connection attempts per destination port. Even
though we omit the HTTP connections originating from the browser, HTTP is still the most
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prevalent port for malicious activity post-infection. This is due to “downloader” binaries that fetch,
in some cases, up to 60 binaries over HTTP. We also observe a significant percentage of connection
attempts to typical IRC ports, accounting for more than 50% of all non-HTTP connections. As
a number of earlier studies have already shown (e.g., [4, 16, 6, 18, 19, 10]), the IRC connection
attempts are most likely for unwillingly (to the owner) adding the compromised machine to an IRC
botnet, confirming the earlier conjecture by Provos et al. [17] regarding the connection between
web malware and botnets.

Protocol/Port HTTP (80, 8080) IRC (6660-7001) FTP (21) UPnP (1900) Mail (25) Other

Connections % 87% 8.3% 0.9% 0.8% 0.75% 2.25%

Table 6: Most frequently contacted ports directly by the downloaded malware.

7.1 Anti-virus engine detection rates

As we discussed earlier, web based malware uses a pull-based delivery mechanism in which a victim
is required to visit the malware hosting server or any URL linking to it in order to download the
malware. This behavior puts forward a number of challenges to defense mechanisms (e.g., malware
signature generation schemes) mainly due to the inadequate coverage of the malware collection
system. For example, unlike active scanning malware which uses a push-based delivery mechanism
(and so sufficient placement of honeypot sensors can provide good coverage), the web is significantly
more sparse and, therefore, more difficult to cover.

In what follows, we evaluate the potential implications of the web malware delivery mechanism
by measuring the detection rates of several well known anti-virus engines 4. Specifically, we evaluate
the detection rate of each anti-virus engine against the set of suspected malware samples collected
by our infrastructure. Since we can not rely on anti-virus engines, we developed a heuristic to detect
these suspected binaries before subjecting them to the anti-virus scanners. For each inspected URL

via our in-depth verification system we test whether visiting the URL caused the creation of at least
one new process on the virtual machine. For the URLs that satisfy this condition, we simply extract
any binary 5 download(s) from the recorded HTTP response and “flag” them as suspicious.

We applied the above methodology to identify suspicious binaries on a daily basis over a one
month period of April, 2007. We subject each binary for each of the anti-virus scanners using the
latest virus definitions on that day. Then, for an anti-virus engine, the detection rate is simply the
number of detected (flagged) samples divided by the total number of suspicious malware instances
inspected on that day. Figure 15 illustrates the individual detection rates of each of the anti-virus
engines. The graph reveals that the detection capability of the anti-virus engines is lacking, with
an average detection rate of 70% for the best engine. These results are disturbing as they show that
even the best anti-virus engines in the market (armed with their latest definitions) fail to cover a
significant fraction of web malware.

False Positives. Notice that the above strategy may falsely classify benign binaries as malicious.
To evaluate the false positives, we use the following heuristic: we optimistically assume that all sus-
picious binaries will eventually be discovered by the anti-virus vendors. Using the set of suspicious

4For contractual reasons, we keep the identities of the anti-virus vendors anonymous.
5We only restrict our analysis to Windows executables identified by searching for PE headers in each payload.
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Figure 15: Detection rates of 3 anti-virus
engines.
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Figure 16: Estimated false positive rate.

binaries collected over a month historic period, we re-scan all undetected binaries two months later
(in July, 2007) using the latest virus definitions. Then, all undetected binaries from the rescanning
step are considered false positives. Figure 16 shows the results of applying this heuristic for the
binaries analyzed earlier. Under our assumptions, the earlier analysis is fairly accurate with false
positive rates of less than 10%. We further investigated a number of binaries identified as false
positives and found that a number of popular installers exhibit a behavior similar to that of drive-
by downloads, where the installer process first runs and then downloads the associated software
package. To minimize the impact of false positives, we created a white-list of all known benign
downloads, and all binaries in the white-list are exempted from the analysis in this paper.

Of course, we are being overly conservative here as our heuristic does not account for binaries
that are never detected by any anti-virus engine. However, for our goals this method produces
an upper bound for the resulting false positives. As an additional benchmark we asked for direct
feedback from anti-virus vendors about the accuracy of the undetected binaries that we (now) share
with them. On average, they reported about 6% false positives in the shared binaries, which is
within the bounds of our prediction.

8 Related Work

Virtual machines have been used as honeypots for detecting unknown attacks by several researchers
[2, 14, 15, 22, 23]. Although, honeypots have traditionally been used mostly for detecting attacks
against servers, the same principles also apply to client honeypots (e.g., an instrumented browser
running on a virtual machine). For example, Moshchuk et al. used client-side techniques to study
spyware on the web (by crawling 18 million URLs in May 2005 [15]). Their primary focus was not
on detecting drive-by downloads, but in finding links to executables labeled spyware by an adware
scanner. Additionally, they sampled 45, 000 URLs for drive-by downloads and showed a decrease over
time. However, the fundamental limitation of analyzing the malicious nature of URLs discovered
by “spidering” is that a crawl can only follow content links, whereas the malicious nature of a
page is often determined by the web hosting infrastructure. As such, while the study of Moshchuk
et al. provides valuable insights, a truly comprehensive analysis of this problem requires a much
more in-depth crawl of the web. As we were able to analyze many billions of URLs , we believe our
findings are more representative of the state of the overall problem.
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More closely related is the work of Provos et al. [17] and Seifert et al. [21] which raised awareness
of the threat posed by drive-by downloads. These works are aimed at explaining how different web
page components are used to exploit web browsers, and provides an overview of the different
exploitation techniques in use today. Wang et al. proposed an approach for detecting exploits
against Windows XP when visiting webpages in Internet Explorer [23]. Their approach is capable
of detecting zero-day exploits against Windows and can determine which vulnerability is being
exploited by exposing Windows systems with different patch levels to dangerous URLs. Their results,
on roughly 17, 000 URLs, showed that about 200 of these were dangerous to users.

This paper differs from all of these works in that it offers a far more comprehensive analysis of
the different aspects of the problem posed by web-based malware, including an examination of its
prevalence, the structure of the distribution networks, and the major driving forces.

Lastly, malware detection via dynamic tainting analysis may provide deeper insight into the
mechanisms by which malware installs itself and how it operates [8, 13, 24]. In this work, we
are more interested in structural properties of the distribution sites themselves, and how malware
behaves once it has been implanted. Therefore, we do not employ tainting because of its compu-
tational expense, and instead, simply collect changes made by the malware that do not require
having the ability to trace the information flow in detail.

9 Conclusion

The fact that malicious URLs that initiate drive-by downloads are spread far and wide raises concerns
regarding the safety of browsing the Web. However, to date, little is known about the specifics
of this increasingly common malware distribution technique. In this work, we attempt to fill in
the gaps about this growing phenomenon by providing a comprehensive look at the problem from
several perspectives. Our study uses a large scale data collection infrastructure that continuously
detects and monitors the behavior of websites that perpetrate drive-by downloads. Our in-depth
analysis of over 66 million URLs (spanning a 10 month period) reveals that the scope of the problem
is significant. For instance, we find that 1.3% of the incoming search queries to Google’s search
engine return at least one link to a malicious site.

Moreover, our analysis reveals several forms of relations between some distribution sites and
networks. A more troubling concern is the extent to which users may be lured into the malware
distribution networks by content served through online Ads. For the most part, the syndication
relations that implicitly exist in advertising networks are being abused to deliver malware through
Ads. Lastly, we show that merely avoiding the dark corners of the Internet does not limit exposure
to malware. Unfortunately, we also find that even state-of-the-art anti-virus engines are lacking in
their ability to protect against drive-by downloads. While this is to be expected, it does call for
more elaborate defense mechanisms to curtail this rapidly increasing threat.
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